Conjunctions (TOLEOS)#

SERVER_URL = "https://vires.services/ows"
%load_ext watermark
%watermark -i -v -p viresclient,pandas,xarray,matplotlib,cartopy
Python implementation: CPython
Python version       : 3.11.6
IPython version      : 8.18.0

viresclient: 0.14.1
pandas     : 2.1.3
xarray     : 2023.12.0
matplotlib : 3.8.2
cartopy    : 0.22.0
import datetime as dt

import matplotlib.pyplot as plt
import numpy as np
from viresclient import SwarmRequest

Product information#

The MM_OPER_CON_EPH_2_ product contains conjunction information between Swarm (A, B, C), CHAMP, GOCE, GRACE (1, 2), and GRACE-FO (1, 2).

The product is implemented in VirES as two collections, each available as a single flat time series.

MM_OPER_CON_EPH_2_:crossover contains the list of times where satellite ground-tracks overlap within a ~7 hour window.

MM_OPER_CON_EPH_2_:plane_alignment contains much rarer events, where the planes of different spacecraft are aligned

request = SwarmRequest(SERVER_URL)
for collection in ("MM_OPER_CON_EPH_2_:crossover", "MM_OPER_CON_EPH_2_:plane_alignment"):
    print(f"{collection}:\n{request.available_measurements(collection)}\n")
MM_OPER_CON_EPH_2_:crossover:
['time_1', 'time_2', 'time_difference', 'satellite_1', 'satellite_2', 'latitude', 'longitude', 'altitude_1', 'altitude_2', 'magnetic_latitude', 'magnetic_longitude', 'local_solar_time_1', 'local_solar_time_2']

MM_OPER_CON_EPH_2_:plane_alignment:
['time', 'altitude_1', 'altitude_2', 'ltan_1', 'ltan_2', 'ltan_rate_1', 'ltan_rate_2', 'satellite_1', 'satellite_2']

Fetching data#

Crossovers#

Let’s fetch all the available conjunctions for a given day.

Note that the start_time and end_time specified are used for a full interval query over both time_1 and time_2 given in the outputs.

request = SwarmRequest(SERVER_URL)
request.set_collection("MM_OPER_CON_EPH_2_:crossover")
request.set_products(
    request.available_measurements("MM_OPER_CON_EPH_2_:crossover")
)
data = request.get_between(
    dt.datetime(2020, 1, 1),
    dt.datetime(2020, 1, 2),
)
df = data.as_dataframe()
df
altitude_1 longitude Spacecraft time_2 altitude_2 satellite_2 magnetic_latitude latitude magnetic_longitude local_solar_time_1 time_difference satellite_1 local_solar_time_2
time_1
2019-12-31 16:45:34.507031296 508386.037694 -168.631028 - 2020-01-01 00:03:20.865398528 445802.184339 SWC 79.949318 87.321728 -164.456295 12.813727 26266.358365 GF1 5.517517
2019-12-31 16:45:34.666273280 508384.174138 -168.540829 - 2020-01-01 00:03:29.977781248 445817.275119 SWA 79.956628 87.330964 -164.497178 12.822272 26275.311505 GF1 5.523574
2019-12-31 16:45:58.498234368 508285.501449 -168.714116 - 2020-01-01 00:03:20.801171712 445802.184832 SWC 79.946058 87.322763 -164.469981 12.808170 26242.302943 GF2 5.518642
2019-12-31 16:45:58.642820352 508283.850034 -168.645621 - 2020-01-01 00:03:29.901976576 445817.254541 SWA 79.952162 87.331274 -164.509020 12.815265 26251.259161 GF2 5.523248
2019-12-31 17:32:44.852499968 522002.918063 -0.411375 - 2020-01-01 00:50:00.517710848 464173.845073 SWC -79.455668 -87.324172 14.152966 0.806052 26235.665210 GF1 17.518367
... ... ... ... ... ... ... ... ... ... ... ... ... ...
2020-01-01 23:42:29.863429888 511607.216872 38.339964 - 2020-01-02 01:49:40.551429632 508318.284479 GF1 75.124965 81.399341 146.831766 4.383929 7630.688001 SWB 2.264293
2020-01-01 23:43:26.628039168 511293.312109 42.564400 - 2020-01-02 03:59:58.525515520 445127.722214 SWA 71.743591 77.902092 142.500846 6.837217 15391.897473 SWB 2.561690
2020-01-01 23:43:39.701632768 511208.234498 43.203973 - 2020-01-02 03:59:37.480210944 445042.331540 SWC 70.954621 77.089844 141.708566 6.874009 15357.778578 SWB 2.607960
2020-01-01 23:59:39.406749952 507422.300094 59.698567 - 2020-01-02 02:11:45.781679616 435473.994296 SWC 14.544932 21.148917 134.574062 6.175955 7926.374931 GF2 3.974184
2020-01-01 23:59:59.915086080 507614.183522 59.668240 - 2020-01-02 02:12:29.624203264 435703.475318 SWC 17.345313 23.980608 134.913629 6.186112 7949.709113 GF1 3.977859

