{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "da3580df",
   "metadata": {},
   "source": [
    "# From the solar wind to the ground\n",
    "\n",
    "> Abstract: We demonstrate a basic analysis of a geomagnetic storm using hapiclient & viresclient to access data from the solar wind (OMNI IMF), Low Earth Orbit (Swarm-derived auroral electrojet estimates), and the ground (INTERMAGNET observatory magnetic measurements).\n",
    "\n",
    "\n",
    "## Packages to use\n",
    "\n",
    "- [`hapiclient`](https://github.com/hapi-server/client-python) to access solar wind data from [OMNI](https://omniweb.gsfc.nasa.gov/) (alternatively we could use [`pysat`](https://pysat.readthedocs.io/en/latest/quickstart.html))\n",
    "    - For more examples with hapiclient, take a look at [the demonstration notebooks](https://github.com/hapi-server/client-python-notebooks)\n",
    "- [`viresclient`](https://github.com/ESA-VirES/VirES-Python-Client/) to access AEJs from Swarm, and B-field from ground observatories\n",
    "- [`xarray`](https://xarray.pydata.org/) and [`matplotlib`](https://matplotlib.org/) for data wrangling and plotting\n",
    "    - See the [xarray tutorial website](https://xarray-contrib.github.io/xarray-tutorial/) to learn more"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "2b29bd2b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:31.743169Z",
     "iopub.status.busy": "2025-06-21T21:48:31.742953Z",
     "iopub.status.idle": "2025-06-21T21:48:32.478177Z",
     "shell.execute_reply": "2025-06-21T21:48:32.477563Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Python implementation: CPython\n",
      "Python version       : 3.11.6\n",
      "IPython version      : 8.18.0\n",
      "\n",
      "viresclient: 0.12.3\n",
      "hapiclient : 0.2.6\n",
      "pandas     : 2.1.3\n",
      "xarray     : 2023.12.0\n",
      "matplotlib : 3.8.2\n",
      "\n"
     ]
    }
   ],
   "source": [
    "%load_ext watermark\n",
    "%watermark -i -v -p viresclient,hapiclient,pandas,xarray,matplotlib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "6d62988e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:32.480315Z",
     "iopub.status.busy": "2025-06-21T21:48:32.480023Z",
     "iopub.status.idle": "2025-06-21T21:48:32.666570Z",
     "shell.execute_reply": "2025-06-21T21:48:32.666037Z"
    }
   },
   "outputs": [],
   "source": [
    "from copy import deepcopy\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import xarray as xr\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "from viresclient import SwarmRequest\n",
    "from hapiclient import hapi, hapitime2datetime"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0df87dcf",
   "metadata": {},
   "source": [
    "## Time selection"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "509a4241",
   "metadata": {},
   "source": [
    "Let's choose an interesting time period to study - the [\"St. Patrick's day storm\" of 17th March 2015](https://doi.org/10.1186/s40623-016-0525-y). You can look at the wider context of this event using the interactive [Space Weather Data Portal from the University of Colorado](https://lasp.colorado.edu/space-weather-portal/data/display?active-range=%5B1425967200000,1426831200000%5D&outer-range=%5B1262552105447,1559362748308%5D&plots=%5B%7B%22datasets%22:%7B%22sdo_eve_diodes_l2%22:%5B%22diode171%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22sdo_aia_0094_0335_0193_image_files%22:%5B%22url%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22ac_h0_mfi%22:%5B%22Magnitude%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22ac_h1_epm%22:%5B%22P7%22,%22P8%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22ac_h0_swe%22:%5B%22Vp%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22gracea_density%22:%5B%22neutral_density%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22usgs_geomag_brw_definitive%22:%5B%22X%22%5D,%22usgs_geomag_frn_definitive%22:%5B%22X%22%5D,%22usgs_geomag_cmo_definitive%22:%5B%22X%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22usgs_geomag_brw_definitive%22:%5B%22Y%22%5D,%22usgs_geomag_frn_definitive%22:%5B%22Y%22%5D,%22usgs_geomag_cmo_definitive%22:%5B%22Y%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22usgs_geomag_brw_definitive%22:%5B%22Z%22%5D,%22usgs_geomag_frn_definitive%22:%5B%22Z%22%5D,%22usgs_geomag_cmo_definitive%22:%5B%22Z%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22swt_bfield_maps%22:%5B%22url%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22swt_efield_maps%22:%5B%22url%22%5D%7D,%22options%22:%7B%7D%7D,%7B%22datasets%22:%7B%22swt_voltage_maps%22:%5B%22url%22%5D%7D,%22options%22:%7B%7D%7D%5D)\n",
