IPDxIRR_2F (Ionospheric plasma densities)#
Abstract: Access to the derived plasma characteristics at 1Hz (level 2 product).
%load_ext watermark
%watermark -i -v -p viresclient,pandas,xarray,matplotlib
Python implementation: CPython
Python version : 3.11.6
IPython version : 8.18.0
viresclient: 0.14.1
pandas : 2.1.3
xarray : 2023.12.0
matplotlib : 3.8.2
from viresclient import SwarmRequest
import datetime as dt
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter
request = SwarmRequest()
IPDxIRR_2F product information#
Derived plasma characteristics at 1Hz, for each Swarm spacecraft.
Documentation:
Check what “IPD” data variables are available#
request.available_collections("IPD", details=False)
{'IPD': ['SW_OPER_IPDAIRR_2F', 'SW_OPER_IPDBIRR_2F', 'SW_OPER_IPDCIRR_2F']}
request.available_measurements("IPD")
['Ne',
'Te',
'Background_Ne',
'Foreground_Ne',
'PCP_flag',
'Grad_Ne_at_100km',
'Grad_Ne_at_50km',
'Grad_Ne_at_20km',
'Grad_Ne_at_PCP_edge',
'ROD',
'RODI10s',
'RODI20s',
'delta_Ne10s',
'delta_Ne20s',
'delta_Ne40s',
'Num_GPS_satellites',
'mVTEC',
'mROT',
'mROTI10s',
'mROTI20s',
'IBI_flag',
'Ionosphere_region_flag',
'IPIR_index',
'Ne_quality_flag',
'TEC_STD']
Fetch three hours of IPD data#
request.set_collection("SW_OPER_IPDAIRR_2F")
request.set_products(measurements=request.available_measurements("IPD"))
data = request.get_between(
dt.datetime(2014,12,21, 0),
dt.datetime(2014,12,21, 3)
)
Load and plot using pandas/matplotlib#
df = data.as_dataframe()
df.head()
| Ionosphere_region_flag | ROD | Num_GPS_satellites | mVTEC | RODI10s | delta_Ne20s | Radius | IPIR_index | Ne_quality_flag | mROT | ... | mROTI20s | Background_Ne | Grad_Ne_at_100km | Ne | IBI_flag | Latitude | Foreground_Ne | TEC_STD | mROTI10s | Grad_Ne_at_20km | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Timestamp | |||||||||||||||||||||
| 2014-12-21 00:00:00.196999936 | 0 | 0.0 | 4 | 51.786934 | 10238.517220 | 10266.500 | 6.840395e+06 | 7 | 20000 | -0.011013 | ... | 0.002676 | 1343599.375 | -0.084919 | 1255163.2 | -1 | -4.693533 | 1305371.000 | 3.131451 | 0.001472 | -1.047788 |
| 2014-12-21 00:00:01.196999936 | 0 | 0.0 | 4 | 51.768982 | 3263.138721 | 2830.850 | 6.840404e+06 | 6 | 20000 | -0.011013 | ... | 0.002732 | 1343599.375 | -0.144009 | 1250357.7 | -1 | -4.757416 | 1292046.000 | 3.122494 | 0.001386 | 0.338403 |
| 2014-12-21 00:00:02.196999936 | 0 | 0.0 | 4 | 51.746898 | 3263.138721 | 0.000 | 6.840413e+06 | 6 | 20000 | -0.008833 | ... | 0.002750 | 1343599.375 | -0.058276 | 1265851.3 | -1 | -4.821298 | 1312436.750 | 3.113830 | 0.001310 | 0.133643 |
| 2014-12-21 00:00:03.196999936 | 0 | 0.0 | 4 | 51.728759 | 3263.138721 | 2194.925 | 6.840422e+06 | 6 | 20000 | -0.008151 | ... | 0.003277 | 1343599.375 | -0.144613 | 1312436.8 | -1 | -4.885179 | 1312436.750 | 3.104259 | 0.001930 | 1.443077 |
| 2014-12-21 00:00:04.196999936 | 0 | 0.0 | 4 | 51.711313 | 3263.138721 | 9491.525 | 6.840430e+06 | 6 | 20000 | -0.007051 | ... | 0.003744 | 1343599.375 | -0.039358 | 1253999.0 | -1 | -4.949060 | 1315059.375 | 3.097484 | 0.002434 | -1.948789 |
5 rows × 29 columns
df.columns
Index(['Ionosphere_region_flag', 'ROD', 'Num_GPS_satellites', 'mVTEC',
'RODI10s', 'delta_Ne20s', 'Radius', 'IPIR_index', 'Ne_quality_flag',
'mROT', 'RODI20s', 'Longitude', 'delta_Ne40s', 'Te', 'delta_Ne10s',
'PCP_flag', 'Grad_Ne_at_50km', 'Grad_Ne_at_PCP_edge', 'Spacecraft',
'mROTI20s', 'Background_Ne', 'Grad_Ne_at_100km', 'Ne', 'IBI_flag',