5408 rows Γ— 13 columns

Pairs of conjunctioning spacecraft are defined with short designations in the satellite_1 and satellite_2 variables:

df["satellite_1"].unique()
array(['GF1', 'GF2', 'SWB', 'SWC', 'SWA'], dtype=object)
df["satellite_2"].unique()
array(['SWC', 'SWA', 'SWB', 'GF2', 'GF1'], dtype=object)

Each conjunction has a start and end time defined with the time_1 and time_2 variables:

df.iloc[0:5][["time_2", "satellite_1", "satellite_2"]]
time_2 satellite_1 satellite_2
time_1
2019-12-31 16:45:34.507031296 2020-01-01 00:03:20.865398528 GF1 SWC
2019-12-31 16:45:34.666273280 2020-01-01 00:03:29.977781248 GF1 SWA
2019-12-31 16:45:58.498234368 2020-01-01 00:03:20.801171712 GF2 SWC
2019-12-31 16:45:58.642820352 2020-01-01 00:03:29.901976576 GF2 SWA
2019-12-31 17:32:44.852499968 2020-01-01 00:50:00.517710848 GF1 SWC

We can select all the conjunctions containing a given satellite:

df_SWA = df.where((df["satellite_1"] == "SWA")|(df["satellite_2"] == "SWA")).dropna()
df_SWA
altitude_1 longitude Spacecraft time_2 altitude_2 satellite_2 magnetic_latitude latitude magnetic_longitude local_solar_time_1 time_difference satellite_1 local_solar_time_2
time_1
2019-12-31 16:45:34.666273280 508384.174138 -168.540829 - 2020-01-01 00:03:29.977781248 445817.275119 SWA 79.956628 87.330964 -164.497178 12.822272 26275.311505 GF1 5.523574
2019-12-31 16:45:58.642820352 508283.850034 -168.645621 - 2020-01-01 00:03:29.901976576 445817.254541 SWA 79.952162 87.331274 -164.509020 12.815265 26251.259161 GF2 5.523248
2019-12-31 17:32:44.934890496 522004.159533 -0.365544 - 2020-01-01 00:50:09.627804672 464161.845406 SWA -79.460015 -87.328937 14.136825 0.811638 26244.692912 GF1 17.521446
2019-12-31 17:33:08.975226624 522106.188666 -0.498389 - 2020-01-01 00:50:09.531093760 464161.901037 SWA -79.454945 -87.329375 14.116901 0.802755 26220.555867 GF2 17.519267
2019-12-31 17:42:18.655843840 511774.213962 120.426718 - 2020-01-01 00:02:09.084413952 445697.680298 SWA 75.269785 84.623616 -175.176848 8.064305 22790.428566 SWB 1.733630
... ... ... ... ... ... ... ... ... ... ... ... ... ...
2020-01-01 23:31:37.199038976 524464.926293 54.144711 - 2020-01-02 00:10:47.848054528 463967.092769 SWA -82.426605 -85.252281 30.386096 3.789605 2350.649018 GF2 3.136647
2020-01-01 23:36:50.826312448 511401.685124 -115.750956 - 2020-01-02 00:59:48.513515776 445355.973591 SWA 80.903810 76.710613 -87.255342 17.280079 4977.687203 SWB 15.897388
2020-01-01 23:41:14.676492288 511872.512023 21.364816 - 2020-01-02 07:08:49.337390592 445591.642678 SWA 79.420521 85.793936 156.361396 8.571359 26854.660897 SWB 1.111731
2020-01-01 23:41:47.813570304 511777.132307 31.918781 - 2020-01-02 05:34:56.224296704 445578.775959 SWA 77.564465 83.922645 151.398185 7.710203 21188.410732 SWB 1.824534
2020-01-01 23:43:26.628039168 511293.312109 42.564400 - 2020-01-02 03:59:58.525515520 445127.722214 SWA 71.743591 77.902092 142.500846 6.837217 15391.897473 SWB 2.561690

