Conjunctions (TOLEOS)#

SERVER_URL = "https://vires.services/ows"
%load_ext watermark
%watermark -i -v -p viresclient,pandas,xarray,matplotlib,cartopy
Python implementation: CPython
Python version       : 3.11.6
IPython version      : 8.18.0

viresclient: 0.12.0
pandas     : 2.1.3
xarray     : 2023.12.0
matplotlib : 3.8.2
cartopy    : 0.22.0
import datetime as dt

import matplotlib.pyplot as plt
import numpy as np
from viresclient import SwarmRequest

Product information#

The MM_OPER_CON_EPH_2_ product contains conjunction information between Swarm (A, B, C), CHAMP, GOCE, GRACE (1, 2), and GRACE-FO (1, 2).

The product is implemented in VirES as two collections, each available as a single flat time series.

MM_OPER_CON_EPH_2_:crossover contains the list of times where satellite ground-tracks overlap within a ~7 hour window.

MM_OPER_CON_EPH_2_:plane_alignment contains much rarer events, where the planes of different spacecraft are aligned

request = SwarmRequest(SERVER_URL)
for collection in ("MM_OPER_CON_EPH_2_:crossover", "MM_OPER_CON_EPH_2_:plane_alignment"):
    print(f"{collection}:\n{request.available_measurements(collection)}\n")
MM_OPER_CON_EPH_2_:crossover:
['time_1', 'time_2', 'time_difference', 'satellite_1', 'satellite_2', 'latitude', 'longitude', 'altitude_1', 'altitude_2', 'magnetic_latitude', 'magnetic_longitude', 'local_solar_time_1', 'local_solar_time_2']

MM_OPER_CON_EPH_2_:plane_alignment:
['time', 'altitude_1', 'altitude_2', 'ltan_1', 'ltan_2', 'ltan_rate_1', 'ltan_rate_2', 'satellite_1', 'satellite_2']

Fetching data#

Crossovers#

Let’s fetch all the available conjunctions for a given day.

Note that the start_time and end_time specified are used for a full interval query over both time_1 and time_2 given in the outputs.

request = SwarmRequest(SERVER_URL)
request.set_collection("MM_OPER_CON_EPH_2_:crossover")
request.set_products(
    request.available_measurements("MM_OPER_CON_EPH_2_:crossover")
)
data = request.get_between(
    dt.datetime(2020, 1, 1),
    dt.datetime(2020, 1, 2),
)
df = data.as_dataframe()
df
time_difference latitude satellite_2 altitude_2 magnetic_longitude longitude local_solar_time_1 local_solar_time_2 time_2 altitude_1 magnetic_latitude satellite_1
time_1
2019-12-31 16:45:34.507031296 26266.358365 87.321728 SWC 445802.184339 -164.456295 -168.631028 12.813727 5.517517 2020-01-01 00:03:20.865398528 508386.037694 79.949318 GF1
2019-12-31 16:45:34.666273280 26275.311505 87.330964 SWA 445817.275119 -164.497178 -168.540829 12.822272 5.523574 2020-01-01 00:03:29.977781248 508384.174138 79.956628 GF1
2019-12-31 16:45:58.498234368 26242.302943 87.322763 SWC 445802.184832 -164.469981 -168.714116 12.808170 5.518642 2020-01-01 00:03:20.801171712 508285.501449 79.946058 GF2
2019-12-31 16:45:58.642820352 26251.259161 87.331274 SWA 445817.254541 -164.509020 -168.645621 12.815265 5.523248 2020-01-01 00:03:29.901976576 508283.850034 79.952162 GF2
2019-12-31 17:32:44.852499968 26235.665210 -87.324172 SWC 464173.845073 14.152966 -0.411375 0.806052 17.518367 2020-01-01 00:50:00.517710848 522002.918063 -79.455668 GF1
... ... ... ... ... ... ... ... ... ... ... ... ...
2020-01-01 23:42:29.863429888 7630.688001 81.399341 GF1 508318.284479 146.831766 38.339964 4.383929 2.264293 2020-01-02 01:49:40.551429632 511607.216872 75.124965 SWB
2020-01-01 23:43:26.628039168 15391.897473 77.902092 SWA 445127.722214 142.500846 42.564400 6.837217 2.561690 2020-01-02 03:59:58.525515520 511293.312109 71.743591 SWB
2020-01-01 23:43:39.701632768 15357.778578 77.089844 SWC 445042.331540 141.708566 43.203973 6.874009 2.607960 2020-01-02 03:59:37.480210944 511208.234498 70.954621 SWB
2020-01-01 23:59:39.406749952 7926.374931 21.148917 SWC 435473.994296 134.574062 59.698567 6.175955 3.974184 2020-01-02 02:11:45.781679616 507422.300094 14.544932 GF2
2020-01-01 23:59:59.915086080 7949.709113 23.980608 SWC 435703.475318 134.913629 59.668240 6.186112 3.977859 2020-01-02 02:12:29.624203264 507614.183522 17.345313 GF1

