Intro to FAST data#

Abstract: Some datasets are available more rapidly than others (for space weather monitoring). These are delivered through a special β€œFAST” processing chain, as opposed to the normal operational β€œOPER” chain. They are available under different collection names containing the string β€œFAST”. Here we compare the availability and quality of FAST data in contrast to OPER data.

NB: Data is currently only available on the DISC machine for select users

SERVER_URL = 'https://vires.services/ows'
%load_ext watermark
%watermark -i -v -p viresclient,pandas,xarray,matplotlib,tqdm
Python implementation: CPython
Python version       : 3.11.6
IPython version      : 8.18.0

viresclient: 0.12.0
pandas     : 2.1.3
xarray     : 2023.12.0
matplotlib : 3.8.2
tqdm       : 4.66.1
from viresclient import SwarmRequest
import datetime as dt
from tqdm import tqdm
import matplotlib as mpl
import matplotlib.pyplot as plt
from operator import or_
from functools import reduce

Which data are available FAST?#

request = SwarmRequest(SERVER_URL)

all_collections = request.available_collections(details=False)
# Identify collections with FAST in the name
collections = {group: [c for c in colls if "FAST" in c] for (group, colls) in all_collections.items()}
# Filter the empty groups
collections = {group: colls for group, colls in collections.items() if len(colls) > 0}
collections
{'MAG': ['SW_FAST_MAGA_LR_1B', 'SW_FAST_MAGB_LR_1B', 'SW_FAST_MAGC_LR_1B'],
 'MAG_HR': ['SW_FAST_MAGA_HR_1B', 'SW_FAST_MAGB_HR_1B', 'SW_FAST_MAGC_HR_1B'],
 'EFI': ['SW_FAST_EFIA_LP_1B', 'SW_FAST_EFIB_LP_1B', 'SW_FAST_EFIC_LP_1B'],
 'FAC': ['SW_FAST_FACATMS_2F', 'SW_FAST_FACBTMS_2F', 'SW_FAST_FACCTMS_2F'],
 'MOD_SC': ['SW_FAST_MODA_SC_1B', 'SW_FAST_MODB_SC_1B', 'SW_FAST_MODC_SC_1B']}

Let’s use 'SW_FAST_MAGA_LR_1B' as an example and compare to 'SW_OPER_MAGA_LR_1B'.

We can query the availability times of the underlying products:

fast_availability = request.available_times("SW_FAST_MAGA_LR_1B")
fast_availability
starttime endtime bbox identifier
0 2024-03-19 22:05:21+00:00 2024-03-20 10:26:18.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240319T220521_20240320T10...
1 2024-03-20 10:26:21+00:00 2024-03-20 21:36:18.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240320T102621_20240320T21...
2 2024-03-20 21:36:21+00:00 2024-03-21 11:32:18.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240320T213621_20240321T11...
3 2024-03-21 11:32:21+00:00 2024-03-21 21:08:18.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240321T113221_20240321T21...
4 2024-03-21 21:08:21+00:00 2024-03-22 09:32:19.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240321T210821_20240322T09...
... ... ... ... ...
401 2024-09-17 18:08:21+00:00 2024-09-18 06:48:20.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240917T180821_20240918T06...
402 2024-09-18 06:48:21+00:00 2024-09-18 19:10:20.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240918T064821_20240918T19...
403 2024-09-18 19:10:21+00:00 2024-09-19 06:19:19.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240918T191021_20240919T06...
404 2024-09-19 06:19:21+00:00 2024-09-19 18:39:20.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240919T061921_20240919T18...
405 2024-09-19 18:39:21+00:00 2024-09-20 07:20:20.001000+00:00 (-90,-180,90,180) SW_FAST_MAGA_LR_1B_20240919T183921_20240920T07...

406 rows Γ— 4 columns

Note: VirES only keeps a rolling store of the most recent month of FAST data.

oper_availability = request.available_times("SW_OPER_MAGA_LR_1B")
oper_availability
starttime endtime bbox identifier
0 2013-11-25 11:02:52+00:00 2013-11-25 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20131125T110252_20131125T23...
1 2013-11-26 00:00:00+00:00 2013-11-26 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20131126T000000_20131126T23...
2 2013-11-27 00:00:00+00:00 2013-11-27 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20131127T000000_20131127T23...
3 2013-11-28 00:00:00+00:00 2013-11-28 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20131128T000000_20131128T23...
4 2013-11-29 00:00:00+00:00 2013-11-29 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20131129T000000_20131129T23...
... ... ... ... ...
3928 2024-09-12 00:00:00+00:00 2024-09-12 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20240912T000000_20240912T23...
3929 2024-09-13 00:00:00+00:00 2024-09-13 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20240913T000000_20240913T23...
3930 2024-09-14 00:00:00+00:00 2024-09-14 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20240914T000000_20240914T23...
3931 2024-09-15 00:00:00+00:00 2024-09-15 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20240915T000000_20240915T23...
3932 2024-09-16 00:00:00+00:00 2024-09-16 23:59:59.001000+00:00 (-90,-180,90,180) SW_OPER_MAGA_LR_1B_20240916T000000_20240916T23...