1657 rows Γ— 13 columns

Plane alignments#

request = SwarmRequest(SERVER_URL)
request.set_collection("MM_OPER_CON_EPH_2_:plane_alignment")
request.set_products(
    request.available_measurements("MM_OPER_CON_EPH_2_:plane_alignment")
)
data = request.get_between(
    dt.datetime(2000, 1, 1),
    dt.datetime(2022, 1, 1),
)
df = data.as_dataframe()
df
ltan_rate_1 altitude_1 Spacecraft ltan_2 ltan_1 altitude_2 satellite_2 ltan_rate_2 satellite_1
time
2003-05-11 10:10:03.145992192 -0.091268 400547.265815 - 4.684153 16.684153 488291.762308 GR2 -0.074543 CH
2003-05-11 10:21:36.896242176 -0.091268 400527.975912 - 4.683406 16.683406 487617.059444 GR1 -0.074549 CH
2005-04-08 16:07:15.667320192 -0.091834 361914.544690 - 0.629215 0.629215 469993.893995 GR2 -0.074332 CH
2005-04-08 16:12:54.103234304 -0.091834 361913.083670 - 0.628855 0.628855 470666.606845 GR1 -0.074331 CH
2007-02-14 05:07:14.704273408 -0.092207 350444.851771 - 22.255276 10.255276 481552.511743 GR2 -0.074526 CH
... ... ... ... ... ... ... ... ... ...
2020-05-21 19:46:01.686648320 -0.089979 436300.307971 - 17.434235 17.434235 485113.048217 GF2 -0.074638 SWC
2020-05-21 20:03:47.512773632 -0.089979 436330.337154 - 17.433122 17.433122 485000.585092 GF1 -0.074633 SWC
2021-09-30 18:39:55.482117120 -0.089902 430877.890053 - 20.642289 20.642289 430878.908792 SWC -0.090034 SWA
2021-10-03 13:41:11.625304576 -0.085605 503359.670523 - 20.390555 8.390555 431177.812782 SWC -0.090089 SWB
2021-10-03 15:03:35.963726592 -0.089954 431054.450419 - 8.385697 20.385697 503289.814384 SWB -0.085605 SWA

82 rows Γ— 9 columns

def alignments(df, sat="SWA"):
    return df.where((df["satellite_1"] == sat)|(df["satellite_2"] == sat)).dropna()

sats = ('CH', 'GO', 'GR1', 'GR2', 'GF1', 'GF2', 'SWA', 'SWB', 'SWC')
fig, axes = plt.subplots(len(sats), 1, figsize=(10, 5), sharex=True)
empty = np.empty(df.index.shape)
empty[:] = np.nan
axes[0].plot(df.index, empty)
for sat, ax in zip(sats, axes):
    _df = alignments(df, sat=sat)
    for date in _df.index:
        ax.axvline(date)
    ax.set_yticks([])
    ax.set_ylabel(sat)
fig.subplots_adjust(hspace=0)
fig.suptitle("Plane alignments");
../_images/bb2021821a89a94b1634bae7fff572115f31c3d6fe92d3320db127854bf75385.png