MAGxLR_1B (Magnetic field 1Hz)

Abstract: Access to the low rate (1Hz) magnetic data (level 1b product), together with geomagnetic model evaluations (level 2 products).

%load_ext watermark
%watermark -i -v -p viresclient,pandas,xarray,matplotlib
Python implementation: CPython
Python version       : 3.9.7
IPython version      : 8.0.1

viresclient: 0.11.0
pandas     : 1.4.1
xarray     : 0.21.1
matplotlib : 3.5.1
from viresclient import SwarmRequest
import datetime as dt
import matplotlib.pyplot as plt

request = SwarmRequest()

Product information

This is one of the main products from Swarm - the 1Hz measurements of the magnetic field vector (B_NEC) and total intensity (F). These are derived from the Vector Field Magnetometer (VFM) and Absolute Scalar Magnetomer (ASM).

Documentation:

Measurements are available through VirES as part of collections with names containing MAGx_LR, for each Swarm spacecraft:

request.available_collections("MAG", details=False)
{'MAG': ['SW_OPER_MAGA_LR_1B', 'SW_OPER_MAGB_LR_1B', 'SW_OPER_MAGC_LR_1B']}

The measurements can be used together with geomagnetic model evaluations as shall be shown below.

Check what “MAG” data variables are available

request.available_measurements("MAG")
['F',
 'dF_AOCS',
 'dF_other',
 'F_error',
 'B_VFM',
 'B_NEC',
 'dB_Sun',
 'dB_AOCS',
 'dB_other',
 'B_error',
 'q_NEC_CRF',
 'Att_error',
 'Flags_F',
 'Flags_B',
 'Flags_q',
 'Flags_Platform',
 'ASM_Freq_Dev']

Check the names of available models

request.available_models(details=False)
['IGRF',
 'LCS-1',
 'MF7',
 'CHAOS-Core',
 'CHAOS-Static',
 'CHAOS-MMA-Primary',
 'CHAOS-MMA-Secondary',
 'MCO_SHA_2C',
 'MCO_SHA_2D',
 'MLI_SHA_2C',
 'MLI_SHA_2D',
 'MLI_SHA_2E',
 'MMA_SHA_2C-Primary',
 'MMA_SHA_2C-Secondary',
 'MMA_SHA_2F-Primary',
 'MMA_SHA_2F-Secondary',
 'MIO_SHA_2C-Primary',
 'MIO_SHA_2C-Secondary',
 'MIO_SHA_2D-Primary',
 'MIO_SHA_2D-Secondary',
 'AMPS',
 'MCO_SHA_2X',
 'CHAOS',
 'CHAOS-MMA',
 'MMA_SHA_2C',
 'MMA_SHA_2F',
 'MIO_SHA_2C',
 'MIO_SHA_2D',
 'SwarmCI']

Fetch some MAG data and models

We can fetch the data and the model predictions (evaluated on demand) at the same time. We can also subsample the data - here we subsample it to 10-seconds by specifying the “PT10S” sampling_step.

request.set_collection("SW_OPER_MAGA_LR_1B")
request.set_products(
    measurements=["F", "B_NEC"],
    models=["CHAOS-Core", "MCO_SHA_2D"],
    sampling_step="PT10S"
)
data = request.get_between(
    # 2014-01-01 00:00:00
    start_time = dt.datetime(2014,1,1, 0),
    # 2014-01-01 01:00:00
    end_time = dt.datetime(2014,1,1, 1)
)

See a list of the source files

data.sources
['SW_OPER_MAGA_LR_1B_20140101T000000_20140101T235959_0505_MDR_MAG_LR',
 'SW_OPER_MCO_SHA_2D_20131126T000000_20180101T000000_0401',
 'SW_OPER_MCO_SHA_2X_19970101T000000_20220807T235959_0711']

Load as a pandas dataframe

Use expand=True to extract vectors (B_NEC…) as separate columns (…_N, …_E, …_C)

