Conjunctions (TOLEOS)#
SERVER_URL = "https://vires.services/ows"
%load_ext watermark
%watermark -i -v -p viresclient,pandas,xarray,matplotlib,cartopy
Python implementation: CPython
Python version : 3.11.6
IPython version : 8.18.0
viresclient: 0.12.3
pandas : 2.1.3
xarray : 2023.12.0
matplotlib : 3.8.2
cartopy : 0.22.0
import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
from viresclient import SwarmRequest
Product information#
The MM_OPER_CON_EPH_2_
product contains conjunction information between Swarm (A, B, C), CHAMP, GOCE, GRACE (1, 2), and GRACE-FO (1, 2).
The product is implemented in VirES as two collections, each available as a single flat time series.
MM_OPER_CON_EPH_2_:crossover
contains the list of times where satellite ground-tracks overlap within a ~7 hour window.
MM_OPER_CON_EPH_2_:plane_alignment
contains much rarer events, where the planes of different spacecraft are aligned
request = SwarmRequest(SERVER_URL)
for collection in ("MM_OPER_CON_EPH_2_:crossover", "MM_OPER_CON_EPH_2_:plane_alignment"):
print(f"{collection}:\n{request.available_measurements(collection)}\n")
MM_OPER_CON_EPH_2_:crossover:
['time_1', 'time_2', 'time_difference', 'satellite_1', 'satellite_2', 'latitude', 'longitude', 'altitude_1', 'altitude_2', 'magnetic_latitude', 'magnetic_longitude', 'local_solar_time_1', 'local_solar_time_2']
MM_OPER_CON_EPH_2_:plane_alignment:
['time', 'altitude_1', 'altitude_2', 'ltan_1', 'ltan_2', 'ltan_rate_1', 'ltan_rate_2', 'satellite_1', 'satellite_2']
Fetching data#
Crossovers#
Let’s fetch all the available conjunctions for a given day.
Note that the start_time
and end_time
specified are used for a full interval query over both time_1
and time_2
given in the outputs.
request = SwarmRequest(SERVER_URL)
request.set_collection("MM_OPER_CON_EPH_2_:crossover")
request.set_products(
request.available_measurements("MM_OPER_CON_EPH_2_:crossover")
)
data = request.get_between(
dt.datetime(2020, 1, 1),
dt.datetime(2020, 1, 2),
)
df = data.as_dataframe()
df
satellite_1 | time_2 | local_solar_time_1 | magnetic_latitude | latitude | magnetic_longitude | altitude_1 | altitude_2 | longitude | satellite_2 | time_difference | local_solar_time_2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
time_1 | ||||||||||||
2019-12-31 16:45:34.507031296 | GF1 | 2020-01-01 00:03:20.865398528 | 12.813727 | 79.949318 | 87.321728 | -164.456295 | 508386.037694 | 445802.184339 | -168.631028 | SWC | 26266.358365 | 5.517517 |
2019-12-31 16:45:34.666273280 | GF1 | 2020-01-01 00:03:29.977781248 | 12.822272 | 79.956628 | 87.330964 | -164.497178 | 508384.174138 | 445817.275119 | -168.540829 | SWA | 26275.311505 | 5.523574 |
2019-12-31 16:45:58.498234368 | GF2 | 2020-01-01 00:03:20.801171712 | 12.808170 | 79.946058 | 87.322763 | -164.469981 | 508285.501449 | 445802.184832 | -168.714116 | SWC | 26242.302943 | 5.518642 |
2019-12-31 16:45:58.642820352 | GF2 | 2020-01-01 00:03:29.901976576 | 12.815265 | 79.952162 | 87.331274 | -164.509020 | 508283.850034 | 445817.254541 | -168.645621 | SWA | 26251.259161 | 5.523248 |
2019-12-31 17:32:44.852499968 | GF1 | 2020-01-01 00:50:00.517710848 | 0.806052 | -79.455668 | -87.324172 | 14.152966 | 522002.918063 | 464173.845073 | -0.411375 | SWC | 26235.665210 | 17.518367 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2020-01-01 23:42:29.863429888 | SWB | 2020-01-02 01:49:40.551429632 | 4.383929 | 75.124965 | 81.399341 | 146.831766 | 511607.216872 | 508318.284479 | 38.339964 | GF1 | 7630.688001 | 2.264293 |