    "\n",
    "We will use the same time window to fetch data from the different sources:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "e45ad6df",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:32.668907Z",
     "iopub.status.busy": "2025-06-21T21:48:32.668729Z",
     "iopub.status.idle": "2025-06-21T21:48:32.671596Z",
     "shell.execute_reply": "2025-06-21T21:48:32.671039Z"
    }
   },
   "outputs": [],
   "source": [
    "START_TIME = '2015-03-15T00:00:00Z'\n",
    "END_TIME = '2015-03-20T00:00:00Z'"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f6b7b71a",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Solar wind data (OMNI)\n",
    "\n",
    "HAPI is an access protocol supported by a wide array of heliophysics datasets. We can use the Python package \"hapiclient\" to retrieve data from HAPI servers. In this case we will access the [OMNI HRO2 dataset](https://omniweb.gsfc.nasa.gov/html/HROdocum.html) which provides consolidated solar wind data, and then we will show how we can load these data into pandas and xarray objects.\n",
    "\n",
    "> OMNI Combined, Definitive 1-minute IMF and Definitive Plasma Data Time-Shifted to the Nose of the Earth's Bow Shock, plus Magnetic Indices - J.H. King, N. Papatashvilli (AdnetSystems, NASA GSFC)\n",
    "\n",
    "To generate code snippets to use, and to see what data are available:  \n",
    "http://hapi-server.org/servers/#server=CDAWeb&dataset=OMNI_HRO2_1MIN&parameters=flow_speed&start=2000-01-01T00:00:00Z&stop=2000-02-01T00:00:00Z&return=script&format=python\n",
    "\n",
    "Here we will access five-minute-resolution measurements of the Interplanetary Magnetic Field (IMF) vector and the bulk flow speed of the solar wind:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a40914f0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:32.673458Z",
     "iopub.status.busy": "2025-06-21T21:48:32.673288Z",
     "iopub.status.idle": "2025-06-21T21:48:33.621093Z",
     "shell.execute_reply": "2025-06-21T21:48:33.620541Z"
    }
   },
   "outputs": [],
   "source": [
    "def fetch_omni_data(start, stop):\n",
    "    server     = 'https://cdaweb.gsfc.nasa.gov/hapi'\n",
    "    dataset    = 'OMNI_HRO2_5MIN'\n",
    "    parameters = 'BX_GSE,BY_GSM,BZ_GSM,flow_speed';\n",
    "    data, meta = hapi(server, dataset, parameters, start, stop)\n",
    "    return data, meta\n",
    "\n",
    "data, meta = fetch_omni_data(START_TIME, END_TIME)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ab593fe0",
   "metadata": {},
   "source": [
    "Data are automatically loaded as a [NumPy structured array](https://numpy.org/doc/stable/user/basics.rec.html) and metadata as a dictionary:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "6862a842",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:33.623346Z",
     "iopub.status.busy": "2025-06-21T21:48:33.623122Z",
     "iopub.status.idle": "2025-06-21T21:48:33.629588Z",
     "shell.execute_reply": "2025-06-21T21:48:33.629048Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([(b'2015-03-15T00:00:00.000Z', 9.99999000e+03,  9.99999000e+03,  9.99999000e+03, 99999.9),\n",
       "       (b'2015-03-15T00:05:00.000Z', 9.99999000e+03,  9.99999000e+03,  9.99999000e+03, 99999.9),\n",
       "       (b'2015-03-15T00:10:00.000Z', 9.99999000e+03,  9.99999000e+03,  9.99999000e+03, 99999.9),\n",
       "       ...,\n",
       "       (b'2015-03-19T23:45:00.000Z', 3.03999996e+00, -4.92000008e+00, -5.99999987e-02, 99999.9),\n",
       "       (b'2015-03-19T23:50:00.000Z', 2.91000009e+00, -4.63999987e+00, -1.02999997e+00, 99999.9),\n",
       "       (b'2015-03-19T23:55:00.000Z', 3.20000005e+00, -5.13999987e+00, -1.04999995e+00, 99999.9)],\n",