df = data.as_dataframe(expand=True)
df.head()
Radius Latitude Longitude F_CHAOS-Core F F_MCO_SHA_2D Spacecraft B_NEC_CHAOS-Core_N B_NEC_CHAOS-Core_E B_NEC_CHAOS-Core_C B_NEC_N B_NEC_E B_NEC_C B_NEC_MCO_SHA_2D_N B_NEC_MCO_SHA_2D_E B_NEC_MCO_SHA_2D_C
Timestamp
2014-01-01 00:00:00 6878309.22 -1.228938 -14.116674 22874.436246 22867.5503 22874.211509 A 20113.226153 -4127.051332 -10082.926887 20103.5246 -4126.2621 -10086.9888 20113.623921 -4127.463956 -10081.454567
2014-01-01 00:00:10 6878381.17 -1.862521 -14.131424 22821.171065 22814.5656 22820.941425 A 19824.732246 -4162.697190 -10509.890211 19815.0914 -4160.9933 -10514.4074 19825.161844 -4163.127549 -10508.410652
2014-01-01 00:00:20 6878452.05 -2.496090 -14.146155 22769.599713 22763.2585 22769.369161 A 19533.089786 -4197.081116 -10922.343366 19523.4946 -4195.1968 -10926.9664 19533.553905 -4197.529054 -10920.860481
2014-01-01 00:00:30 6878521.87 -3.129644 -14.160861 22719.465912 22713.3703 22719.238240 A 19238.842861 -4230.136455 -11320.203278 19229.2386 -4228.4747 -11324.8335 19239.343572 -4230.601819 -11318.721366
2014-01-01 00:00:40 6878590.61 -3.763184 -14.175534 22670.525965 22664.7202 22670.304681 A 18942.536458 -4261.797994 -11703.424196 18932.8807 -4260.8424 -11708.0897 18943.075144 -4262.280634 -11701.947796

… or as an xarray dataset:

ds = data.as_xarray()
ds
<xarray.Dataset>
Dimensions:           (Timestamp: 360, NEC: 3)
Coordinates:
  * Timestamp         (Timestamp) datetime64[ns] 2014-01-01 ... 2014-01-01T00...
  * NEC               (NEC) <U1 'N' 'E' 'C'
Data variables:
    Spacecraft        (Timestamp) object 'A' 'A' 'A' 'A' 'A' ... 'A' 'A' 'A' 'A'
    Radius            (Timestamp) float64 6.878e+06 6.878e+06 ... 6.868e+06
    Latitude          (Timestamp) float64 -1.229 -1.863 -2.496 ... 48.14 48.77
    Longitude         (Timestamp) float64 -14.12 -14.13 -14.15 ... 153.6 153.6
    F_CHAOS-Core      (Timestamp) float64 2.287e+04 2.282e+04 ... 4.02e+04
    F                 (Timestamp) float64 2.287e+04 2.281e+04 ... 4.021e+04
    F_MCO_SHA_2D      (Timestamp) float64 2.287e+04 2.282e+04 ... 4.021e+04
    B_NEC_CHAOS-Core  (Timestamp, NEC) float64 2.011e+04 ... 3.557e+04
    B_NEC_MCO_SHA_2D  (Timestamp, NEC) float64 2.011e+04 ... 3.557e+04
    B_NEC             (Timestamp, NEC) float64 2.01e+04 -4.126e+03 ... 3.558e+04
Attributes:
    Sources:         ['SW_OPER_MAGA_LR_1B_20140101T000000_20140101T235959_050...
    MagneticModels:  ["CHAOS-Core = 'CHAOS-Core'(max_degree=20,min_degree=1)"...
    AppliedFilters:  []

Fetch the residuals directly

Adding residuals=True to .set_products() will instead directly evaluate and return all data-model residuals

request = SwarmRequest()
request.set_collection("SW_OPER_MAGA_LR_1B")
request.set_products(
    measurements=["F", "B_NEC"],
    models=["CHAOS-Core", "MCO_SHA_2D"],
    residuals=True,
    sampling_step="PT10S"
)
data = request.get_between(
    start_time = dt.datetime(2014,1,1, 0),
    end_time = dt.datetime(2014,1,1, 1)
)
df = data.as_dataframe(expand=True)
df.head()
Spacecraft Radius Latitude Longitude F_res_MCO_SHA_2D F_res_CHAOS-Core B_NEC_res_MCO_SHA_2D_N B_NEC_res_MCO_SHA_2D_E B_NEC_res_MCO_SHA_2D_C B_NEC_res_CHAOS-Core_N B_NEC_res_CHAOS-Core_E B_NEC_res_CHAOS-Core_C
Timestamp
2014-01-01 00:00:00 A 6878309.22 -1.228938 -14.116674 -6.661209 -6.885946 -10.099321 1.201856 -5.534233 -9.701553 0.789232 -4.061913
2014-01-01 00:00:10 A 6878381.17 -1.862521 -14.131424 -6.375825 -6.605465 -10.070444 2.134249 -5.996748 -9.640846 1.703890 -4.517189
2014-01-01 00:00:20 A 6878452.05 -2.496090 -14.146155 -6.110661 -6.341213 -10.059305 2.332254 -6.105919 -9.595186 1.884316 -4.623034
2014-01-01 00:00:30 A 6878521.87 -3.129644 -14.160861 -5.867940 -6.095612 -10.104972 2.127119 -6.112134 -9.604261 1.661755 -4.630222
2014-01-01 00:00:40 A 6878590.61 -3.763184 -14.175534 -5.584481 -5.805765 -10.194444 1.438234 -6.141904 -9.655758 0.955594 -4.665504