3933 rows Γ— 4 columns

print(f"Latest OPER: {oper_availability['endtime'].iloc[-1]}")
print(f"Latest FAST: {fast_availability['endtime'].iloc[-1]}")
Latest OPER: 2024-09-16 23:59:59.001000+00:00
Latest FAST: 2024-09-20 07:20:20.001000+00:00

As you can see above, OPER data is delivered in full-day chunks with a few days delay. FAST data are typically delivered in several-hour chunks and available as soon as possible, subject to downlink opportunities from the satellite passes over the ground stations and subsequent processing time.

Accessing FAST data#

FAST data are identical in format to OPER data so can be accessed and used in the same way through VirES.

In the following example, we access the latest available day of OPER data and compare to the available FAST data, for each of Swarm A, B, C.

collection_root = "SW_{}_MAG{}_LR_1B"

def find_latest_oper(spacecraft="A"):
    """Identify the latest availability time for OPER data"""
    collection = collection_root.format("OPER", spacecraft)
    request = SwarmRequest(SERVER_URL)
    times = request.available_times(collection)
    return times['endtime'].iloc[-1].to_pydatetime()

def fetch_data(spacecraft="A", type="OPER", start=None, end=None):
    """Fetch either OPER or FAST data"""
    collection = collection_root.format(type, spacecraft)
    request = SwarmRequest(SERVER_URL)
    request.set_collection(collection)
    request.set_products(
        measurements=["B_NEC", "Flags_B"],
        models=["CHAOS"],
    )
    data = request.get_between(start, end, asynchronous=False, show_progress=False)
    ds = data.as_xarray()
    ds["B_NEC_res_CHAOS"] = ds["B_NEC"] - ds["B_NEC_CHAOS"]
    return ds
# Find the latest availability times of OPER data per-satellite
oper_end_times = {sc: find_latest_oper(sc) for sc in "ABC"}
oper_end_times
{'A': datetime.datetime(2024, 9, 16, 23, 59, 59, 1000, tzinfo=datetime.timezone.utc),
 'B': datetime.datetime(2024, 9, 16, 23, 59, 59, 1000, tzinfo=datetime.timezone.utc),
 'C': datetime.datetime(2024, 9, 16, 23, 59, 59, 1000, tzinfo=datetime.timezone.utc)}
data_fast = {}
data_oper = {}
for sc in tqdm("ABC"):
    # Fetch the latest available day of OPER data
    oper_end = oper_end_times[sc] + dt.timedelta(seconds=1)
    oper_start = oper_end - dt.timedelta(days=1)
    data_oper[sc] = fetch_data(sc, "OPER", oper_start, oper_end)
    # Fetch all FAST data from then until now
    data_fast[sc] = fetch_data(sc, "FAST", oper_end, dt.datetime.now())
  0%|          | 0/3 [00:00<?, ?it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 1/3 [00:09<00:18,  9.24s/it]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 2/3 [00:18<00:09,  9.14s/it]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:28<00:00,  9.51s/it]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:28<00:00,  9.42s/it]

def flag_filter(ds):
    """A simplistic filter for close-to-nominal data"""
    # Filtering by Flags_B
    # For flag meanings, see https://swarmhandbook.earth.esa.int/catalogue/SW_MAGx_LR_1B
    # This includes Charlie data, where the ASM was lost
    nominal = 0b0000
    asm_off = 0b0001
    vfm_asm_discrepency = 0b1000
    bitmask_filters = (nominal, asm_off, vfm_asm_discrepency)
    flags = ds["Flags_B"]
    flags_masked = reduce(or_, [flags & x for x in bitmask_filters])
    return ds.where(flags == flags_masked)
# Identify the minimal and maximal times in the datasets
tmin = min(data_oper[sc]["Timestamp"].data[0] for sc in "ABC")
tmax = max(data_fast[sc]["Timestamp"].data[-1] for sc in "ABC")

fig, axes = plt.subplots(nrows=3, figsize=(15, 10), sharex=True)
for ax, sc in zip(axes, "ABC"):
    # Remove bad data before plotting
    ds_oper_nominal = flag_filter(data_oper[sc])
    ds_fast_nominal = flag_filter(data_fast[sc])
    ax.set_prop_cycle("color", ["tab:blue", "tab:orange", "tab:green"])
    ds_oper_nominal["B_NEC_res_CHAOS"].plot.line(x="Timestamp", ax=ax)
    ds_fast_nominal["B_NEC_res_CHAOS"].plot.line(x="Timestamp", ax=ax)
    ax.set_xlim(tmin, tmax)
    # Add shading behind OPER data section
    oper_start = data_oper[sc]["Timestamp"].data[0]
    oper_end = data_oper[sc]["Timestamp"].data[-1]
    ymin, ymax = ax.get_ylim()
    ax.fill_betweenx((ymin, ymax), oper_start, oper_end, alpha=0.3, color="grey")
    # Add and fix some labelling
    ax.text(oper_end, ymax, "⬅️ OPER    FAST ➑️", ha="center", va="top")
    ax.set_xlim(oper_start, ax.get_xlim()[-1])
    ax.set_xlabel("")
    ax.set_ylabel(f"Swarm {sc}\n{ax.get_ylabel()}")

ax.xaxis.set_major_formatter(mpl.dates.DateFormatter("%Y-%m-%d\n%H:%M"))
../_images/6b97d8c82b966a94d9b3334105be9b2bbc4dc5843b027892bf7994224f8056cf.png