EEFxTMS_2F (Equatorial electric field)

Abstract: Access to the equatorial electric field (level 2 product).

%load_ext watermark
%watermark -i -v -p viresclient,pandas,xarray,matplotlib
Python implementation: CPython
Python version       : 3.9.7
IPython version      : 8.3.0

viresclient: 0.10.3
pandas     : 1.4.1
xarray     : 0.21.1
matplotlib : 3.5.1
from viresclient import SwarmRequest
import datetime as dt
import numpy as np
import matplotlib.pyplot as plt

request = SwarmRequest()

EEFxTMS_2F product information

Dayside equatorial electric field, sampled at every dayside equator crossing +- 20mins

Documentation:

Check what “EEF” data variables are available

request.available_collections("EEF", details=False)
{'EEF': ['SW_OPER_EEFATMS_2F', 'SW_OPER_EEFBTMS_2F', 'SW_OPER_EEFCTMS_2F']}
request.available_measurements("EEF")
['EEF', 'EEJ', 'RelErr', 'Flags']

Fetch all the EEF and EEJ values from Bravo during 2016

request.set_collection("SW_OPER_EEFBTMS_2F")
request.set_products(measurements=["EEF", "EEJ", "Flags"])
data = request.get_between(
    dt.datetime(2016,1,1),
    dt.datetime(2017,1,1)
)
# The first three and last three source (daily) files
data.sources[:3], data.sources[-3:]
(['SW_OPER_EEFBTMS_2F_20160101T000000_20160101T235959_0204',
  'SW_OPER_EEFBTMS_2F_20160102T000000_20160102T235959_0204',
  'SW_OPER_EEFBTMS_2F_20160103T000000_20160103T235959_0204'],
 ['SW_OPER_EEFBTMS_2F_20161229T000000_20161229T235959_0204',
  'SW_OPER_EEFBTMS_2F_20161230T000000_20161230T235959_0204',
  'SW_OPER_EEFBTMS_2F_20161231T000000_20161231T235959_0204'])
df = data.as_dataframe()
df.head()
Flags Spacecraft EEJ EEF Longitude Latitude
Timestamp
2016-01-01 00:52:23.367156224 0 B [-74.57382146246935, -59.68097319571396, -45.1... -0.444208 113.754512 7.290433
2016-01-01 02:27:06.243671808 0 B [-45.59157503892487, -40.731539994601945, -35.... -0.229135 89.980167 7.577520
2016-01-01 04:02:03.629109504 0 B [-20.43764232681452, -17.612771036713497, -14.... -0.168648 66.182831 6.948012
2016-01-01 05:36:43.555203072 0 B [-1.0670899767171982, -0.5372306288060009, -0.... -0.185324 42.413424 7.422034
2016-01-01 07:10:49.341007616 0 B [0.35033186716203196, 1.2002997481508415, 2.04... -0.072291 18.699167 10.052089
ax = df.plot(y="EEF", figsize=(20,10))
ax.set_ylim((-2, 2));
ax.set_ylabel("EEF [mV/m]");
../_images/03f__Demo-EEFxTMS_2F_11_0.png

Take a look at the time jumps between entries… Nominally the product should produce one measurement “every dayside equator crossing ±20 minutes”