Plot the scalar residuals

… using the pandas method:

ax = df.plot(
    y=["F_res_CHAOS-Core", "F_res_MCO_SHA_2D"],
    figsize=(15,5),
    grid=True
)
ax.set_xlabel("Timestamp")
ax.set_ylabel("[nT]");
../_images/03a1_Demo-MAGx_LR_1B_21_0.png

… using matplotlib interface

NB: we are doing plt.plot(x, y) with x as df.index (the time-based index of df), and y as df[".."]

plt.figure(figsize=(15,5))
plt.plot(
    df.index,
    df["F_res_CHAOS-Core"],
    label="F_res_CHAOS-Core"
)
plt.plot(
    df.index,
    df["F_res_MCO_SHA_2D"],
    label="F_res_MCO_SHA_2D"
)
plt.xlabel("Timestamp")
plt.ylabel("[nT]")
plt.grid()
plt.legend();
../_images/03a1_Demo-MAGx_LR_1B_23_0.png

… using matplotlib interface (Object Oriented style)

This is the recommended route for making more complicated figures

fig, ax = plt.subplots(figsize=(15,5))
ax.plot(
    df.index,
    df["F_res_CHAOS-Core"],
    label="F_res_CHAOS-Core"
)
ax.plot(
    df.index,
    df["F_res_MCO_SHA_2D"],
    label="F_res_MCO_SHA_2D"
)
ax.set_xlabel("Timestamp")
ax.set_ylabel("[nT]")
ax.grid()
ax.legend();
../_images/03a1_Demo-MAGx_LR_1B_25_0.png

Plot the vector components

fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(15,10), sharex=True)
for component, ax in zip("NEC", axes):
    for model_name in ("CHAOS-Core", "MCO_SHA_2D"):
        ax.plot(
            df.index,
            df[f"B_NEC_res_{model_name}_{component}"],
            label=model_name
        )
    ax.set_ylabel(f"{component}\n[nT]")
    ax.legend()
axes[0].set_title("Residuals to models (NEC components)")
axes[2].set_xlabel("Timestamp");
../_images/03a1_Demo-MAGx_LR_1B_27_0.png

Similar plotting, using the data via xarray instead

xarray provides a more sophisticated data structure that is more suitable for the complex vector data we are accessing, together with nice stuff like unit and other metadata support. Unfortunately due to the extra complexity, this can make it difficult to use right away.

ds = data.as_xarray()
ds
<xarray.Dataset>
Dimensions:               (Timestamp: 360, NEC: 3)
Coordinates:
  * Timestamp             (Timestamp) datetime64[ns] 2014-01-01 ... 2014-01-0...
  * NEC                   (NEC) <U1 'N' 'E' 'C'
Data variables:
    Spacecraft            (Timestamp) object 'A' 'A' 'A' 'A' ... 'A' 'A' 'A' 'A'
    Radius                (Timestamp) float64 6.878e+06 6.878e+06 ... 6.868e+06
    Latitude              (Timestamp) float64 -1.229 -1.863 ... 48.14 48.77
    Longitude             (Timestamp) float64 -14.12 -14.13 ... 153.6 153.6
    B_NEC_res_MCO_SHA_2D  (Timestamp, NEC) float64 -10.1 1.202 ... 2.782 8.984
    B_NEC_res_CHAOS-Core  (Timestamp, NEC) float64 -9.702 0.7892 ... 2.901 9.906
    F_res_MCO_SHA_2D      (Timestamp) float64 -6.661 -6.376 ... 3.153 3.108
    F_res_CHAOS-Core      (Timestamp) float64 -6.886 -6.605 ... 5.022 5.02
Attributes:
    Sources:         ['SW_OPER_MAGA_LR_1B_20140101T000000_20140101T235959_050...
    MagneticModels:  ["CHAOS-Core = 'CHAOS-Core'(max_degree=20,min_degree=1)"...
    AppliedFilters:  []
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(15,10), sharex=True)
for i, ax in enumerate(axes):
    for model_name in ("CHAOS-Core", "MCO_SHA_2D"):
        ax.plot(
            ds["Timestamp"],
            ds[f"B_NEC_res_{model_name}"][:, i],
            label=model_name
        )
    ax.set_ylabel("NEC"[i] + " [nT]")
    ax.legend()
axes[0].set_title("Residuals to models (NEC components)")
axes[2].set_xlabel("Timestamp");
../_images/03a1_Demo-MAGx_LR_1B_30_0.png

Note that xarray also allows convenient direct plotting like:

ds["B_NEC_res_CHAOS-Core"].plot.line(x="Timestamp");
../_images/03a1_Demo-MAGx_LR_1B_32_0.png

Access multiple MAG datasets simultaneously

It is possible to fetch data from multiple collections simultaneously. Here we fetch the measurements from Swarm Alpha and Bravo. In the returned data, you can differentiate between them using the “Spacecraft” column.