       "      dtype=[('Time', 'S24'), ('BX_GSE', '<f8'), ('BY_GSM', '<f8'), ('BZ_GSM', '<f8'), ('flow_speed', '<f8')])"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "a988a050",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:33.631664Z",
     "iopub.status.busy": "2025-06-21T21:48:33.631245Z",
     "iopub.status.idle": "2025-06-21T21:48:33.635731Z",
     "shell.execute_reply": "2025-06-21T21:48:33.635207Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'HAPI': '2.0',\n",
       " 'resourceURL': 'https://cdaweb.gsfc.nasa.gov/misc/NotesO.html#OMNI_HRO2_5MIN',\n",
       " 'contact': 'J.H. King, N. Papatashvilli @ AdnetSystems, NASA GSFC',\n",
       " 'parameters': [{'name': 'Time',\n",
       "   'length': 24,\n",
       "   'units': 'UTC',\n",
       "   'type': 'isotime',\n",
       "   'fill': None},\n",
       "  {'name': 'BX_GSE',\n",
       "   'description': 'Bx (nT), GSE',\n",
       "   'units': 'nT',\n",
       "   'type': 'double',\n",
       "   'fill': '9999.99'},\n",
       "  {'name': 'BY_GSM',\n",
       "   'description': 'By (nT), GSM, determined from post-shift GSE components',\n",
       "   'units': 'nT',\n",
       "   'type': 'double',\n",
       "   'fill': '9999.99'},\n",
       "  {'name': 'BZ_GSM',\n",
       "   'description': 'Bz (nT), GSM, determined from post-shift GSE components',\n",
       "   'units': 'nT',\n",
       "   'type': 'double',\n",
       "   'fill': '9999.99'},\n",
       "  {'name': 'flow_speed',\n",
       "   'description': 'Flow Speed (km/s), GSE',\n",
       "   'units': 'km/s',\n",
       "   'type': 'double',\n",
       "   'fill': '99999.9'}],\n",
       " 'startDate': '1995-01-01T00:00:00Z',\n",
       " 'stopDate': '2025-04-20T23:55:00Z',\n",
       " 'status': {'code': 1200, 'message': 'OK'},\n",
       " 'x_server': 'https://cdaweb.gsfc.nasa.gov/hapi',\n",
       " 'x_dataset': 'OMNI_HRO2_5MIN',\n",
       " 'x_parameters': 'BX_GSE,BY_GSM,BZ_GSM,flow_speed',\n",
       " 'x_time.min': '2015-03-15T00:00:00Z',\n",
       " 'x_time.max': '2015-03-20T00:00:00Z',\n",
       " 'x_requestDate': '2025-06-21T21:48:33',\n",
       " 'x_cacheDir': '/tmp/hapi-data/cdaweb.gsfc.nasa.gov_hapi',\n",
       " 'x_downloadTime': 0.36258411407470703,\n",
       " 'x_readTime': 0.0004277229309082031,\n",
       " 'x_metaFileParsed': '/tmp/hapi-data/cdaweb.gsfc.nasa.gov_hapi/OMNI_HRO2_5MIN___.pkl',\n",
       " 'x_dataFileParsed': '/tmp/hapi-data/cdaweb.gsfc.nasa.gov_hapi/OMNI_HRO2_5MIN_BX_GSE,BY_GSM,BZ_GSM,flow_speed_20150315T000000_20150320T000000.npy',\n",
       " 'x_metaFile': '/tmp/hapi-data/cdaweb.gsfc.nasa.gov_hapi/OMNI_HRO2_5MIN___.json',\n",
       " 'x_dataFile': '/tmp/hapi-data/cdaweb.gsfc.nasa.gov_hapi/OMNI_HRO2_5MIN_BX_GSE,BY_GSM,BZ_GSM,flow_speed_20150315T000000_20150320T000000.bin',\n",
       " 'x_totalTime': 0.9437839984893799}"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "meta"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e23c00d5",
   "metadata": {},
   "source": [
    "We are now able to extract an array for a particular value like `data[\"BZ_GSM\"]`, and use the metadata to get full descriptions and units for the chosen parameter.\n",
    "\n",
    "The metadata sometimes contains fill values used during data gaps (e.g. the 9999... values appearing above). Let's use those to replace the gaps with NaN values:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "ea6212d1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:33.637655Z",
     "iopub.status.busy": "2025-06-21T21:48:33.637316Z",
     "iopub.status.idle": "2025-06-21T21:48:33.644235Z",
     "shell.execute_reply": "2025-06-21T21:48:33.643683Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "BX_GSE: 297 fills NaNd\n",
      "BY_GSM: 297 fills NaNd\n",
      "BZ_GSM: 297 fills NaNd\n",
      "flow_speed: 401 fills NaNd\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "array([(b'2015-03-15T00:00:00.000Z',        nan,         nan,         nan, nan),\n",
       "       (b'2015-03-15T00:05:00.000Z',        nan,         nan,         nan, nan),\n",
       "       (b'2015-03-15T00:10:00.000Z',        nan,         nan,         nan, nan),\n",
       "       ...,\n",
