EFIxTCT (Cross-track ion flow)#
Abstract: Access to the 2Hz & 16Hz cross-track ion flow data derived from the Thermal Ion Imager (TII), part of the Electric Field Instrument package (EFI).
For more information about this product, see the release notes.
SERVER_URL = 'https://vires.services/ows'
# Display important package versions used
%load_ext watermark
%watermark -i -v -p viresclient,pandas,xarray,matplotlib
Python implementation: CPython
Python version : 3.11.6
IPython version : 8.18.0
viresclient: 0.12.0
pandas : 2.1.3
xarray : 2023.12.0
matplotlib : 3.8.2
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
# Control the HTML display of the datasets
xr.set_options(display_expand_attrs=False, display_expand_coords=True, display_expand_data=True)
from viresclient import SwarmRequest
request = SwarmRequest(SERVER_URL)
What data is available?#
There are two sets of collections available, one for 2Hz and one for 16Hz, and for each there are three collections, one for each Swarm spacecraft.
request.available_collections("EFI_TCT02", details=False)
{'EFI_TCT02': ['SW_EXPT_EFIA_TCT02',
'SW_EXPT_EFIB_TCT02',
'SW_EXPT_EFIC_TCT02']}
request.available_collections("EFI_TCT16", details=False)
{'EFI_TCT16': ['SW_EXPT_EFIA_TCT16',
'SW_EXPT_EFIB_TCT16',
'SW_EXPT_EFIC_TCT16']}
print(request.available_measurements("EFI_TCT02"))
['VsatC', 'VsatE', 'VsatN', 'Bx', 'By', 'Bz', 'Ehx', 'Ehy', 'Ehz', 'Evx', 'Evy', 'Evz', 'Vicrx', 'Vicry', 'Vicrz', 'Vixv', 'Vixh', 'Viy', 'Viz', 'Vixv_error', 'Vixh_error', 'Viy_error', 'Viz_error', 'Latitude_QD', 'MLT_QD', 'Calibration_flags', 'Quality_flags']
print(request.available_measurements("EFI_TCT16"))
['VsatC', 'VsatE', 'VsatN', 'Bx', 'By', 'Bz', 'Ehx', 'Ehy', 'Ehz', 'Evx', 'Evy', 'Evz', 'Vicrx', 'Vicry', 'Vicrz', 'Vixv', 'Vixh', 'Viy', 'Viz', 'Vixv_error', 'Vixh_error', 'Viy_error', 'Viz_error', 'Latitude_QD', 'MLT_QD', 'Calibration_flags', 'Quality_flags']
As seen above, the variables available for both the 2Hz and 16Hz datasets are the same. Here is a short description for each variable:
tct_vars = [
# Satellite velocity in NEC frame
"VsatC", "VsatE", "VsatN",
# Geomagnetic field components derived from 1Hz product
# (in satellite-track coordinates)
"Bx", "By", "Bz",
# Electric field components derived from -VxB with along-track ion drift
# (in satellite-track coordinates)
# Eh: derived from horizontal sensor
# Ev: derived from vertical sensor
"Ehx", "Ehy", "Ehz",
"Evx", "Evy", "Evz",
# Ion drift corotation signal, removed from ion drift & electric field
# (in satellite-track coordinates)
"Vicrx", "Vicry", "Vicrz",
# Ion drifts along-track from vertical (..v) and horizontal (..h) TII sensor
"Vixv", "Vixh",
# Ion drifts cross-track (y from horizontal sensor, z from vertical sensor)
# (in satellite-track coordinates)
"Viy", "Viz",
# Random error estimates for the above
# (Negative value indicates no estimate available)
"Vixv_error", "Vixh_error", "Viy_error", "Viz_error",
# Quasi-dipole magnetic latitude and local time
# redundant with VirES auxiliaries, QDLat & MLT
"Latitude_QD", "MLT_QD",
# Refer to release notes link above for details:
"Calibration_flags", "Quality_flags",
]
Fetching and plotting data#
For demonstration, we will fetch the 2Hz data from Swarm Alpha (SW_EXPT_EFIA_TCT02
)
start = "2018-07-17T11:00:00"
end = "2018-07-17T16:00:00"
request = SwarmRequest(SERVER_URL)
request.set_collection("SW_EXPT_EFIA_TCT02")
request.set_products(measurements=tct_vars)
data = request.get_between(start, end)
Data can be loaded as either a pandas datframe or a xarray dataset.