request = SwarmRequest()
request.set_collection("SW_OPER_MAGA_LR_1B", "SW_OPER_MAGC_LR_1B")
request.set_products(
    measurements=["F", "B_NEC"],
    models=["CHAOS-Core",],
    residuals=True,
    sampling_step="PT10S"
)
data = request.get_between(
    start_time = dt.datetime(2014,1,1, 0),
    end_time = dt.datetime(2014,1,1, 1)
)
df = data.as_dataframe(expand=True)
df.head()
Radius Latitude Longitude Spacecraft F_res_CHAOS-Core B_NEC_res_CHAOS-Core_N B_NEC_res_CHAOS-Core_E B_NEC_res_CHAOS-Core_C
Timestamp
2014-01-01 00:00:00 6878309.22 -1.228938 -14.116674 A -6.885946 -9.701553 0.789232 -4.061913
2014-01-01 00:00:10 6878381.17 -1.862521 -14.131424 A -6.605465 -9.640846 1.703890 -4.517189
2014-01-01 00:00:20 6878452.05 -2.496090 -14.146155 A -6.341213 -9.595186 1.884316 -4.623034
2014-01-01 00:00:30 6878521.87 -3.129644 -14.160861 A -6.095612 -9.604261 1.661755 -4.630222
2014-01-01 00:00:40 6878590.61 -3.763184 -14.175534 A -5.805765 -9.655758 0.955594 -4.665504
df[df["Spacecraft"] == "A"].head()
Radius Latitude Longitude Spacecraft F_res_CHAOS-Core B_NEC_res_CHAOS-Core_N B_NEC_res_CHAOS-Core_E B_NEC_res_CHAOS-Core_C
Timestamp
2014-01-01 00:00:00 6878309.22 -1.228938 -14.116674 A -6.885946 -9.701553 0.789232 -4.061913
2014-01-01 00:00:10 6878381.17 -1.862521 -14.131424 A -6.605465 -9.640846 1.703890 -4.517189
2014-01-01 00:00:20 6878452.05 -2.496090 -14.146155 A -6.341213 -9.595186 1.884316 -4.623034
2014-01-01 00:00:30 6878521.87 -3.129644 -14.160861 A -6.095612 -9.604261 1.661755 -4.630222
2014-01-01 00:00:40 6878590.61 -3.763184 -14.175534 A -5.805765 -9.655758 0.955594 -4.665504
df[df["Spacecraft"] == "C"].head()
Radius Latitude Longitude Spacecraft F_res_CHAOS-Core B_NEC_res_CHAOS-Core_N B_NEC_res_CHAOS-Core_E B_NEC_res_CHAOS-Core_C
Timestamp
2014-01-01 00:00:00 6877665.99 5.908082 -14.420068 C -10.283541 -10.312742 1.869603 -0.402592
2014-01-01 00:00:10 6877747.67 5.274386 -14.434576 C -9.908776 -10.106798 2.009393 -1.033176
2014-01-01 00:00:20 6877828.39 4.640702 -14.449141 C -9.616648 -10.019548 1.917093 -1.481472
2014-01-01 00:00:30 6877908.15 4.007030 -14.463755 C -9.401442 -10.127591 1.524755 -2.023153
2014-01-01 00:00:40 6877986.93 3.373371 -14.478412 C -9.178214 -10.224281 1.057798 -2.427985

… or using xarray

ds = data.as_xarray()
ds.where(ds["Spacecraft"] == "A", drop=True)
<xarray.Dataset>
Dimensions:               (Timestamp: 360, NEC: 3)
Coordinates:
  * Timestamp             (Timestamp) datetime64[ns] 2014-01-01 ... 2014-01-0...
  * NEC                   (NEC) <U1 'N' 'E' 'C'
Data variables:
    Spacecraft            (Timestamp) object 'A' 'A' 'A' 'A' ... 'A' 'A' 'A' 'A'
    Radius                (Timestamp) float64 6.878e+06 6.878e+06 ... 6.868e+06
    Latitude              (Timestamp) float64 -1.229 -1.863 ... 48.14 48.77
    Longitude             (Timestamp) float64 -14.12 -14.13 ... 153.6 153.6
    B_NEC_res_CHAOS-Core  (Timestamp, NEC) float64 -9.702 0.7892 ... 2.901 9.906
    F_res_CHAOS-Core      (Timestamp) float64 -6.886 -6.605 ... 5.022 5.02
Attributes:
    Sources:         ['SW_OPER_MAGA_LR_1B_20140101T000000_20140101T235959_050...
    MagneticModels:  ["CHAOS-Core = 'CHAOS-Core'(max_degree=20,min_degree=1)"]
    AppliedFilters:  []