times = df.index
delta_t_minutes = [t.seconds/60 for t in np.diff(times.to_pydatetime())]
print("Range of time gaps (in minutes) between successive measurements:")
np.unique(np.sort(delta_t_minutes))
Range of time gaps (in minutes) between successive measurements:
array([  46.3       ,   46.4       ,   91.48333333,   91.5       ,
         91.51666667,   91.53333333,   91.55      ,   91.56666667,
         91.58333333,   91.6       ,   91.61666667,   91.63333333,
         91.65      ,   91.66666667,   91.68333333,   91.7       ,
         91.71666667,   91.73333333,   91.75      ,   91.76666667,
         91.78333333,   91.8       ,   91.81666667,   91.83333333,
         91.85      ,   91.86666667,   91.88333333,   91.9       ,
         91.91666667,   91.93333333,   91.95      ,   91.96666667,
         91.98333333,   92.        ,   92.01666667,   92.03333333,
         92.05      ,   92.06666667,   92.08333333,   92.1       ,
         92.11666667,   92.13333333,   92.15      ,   92.16666667,
         92.18333333,   92.2       ,   92.21666667,   92.23333333,
         92.25      ,   92.26666667,   92.28333333,   92.3       ,
         92.31666667,   92.33333333,   92.35      ,   92.36666667,
         92.38333333,   92.4       ,   92.41666667,   92.43333333,
         92.45      ,   92.46666667,   92.48333333,   92.5       ,
         92.51666667,   92.53333333,   92.55      ,   92.56666667,
         92.58333333,   92.6       ,   92.61666667,   92.63333333,
         92.65      ,   92.66666667,   92.68333333,   92.7       ,
         92.71666667,   92.73333333,   92.75      ,   92.76666667,
         92.78333333,   92.8       ,   92.81666667,   92.83333333,
         92.85      ,   92.86666667,   92.9       ,   92.91666667,
         92.95      ,   92.96666667,   92.98333333,   93.        ,
         93.01666667,   93.03333333,   93.05      ,   93.06666667,
         93.08333333,   93.1       ,   93.11666667,   93.15      ,
         93.18333333,   93.2       ,   93.21666667,   93.23333333,
         93.25      ,   93.26666667,   93.28333333,   93.3       ,
         93.33333333,   93.35      ,   93.36666667,   93.38333333,
         93.4       ,   93.41666667,   93.43333333,   93.45      ,
         93.46666667,   93.48333333,   93.5       ,   93.51666667,
         93.53333333,   93.55      ,   93.56666667,   93.58333333,
         93.6       ,   93.61666667,   93.63333333,   93.65      ,
         93.66666667,   93.68333333,   93.7       ,   93.71666667,
         93.73333333,   93.75      ,   93.76666667,   93.78333333,
         93.8       ,   93.81666667,   93.83333333,   93.85      ,
         93.86666667,   93.88333333,   93.9       ,   93.91666667,
         93.93333333,   93.95      ,   93.96666667,   93.98333333,
         94.        ,   94.01666667,   94.03333333,   94.05      ,
         94.06666667,   94.08333333,   94.1       ,   94.11666667,
         94.13333333,   94.15      ,   94.16666667,   94.18333333,
         94.2       ,   94.21666667,   94.23333333,   94.25      ,
         94.26666667,   94.28333333,   94.3       ,   94.31666667,
         94.33333333,   94.35      ,   94.36666667,   94.38333333,
         94.4       ,   94.41666667,   94.43333333,   94.45      ,
         94.46666667,   94.48333333,   94.5       ,   94.51666667,
         94.53333333,   94.55      ,   94.56666667,   94.58333333,
         94.6       ,   94.61666667,   94.63333333,   94.65      ,
         94.66666667,   94.68333333,   94.7       ,   94.71666667,
         94.73333333,   94.75      ,   94.76666667,   94.78333333,
         94.8       ,   94.81666667,   94.83333333,   94.85      ,
         94.86666667,   94.88333333,   94.9       ,   94.91666667,
         94.93333333,   94.95      ,   94.96666667,   94.98333333,
         95.        ,   95.01666667,   95.03333333,   95.05      ,
         95.06666667,   95.08333333,   95.1       ,   95.11666667,
         95.13333333,   95.15      ,   95.16666667,   95.18333333,
         95.2       ,   95.21666667,   95.23333333,   95.25      ,
         95.26666667,   95.28333333,   95.3       ,   95.31666667,
         95.33333333,   95.35      ,   95.36666667,   95.38333333,
         95.4       ,   95.41666667,   95.43333333,   95.45      ,
         95.46666667,   95.48333333,   95.5       ,   95.51666667,
         95.53333333,   95.55      ,   95.56666667,   95.58333333,
         95.6       ,   95.61666667,   95.63333333,   95.65      ,
         95.66666667,   95.68333333,   95.7       ,   95.71666667,
         95.73333333,   95.75      ,   95.76666667,   95.78333333,
         95.8       ,   95.81666667,   95.83333333,   95.85      ,
         95.86666667,   95.88333333,   95.9       ,   95.91666667,
         95.93333333,   95.95      ,   95.96666667,   95.98333333,
         96.        ,   96.05      ,   96.08333333,   96.1       ,
         96.11666667,   96.13333333,   96.15      ,   96.16666667,
         96.18333333,   96.2       ,   96.21666667,   96.23333333,
         96.25      ,   96.26666667,   96.28333333,   96.3       ,
         96.31666667,   96.35      ,   96.38333333,   96.4       ,
         96.41666667,   96.48333333,   96.5       ,   96.51666667,
         96.55      ,   96.56666667,   96.58333333,   96.6       ,
         96.61666667,   96.63333333,   96.65      ,   96.66666667,
         96.68333333,   96.7       ,   96.71666667,   96.73333333,
         96.75      ,   96.76666667,   96.8       ,   96.81666667,
         96.83333333,   96.85      ,   96.86666667,   96.88333333,
         96.9       ,   96.91666667,   96.93333333,   96.95      ,
         96.96666667,   96.98333333,   97.        ,   97.01666667,
         97.06666667,   97.08333333,   97.1       ,   97.11666667,
         97.13333333,   97.15      ,   97.16666667,   97.2       ,
         97.21666667,   97.23333333,   97.25      ,   97.26666667,
         97.28333333,   97.3       ,   97.31666667,   97.33333333,
         97.35      ,   97.36666667,   97.38333333,   97.41666667,
         97.46666667,   97.48333333,   97.5       ,   97.51666667,
         97.53333333,   97.55      ,   97.56666667,   97.58333333,
         97.6       ,   97.61666667,   97.63333333,   97.65      ,
         97.66666667,   97.7       ,   97.73333333,   97.76666667,
         97.78333333,   97.8       ,   97.81666667,   97.83333333,
         97.85      ,   97.86666667,   97.88333333,   97.9       ,
         97.91666667,   97.93333333,   97.96666667,   97.98333333,
         98.        ,   98.01666667,   98.03333333,   98.05      ,
         98.06666667,   98.08333333,   98.1       ,   98.11666667,
        145.23333333,  187.48333333,  187.51666667,  187.56666667,
        187.61666667,  187.68333333,  187.76666667,  187.83333333,
        188.11666667,  188.46666667,  188.83333333,  189.46666667,
        189.48333333,  189.55      ,  189.58333333,  189.61666667,
        189.68333333,  189.93333333,  190.3       ,  190.68333333,
        190.76666667,  191.18333333,  191.2       ,  191.21666667,
        191.26666667,  191.28333333,  191.33333333,  191.36666667,
        191.38333333,  191.45      ,  191.48333333,  191.58333333,
       1421.48333333])