5408 rows Γ— 12 columns

Pairs of conjunctioning spacecraft are defined with short designations in the satellite_1 and satellite_2 variables:

df["satellite_1"].unique()
array(['GF1', 'GF2', 'SWB', 'SWC', 'SWA'], dtype=object)
df["satellite_2"].unique()
array(['SWC', 'SWA', 'SWB', 'GF2', 'GF1'], dtype=object)

Each conjunction has a start and end time defined with the time_1 and time_2 variables:

df.iloc[0:5][["time_2", "satellite_1", "satellite_2"]]
time_2 satellite_1 satellite_2
time_1
2019-12-31 16:45:34.507031296 2020-01-01 00:03:20.865398528 GF1 SWC
2019-12-31 16:45:34.666273280 2020-01-01 00:03:29.977781248 GF1 SWA
2019-12-31 16:45:58.498234368 2020-01-01 00:03:20.801171712 GF2 SWC
2019-12-31 16:45:58.642820352 2020-01-01 00:03:29.901976576 GF2 SWA
2019-12-31 17:32:44.852499968 2020-01-01 00:50:00.517710848 GF1 SWC

We can select all the conjunctions containing a given satellite:

df_SWA = df.where((df["satellite_1"] == "SWA")|(df["satellite_2"] == "SWA")).dropna()
df_SWA
time_difference latitude satellite_2 altitude_2 magnetic_longitude longitude local_solar_time_1 local_solar_time_2 time_2 altitude_1 magnetic_latitude satellite_1
time_1
2019-12-31 16:45:34.666273280 26275.311505 87.330964 SWA 445817.275119 -164.497178 -168.540829 12.822272 5.523574 2020-01-01 00:03:29.977781248 508384.174138 79.956628 GF1
2019-12-31 16:45:58.642820352 26251.259161 87.331274 SWA 445817.254541 -164.509020 -168.645621 12.815265 5.523248 2020-01-01 00:03:29.901976576 508283.850034 79.952162 GF2
2019-12-31 17:32:44.934890496 26244.692912 -87.328937 SWA 464161.845406 14.136825 -0.365544 0.811638 17.521446 2020-01-01 00:50:09.627804672 522004.159533 -79.460015 GF1
2019-12-31 17:33:08.975226624 26220.555867 -87.329375 SWA 464161.901037 14.116901 -0.498389 0.802755 17.519267 2020-01-01 00:50:09.531093760 522106.188666 -79.454945 GF2
2019-12-31 17:42:18.655843840 22790.428566 84.623616 SWA 445697.680298 -175.176848 120.426718 8.064305 1.733630 2020-01-01 00:02:09.084413952 511774.213962 75.269785 SWB
... ... ... ... ... ... ... ... ... ... ... ... ...
2020-01-01 23:31:37.199038976 2350.649018 -85.252281 SWA 463967.092769 30.386096 54.144711 3.789605 3.136647 2020-01-02 00:10:47.848054528 524464.926293 -82.426605 GF2
2020-01-01 23:36:50.826312448 4977.687203 76.710613 SWA 445355.973591 -87.255342 -115.750956 17.280079 15.897388 2020-01-02 00:59:48.513515776 511401.685124 80.903810 SWB
2020-01-01 23:41:14.676492288 26854.660897 85.793936 SWA 445591.642678 156.361396 21.364816 8.571359 1.111731 2020-01-02 07:08:49.337390592 511872.512023 79.420521 SWB
2020-01-01 23:41:47.813570304 21188.410732 83.922645 SWA 445578.775959 151.398185 31.918781 7.710203 1.824534 2020-01-02 05:34:56.224296704 511777.132307 77.564465 SWB
2020-01-01 23:43:26.628039168 15391.897473 77.902092 SWA 445127.722214 142.500846 42.564400 6.837217 2.561690 2020-01-02 03:59:58.525515520 511293.312109 71.743591 SWB