2020-01-01 23:43:26.628039168 | SWB | 2020-01-02 03:59:58.525515520 | 6.837217 | 71.743591 | 77.902092 | 142.500846 | 511293.312109 | 445127.722214 | 42.564400 | SWA | 15391.897473 | 2.561690 |
2020-01-01 23:43:39.701632768 | SWB | 2020-01-02 03:59:37.480210944 | 6.874009 | 70.954621 | 77.089844 | 141.708566 | 511208.234498 | 445042.331540 | 43.203973 | SWC | 15357.778578 | 2.607960 |
2020-01-01 23:59:39.406749952 | GF2 | 2020-01-02 02:11:45.781679616 | 6.175955 | 14.544932 | 21.148917 | 134.574062 | 507422.300094 | 435473.994296 | 59.698567 | SWC | 7926.374931 | 3.974184 |
2020-01-01 23:59:59.915086080 | GF1 | 2020-01-02 02:12:29.624203264 | 6.186112 | 17.345313 | 23.980608 | 134.913629 | 507614.183522 | 435703.475318 | 59.668240 | SWC | 7949.709113 | 3.977859 |
5408 rows × 12 columns
Pairs of conjunctioning spacecraft are defined with short designations in the satellite_1
and satellite_2
variables:
df["satellite_1"].unique()
array(['GF1', 'GF2', 'SWB', 'SWC', 'SWA'], dtype=object)
df["satellite_2"].unique()
array(['SWC', 'SWA', 'SWB', 'GF2', 'GF1'], dtype=object)
Each conjunction has a start and end time defined with the time_1
and time_2
variables:
df.iloc[0:5][["time_2", "satellite_1", "satellite_2"]]
time_2 | satellite_1 | satellite_2 | |
---|---|---|---|
time_1 | |||
2019-12-31 16:45:34.507031296 | 2020-01-01 00:03:20.865398528 | GF1 | SWC |
2019-12-31 16:45:34.666273280 | 2020-01-01 00:03:29.977781248 | GF1 | SWA |
2019-12-31 16:45:58.498234368 | 2020-01-01 00:03:20.801171712 | GF2 | SWC |
2019-12-31 16:45:58.642820352 | 2020-01-01 00:03:29.901976576 | GF2 | SWA |
2019-12-31 17:32:44.852499968 | 2020-01-01 00:50:00.517710848 | GF1 | SWC |
We can select all the conjunctions containing a given satellite:
df_SWA = df.where((df["satellite_1"] == "SWA")|(df["satellite_2"] == "SWA")).dropna()
df_SWA
satellite_1 | time_2 | local_solar_time_1 | magnetic_latitude | latitude | magnetic_longitude | altitude_1 | altitude_2 | longitude | satellite_2 | time_difference | local_solar_time_2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
time_1 | ||||||||||||
2019-12-31 16:45:34.666273280 | GF1 | 2020-01-01 00:03:29.977781248 | 12.822272 | 79.956628 | 87.330964 | -164.497178 | 508384.174138 | 445817.275119 | -168.540829 | SWA | 26275.311505 | 5.523574 |
2019-12-31 16:45:58.642820352 | GF2 | 2020-01-01 00:03:29.901976576 | 12.815265 | 79.952162 | 87.331274 | -164.509020 | 508283.850034 | 445817.254541 | -168.645621 | SWA | 26251.259161 | 5.523248 |
2019-12-31 17:32:44.934890496 | GF1 | 2020-01-01 00:50:09.627804672 | 0.811638 | -79.460015 | -87.328937 | 14.136825 | 522004.159533 | 464161.845406 | -0.365544 | SWA | 26244.692912 | 17.521446 |
2019-12-31 17:33:08.975226624 | GF2 | 2020-01-01 00:50:09.531093760 | 0.802755 | -79.454945 | -87.329375 | 14.116901 | 522106.188666 | 464161.901037 | -0.498389 | SWA | 26220.555867 | 17.519267 |
2019-12-31 17:42:18.655843840 | SWB | 2020-01-01 00:02:09.084413952 | 8.064305 | 75.269785 | 84.623616 | -175.176848 | 511774.213962 | 445697.680298 | 120.426718 | SWA | 22790.428566 | 1.733630 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2020-01-01 23:31:37.199038976 | GF2 | 2020-01-02 00:10:47.848054528 | 3.789605 | -82.426605 | -85.252281 | 30.386096 | 524464.926293 | 463967.092769 | 54.144711 | SWA | 2350.649018 | 3.136647 |