Access the EEJ estimate via xarray instead of pandas

Since the EEJ estimate has both time and latitude dimensions, it is not suited to pandas. Here we load the data as a xarray.Dataset which better handles n-dimensional data.

ds = data.as_xarray()
ds
<xarray.Dataset>
Dimensions:     (Timestamp: 5508, EEJ_QDLat: 81)
Coordinates:
  * Timestamp   (Timestamp) datetime64[ns] 2016-01-01T00:52:23.367156224 ... ...
  * EEJ_QDLat   (EEJ_QDLat) float64 -20.0 -19.5 -19.0 -18.5 ... 19.0 19.5 20.0
Data variables:
    Spacecraft  (Timestamp) object 'B' 'B' 'B' 'B' 'B' ... 'B' 'B' 'B' 'B' 'B'
    EEJ         (Timestamp, EEJ_QDLat) float64 -74.57 -59.68 ... -7.399 -9.459
    EEF         (Timestamp) float64 -0.4442 -0.2291 -0.1686 ... 0.4555 0.5333
    Longitude   (Timestamp) float64 113.8 89.98 66.18 ... -105.3 -129.1 -153.0
    Latitude    (Timestamp) float64 7.29 7.578 6.948 ... -7.722 -4.006 -0.7652
    Flags       (Timestamp) uint16 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
Attributes:
    Sources:         ['SW_OPER_EEFBTMS_2F_20160101T000000_20160101T235959_020...
    MagneticModels:  []
    RangeFilters:    []

Let’s select a subset (one month) and visualise it:

_ds = ds.sel({"Timestamp": "2016-01"})

fig, ax1 = plt.subplots(nrows=1, figsize=(15,3), sharex=True)
_ds.plot.scatter(x="Timestamp", y="EEJ_QDLat", hue="EEJ", vmax=10, s=1, ax=ax1)
<matplotlib.collections.PathCollection at 0x7fe27ca519a0>
../_images/03f__Demo-EEFxTMS_2F_17_1.png