df = data.as_dataframe()
df.head()
Vixh | Evz | Vixv_error | Evx | Calibration_flags | Ehx | MLT_QD | Vicrz | Vixh_error | Spacecraft | ... | VsatC | Radius | Viz | Quality_flags | Latitude_QD | Viz_error | Latitude | Evy | Bx | Bz | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Timestamp | |||||||||||||||||||||
2018-07-17 11:28:49.225250048 | -14747.417969 | -42.754105 | -14.849242 | -146.413574 | 50529027 | -146.413574 | 17.153055 | -0.658293 | -14.849242 | A | ... | 5.364018 | 6805734.0 | -268.333466 | 0 | 75.208305 | -14.849242 | 80.104347 | -866.204529 | -1941.897339 | 47833.539062 |
2018-07-17 11:28:49.725250048 | -14475.270508 | -41.459320 | -14.849242 | -132.751846 | 50529027 | -132.751846 | 17.154737 | -0.661217 | -14.849242 | A | ... | 5.379858 | 6805735.5 | -455.484985 | 0 | 75.179535 | -14.849242 | 80.073341 | -848.451111 | -1947.693359 | 47837.632812 |
2018-07-17 11:28:50.225250048 | -14559.314453 | -42.256802 | -14.849242 | -130.952698 | 50529027 | -130.952698 | 17.156416 | -0.664141 | -14.849242 | A | ... | 5.395653 | 6805736.0 | -273.931030 | 0 | 75.150764 | -14.849242 | 80.042313 | -868.396301 | -1954.192383 | 47841.683594 |
2018-07-17 11:28:50.725250048 | -14442.468750 | -42.272465 | -14.849242 | -130.928070 | 50529027 | -130.928070 | 17.158089 | -0.667065 | -14.849242 | A | ... | 5.411411 | 6805737.0 | -566.669189 | 0 | 75.121979 | -14.849242 | 80.011284 | -868.061523 | -1961.238281 | 47845.691406 |
2018-07-17 11:28:51.225250048 | -14607.324219 | -41.907967 | -14.849242 | -126.337891 | 50529027 | -126.337891 | 17.159754 | -0.669987 | -14.849242 | A | ... | 5.427133 | 6805739.0 | -533.720764 | 0 | 75.093193 | -14.849242 | 79.980247 | -864.288635 | -1969.732666 | 47849.765625 |
5 rows à 31 columns
ds = data.as_xarray()
ds
<xarray.Dataset> Dimensions: (Timestamp: 32535) Coordinates: * Timestamp (Timestamp) datetime64[ns] 2018-07-17T11:28:49.2252500... Data variables: (12/31) Spacecraft (Timestamp) object 'A' 'A' 'A' 'A' ... 'A' 'A' 'A' 'A' Evz (Timestamp) float32 -42.75 -41.46 -42.26 ... 53.63 52.48 Vixv_error (Timestamp) float32 -14.85 -14.85 ... -14.85 -14.85 Ehx (Timestamp) float32 -146.4 -132.8 ... -94.24 -90.33 Bz (Timestamp) float32 4.783e+04 4.784e+04 ... 4.539e+04 Vicrz (Timestamp) float32 -0.6583 -0.6612 ... -0.7706 -0.7679 ... ... Ehy (Timestamp) float32 -705.9 -693.3 ... -657.7 -654.5 VsatC (Timestamp) float32 5.364 5.38 5.396 ... -11.04 -11.03 By (Timestamp) float32 -2.033e+03 -2.033e+03 ... 2.129e+03 Evy (Timestamp) float32 -866.2 -848.5 ... -720.4 -715.7 Bx (Timestamp) float32 -1.942e+03 -1.948e+03 ... 9.496e+03 Viy_error (Timestamp) float32 -14.85 -14.85 ... -14.85 -14.85 Attributes: (3)
An example plot:
fig, axes = plt.subplots(nrows=4, sharex=True, figsize=(10, 7))
# Plot velocities with left axis
ds.plot.scatter(x="Timestamp", y="Vixv", ax=axes[0], s=1, linewidths=0)
ds.plot.scatter(x="Timestamp", y="Vixh", ax=axes[1], s=1, linewidths=0)
ds.plot.scatter(x="Timestamp", y="Viy", ax=axes[2], s=1, linewidths=0)
ds.plot.scatter(x="Timestamp", y="Viz", ax=axes[3], s=1, linewidths=0, label="Velocities")
# Plot velocities with right axis
axes_r = [ax.twinx() for ax in axes]
ds.plot.scatter(x="Timestamp", y="Vixv_error", ax=axes_r[0], s=0.1, color="tab:orange")
ds.plot.scatter(x="Timestamp", y="Vixh_error", ax=axes_r[1], s=0.1, color="tab:orange")
ds.plot.scatter(x="Timestamp", y="Viy_error", ax=axes_r[2], s=0.1, color="tab:orange")
ds.plot.scatter(x="Timestamp", y="Viz_error", ax=axes_r[3], s=0.1, color="tab:orange")
fig.subplots_adjust(hspace=0)
# Add legend to identify each side
blue = mpl.patches.Patch(color="tab:blue", label="Velocities")
orange = mpl.patches.Patch(color="tab:orange", label="Errors")
axes[0].legend(handles=[blue, orange])
# # Generate additional ticklabels for x-axis
# Use time xticks to get dataset vars at those xticks
locx = axes[-1].get_xticks()
times = mpl.dates.num2date(locx)
times = [t.replace(tzinfo=None) for t in times]
_ds_xticks = ds.reindex({"Timestamp": times}, method="nearest")
# Build ticklabels from dataset vars
xticklabels = np.stack([
_ds_xticks["Timestamp"].dt.strftime("%H:%M").values,
np.round(_ds_xticks["Latitude"].values, 2).astype(str),
np.round(_ds_xticks["Longitude"].values, 2).astype(str),
])
xticklabels = ["\n".join(row) for row in xticklabels.T]
# Add labels to first xtick
_xt0 = xticklabels[0].split("\n")
xticklabels[0] = f"Time: {_xt0[0]}\nLat: {_xt0[1]}\nLon: {_xt0[2]}"
axes[-1].set_xticks(axes[-1].get_xticks())
axes[-1].set_xticklabels(xticklabels)
axes[-1].set_xlabel("")
# Adjust title
title = "".join([
f"Swarm {ds['Spacecraft'].data[0]} 2Hz ion flow, ",
ds["Timestamp"].dt.date.data[0].isoformat(),
f"\n{ds.attrs['Sources']}"
])
fig.suptitle(title);
Due to contamination in the instrument, great care must be taken to use these data correctly. Check the release notes and make use of the Quality_flags
variable to identify valid data periods.
TODO: use section 3.4.1.1 to identify untrusty periods (bitx = 0) and shade them grey?