2020-01-01 23:36:50.826312448 | SWB | 2020-01-02 00:59:48.513515776 | 17.280079 | 80.903810 | 76.710613 | -87.255342 | 511401.685124 | 445355.973591 | -115.750956 | SWA | 4977.687203 | 15.897388 |
2020-01-01 23:41:14.676492288 | SWB | 2020-01-02 07:08:49.337390592 | 8.571359 | 79.420521 | 85.793936 | 156.361396 | 511872.512023 | 445591.642678 | 21.364816 | SWA | 26854.660897 | 1.111731 |
2020-01-01 23:41:47.813570304 | SWB | 2020-01-02 05:34:56.224296704 | 7.710203 | 77.564465 | 83.922645 | 151.398185 | 511777.132307 | 445578.775959 | 31.918781 | SWA | 21188.410732 | 1.824534 |
2020-01-01 23:43:26.628039168 | SWB | 2020-01-02 03:59:58.525515520 | 6.837217 | 71.743591 | 77.902092 | 142.500846 | 511293.312109 | 445127.722214 | 42.564400 | SWA | 15391.897473 | 2.561690 |
1657 rows × 12 columns
Plane alignments#
request = SwarmRequest(SERVER_URL)
request.set_collection("MM_OPER_CON_EPH_2_:plane_alignment")
request.set_products(
request.available_measurements("MM_OPER_CON_EPH_2_:plane_alignment")
)
data = request.get_between(
dt.datetime(2000, 1, 1),
dt.datetime(2022, 1, 1),
)
df = data.as_dataframe()
df
satellite_1 | ltan_2 | ltan_rate_1 | ltan_1 | ltan_rate_2 | altitude_2 | altitude_1 | satellite_2 | |
---|---|---|---|---|---|---|---|---|
time | ||||||||
2003-05-11 10:10:03.145992192 | CH | 4.684153 | -0.091268 | 16.684153 | -0.074543 | 488291.762308 | 400547.265815 | GR2 |
2003-05-11 10:21:36.896242176 | CH | 4.683406 | -0.091268 | 16.683406 | -0.074549 | 487617.059444 | 400527.975912 | GR1 |
2005-04-08 16:07:15.667320192 | CH | 0.629215 | -0.091834 | 0.629215 | -0.074332 | 469993.893995 | 361914.544690 | GR2 |
2005-04-08 16:12:54.103234304 | CH | 0.628855 | -0.091834 | 0.628855 | -0.074331 | 470666.606845 | 361913.083670 | GR1 |
2007-02-14 05:07:14.704273408 | CH | 22.255276 | -0.092207 | 10.255276 | -0.074526 | 481552.511743 | 350444.851771 | GR2 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
2020-05-21 19:46:01.686648320 | SWC | 17.434235 | -0.089979 | 17.434235 | -0.074638 | 485113.048217 | 436300.307971 | GF2 |
2020-05-21 20:03:47.512773632 | SWC | 17.433122 | -0.089979 | 17.433122 | -0.074633 | 485000.585092 | 436330.337154 | GF1 |
2021-09-30 18:39:55.482117120 | SWA | 20.642289 | -0.089902 | 20.642289 | -0.090034 | 430878.908792 | 430877.890053 | SWC |
2021-10-03 13:41:11.625304576 | SWB | 20.390555 | -0.085605 | 8.390555 | -0.090089 | 431177.812782 | 503359.670523 | SWC |
2021-10-03 15:03:35.963726592 | SWA | 8.385697 | -0.089954 | 20.385697 | -0.085605 | 503289.814384 | 431054.450419 | SWB |
82 rows × 8 columns
def alignments(df, sat="SWA"):
return df.where((df["satellite_1"] == sat)|(df["satellite_2"] == sat)).dropna()
sats = ('CH', 'GO', 'GR1', 'GR2', 'GF1', 'GF2', 'SWA', 'SWB', 'SWC')
fig, axes = plt.subplots(len(sats), 1, figsize=(10, 5), sharex=True)
empty = np.empty(df.index.shape)
empty[:] = np.nan
axes[0].plot(df.index, empty)
for sat, ax in zip(sats, axes):
_df = alignments(df, sat=sat)
for date in _df.index:
ax.axvline(date)
ax.set_yticks([])
ax.set_ylabel(sat)
fig.subplots_adjust(hspace=0)
fig.suptitle("Plane alignments");