'Latitude', 'Foreground_Ne', 'TEC_STD', 'mROTI10s', 'Grad_Ne_at_20km'],
dtype='object')
fig, axes = plt.subplots(nrows=7, ncols=1, figsize=(20,18), sharex=True)
df.plot(ax=axes[0], y=['Background_Ne', 'Foreground_Ne', 'Ne'], alpha=0.8)
df.plot(ax=axes[1], y=['Grad_Ne_at_100km', 'Grad_Ne_at_50km', 'Grad_Ne_at_20km'])
df.plot(ax=axes[2], y=['RODI10s', 'RODI20s'])
df.plot(ax=axes[3], y=['ROD'])
df.plot(ax=axes[4], y=['mROT'])
df.plot(ax=axes[5], y=['delta_Ne10s', 'delta_Ne20s', 'delta_Ne40s'])
df.plot(ax=axes[6], y=['mROTI20s', 'mROTI10s'])
axes[0].set_ylabel("[cm$^{-3}$]")
axes[1].set_ylabel("[cm$^{-3}$m$^{-1}$]")
axes[2].set_ylabel("[cm$^{-3}$s$^{-1}$]")
axes[3].set_ylabel("[cm$^{-3}$m$^{-1}$]")
axes[4].set_ylabel("[TECU s$^{-1}$]")
axes[5].set_ylabel("[cm$^{-3}$m$^{-1}$]")
axes[6].set_ylabel("[TECU s$^{-1}$]")
axes[6].set_xlabel("Timestamp")
for ax in axes:
# Reformat time axis
# https://www.earthdatascience.org/courses/earth-analytics-python/use-time-series-data-in-python/customize-dates--matplotlib-plots-python/
ax.xaxis.set_major_formatter(DateFormatter("%Y-%m-%d\n%H:%M:%S"))
ax.legend(loc="upper right")
ax.grid()
fig.subplots_adjust(hspace=0)
Load as xarray#
ds = data.as_xarray()
ds
<xarray.Dataset>
Dimensions: (Timestamp: 10800)
Coordinates:
* Timestamp (Timestamp) datetime64[ns] 2014-12-21T00:00:00.19...
Data variables: (12/29)
Spacecraft (Timestamp) object 'A' 'A' 'A' 'A' ... 'A' 'A' 'A'
Ionosphere_region_flag (Timestamp) int32 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0
ROD (Timestamp) float64 0.0 0.0 ... 7.28e+03 7.28e+03
Num_GPS_satellites (Timestamp) int32 4 4 4 4 4 4 4 4 ... 6 6 6 6 6 6 6
mVTEC (Timestamp) float64 51.79 51.77 ... 20.84 20.94
RODI10s (Timestamp) float64 1.024e+04 3.263e+03 ... 503.7
... ...
IBI_flag (Timestamp) int32 -1 -1 -1 -1 -1 ... -1 -1 -1 -1 -1
Latitude (Timestamp) float64 -4.694 -4.757 ... 24.74 24.68
Foreground_Ne (Timestamp) float64 1.305e+06 ... 6.488e+05
TEC_STD (Timestamp) float64 3.131 3.122 ... 2.866 2.891
mROTI10s (Timestamp) float64 0.001472 0.001386 ... 0.005609
Grad_Ne_at_20km (Timestamp) float64 -1.048 0.3384 ... 1.002 0.9148
Attributes:
Sources: ['SW_OPER_IPDAIRR_2F_20141221T000000_20141221T235959_0302']
MagneticModels: []
AppliedFilters: []Alternative plot setup#
To plot the data from xarray, we need a different plotting setup. This does however give us more control over the plot. The units are extracted directly from the xarray object.
fig, axes = plt.subplots(nrows=7, ncols=1, figsize=(20,18), sharex=True)
def subplot(ax=None, y=None, **kwargs):
"""Plot combination of variables onto a given axis"""
units = ds[y[0]].units
for var in y:
ax.plot(ds["Timestamp"], ds[var], label=var, **kwargs)
if units != ds[var].units:
raise ValueError(f"Units mismatch for {var}")
ax.set_ylabel(f"[{units}]")
# Reformat time axis
# https://www.earthdatascience.org/courses/earth-analytics-python/use-time-series-data-in-python/customize-dates--matplotlib-plots-python/
ax.xaxis.set_major_formatter(DateFormatter("%Y-%m-%d\n%H:%M:%S"))
ax.legend(loc="upper right")
ax.grid()
subplot(ax=axes[0], y=['Background_Ne', 'Foreground_Ne', 'Ne'])
subplot(ax=axes[1], y=['Grad_Ne_at_100km', 'Grad_Ne_at_50km', 'Grad_Ne_at_20km'])
subplot(ax=axes[2], y=['RODI10s', 'RODI20s'])
subplot(ax=axes[3], y=['ROD'])
subplot(ax=axes[4], y=['mROT'])
subplot(ax=axes[5], y=['delta_Ne10s', 'delta_Ne20s', 'delta_Ne40s'])
subplot(ax=axes[6], y=['mROTI20s', 'mROTI10s'])
fig.subplots_adjust(hspace=0)