1657 rows Γ— 12 columns

Plane alignments#

request = SwarmRequest(SERVER_URL)
request.set_collection("MM_OPER_CON_EPH_2_:plane_alignment")
request.set_products(
    request.available_measurements("MM_OPER_CON_EPH_2_:plane_alignment")
)
data = request.get_between(
    dt.datetime(2000, 1, 1),
    dt.datetime(2022, 1, 1),
)
df = data.as_dataframe()
df
satellite_2 altitude_2 ltan_2 ltan_rate_1 ltan_1 ltan_rate_2 altitude_1 satellite_1
time
2003-05-11 10:10:03.145992192 GR2 488291.762308 4.684153 -0.091268 16.684153 -0.074543 400547.265815 CH
2003-05-11 10:21:36.896242176 GR1 487617.059444 4.683406 -0.091268 16.683406 -0.074549 400527.975912 CH
2005-04-08 16:07:15.667320192 GR2 469993.893995 0.629215 -0.091834 0.629215 -0.074332 361914.544690 CH
2005-04-08 16:12:54.103234304 GR1 470666.606845 0.628855 -0.091834 0.628855 -0.074331 361913.083670 CH
2007-02-14 05:07:14.704273408 GR2 481552.511743 22.255276 -0.092207 10.255276 -0.074526 350444.851771 CH
... ... ... ... ... ... ... ... ...
2020-05-21 19:46:01.686648320 GF2 485113.048217 17.434235 -0.089979 17.434235 -0.074638 436300.307971 SWC
2020-05-21 20:03:47.512773632 GF1 485000.585092 17.433122 -0.089979 17.433122 -0.074633 436330.337154 SWC
2021-09-30 18:39:55.482117120 SWC 430878.908792 20.642289 -0.089902 20.642289 -0.090034 430877.890053 SWA
2021-10-03 13:41:11.625304576 SWC 431177.812782 20.390555 -0.085605 8.390555 -0.090089 503359.670523 SWB
2021-10-03 15:03:35.963726592 SWB 503289.814384 8.385697 -0.089954 20.385697 -0.085605 431054.450419 SWA

82 rows Γ— 8 columns

def alignments(df, sat="SWA"):
    return df.where((df["satellite_1"] == sat)|(df["satellite_2"] == sat)).dropna()

sats = ('CH', 'GO', 'GR1', 'GR2', 'GF1', 'GF2', 'SWA', 'SWB', 'SWC')
fig, axes = plt.subplots(len(sats), 1, figsize=(10, 5), sharex=True)
empty = np.empty(df.index.shape)
empty[:] = np.nan
axes[0].plot(df.index, empty)
for sat, ax in zip(sats, axes):
    _df = alignments(df, sat=sat)
    for date in _df.index:
        ax.axvline(date)
    ax.set_yticks([])
    ax.set_ylabel(sat)
fig.subplots_adjust(hspace=0)
fig.suptitle("Plane alignments");
../_images/bb2021821a89a94b1634bae7fff572115f31c3d6fe92d3320db127854bf75385.png