       "       (b'2015-03-19T23:45:00.000Z', 3.03999996, -4.92000008, -0.06      , nan),\n",
       "       (b'2015-03-19T23:50:00.000Z', 2.91000009, -4.63999987, -1.02999997, nan),\n",
       "       (b'2015-03-19T23:55:00.000Z', 3.20000005, -5.13999987, -1.04999995, nan)],\n",
       "      dtype=[('Time', 'S24'), ('BX_GSE', '<f8'), ('BY_GSM', '<f8'), ('BZ_GSM', '<f8'), ('flow_speed', '<f8')])"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def fill2nan(hapidata_in, hapimeta):\n",
    "    \"\"\"Replace bad values (fill values given in metadata) with NaN\"\"\"\n",
    "    hapidata = deepcopy(hapidata_in)\n",
    "    # HAPI returns metadata for parameters as a list of dictionaries\n",
    "    # - Loop through them\n",
    "    for metavar in hapimeta['parameters']:  \n",
    "        varname = metavar['name']\n",
    "        fillvalstr = metavar['fill']\n",
    "        if fillvalstr is None:\n",
    "            continue\n",
    "        vardata = hapidata[varname]\n",
    "        mask = vardata==float(fillvalstr)\n",
    "        nbad = np.count_nonzero(mask)\n",
    "        print('{}: {} fills NaNd'.format(varname, nbad))\n",
    "        vardata[mask] = np.nan\n",
    "    return hapidata, hapimeta\n",
    "\n",
    "data, meta = fill2nan(data,meta)\n",
    "data"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b7dd60e5",
   "metadata": {},
   "source": [
    "We can load the data into a pandas DataFrame to more readily use for analysis:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "0260a7c6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:33.646351Z",
     "iopub.status.busy": "2025-06-21T21:48:33.645911Z",
     "iopub.status.idle": "2025-06-21T21:48:33.665828Z",
     "shell.execute_reply": "2025-06-21T21:48:33.665232Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.11/site-packages/hapiclient/hapitime.py:284: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
      "  Time = pandas.to_datetime(Time, infer_datetime_format=True).tz_convert(tzinfo).to_pydatetime()\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>BX_GSE</th>\n",
       "      <th>BY_GSM</th>\n",
       "      <th>BZ_GSM</th>\n",
       "      <th>flow_speed</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Timestamp</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>2015-03-15 00:00:00</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2015-03-15 00:05:00</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2015-03-15 00:10:00</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2015-03-15 00:15:00</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2015-03-15 00:20:00</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2015-03-19 23:35:00</th>\n",
       "      <td>4.30</td>\n",
       "      <td>-3.83</td>\n",
       "      <td>0.61</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2015-03-19 23:40:00</th>\n",
       "      <td>2.26</td>\n",
       "      <td>-5.46</td>\n",
       "      <td>1.24</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2015-03-19 23:45:00</th>\n",
       "      <td>3.04</td>\n",
       "      <td>-4.92</td>\n",
       "      <td>-0.06</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2015-03-19 23:50:00</th>\n",
       "      <td>2.91</td>\n",
       "      <td>-4.64</td>\n",
       "      <td>-1.03</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2015-03-19 23:55:00</th>\n",
       "      <td>3.20</td>\n",
       "      <td>-5.14</td>\n",
       "      <td>-1.05</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1440 rows × 4 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                     BX_GSE  BY_GSM  BZ_GSM  flow_speed\n",
       "Timestamp                                              \n",
       "2015-03-15 00:00:00     NaN     NaN     NaN         NaN\n",
       "2015-03-15 00:05:00     NaN     NaN     NaN         NaN\n",
       "2015-03-15 00:10:00     NaN     NaN     NaN         NaN\n",
       "2015-03-15 00:15:00     NaN     NaN     NaN         NaN\n",
       "2015-03-15 00:20:00     NaN     NaN     NaN         NaN\n",
       "...                     ...     ...     ...         ...\n",
       "2015-03-19 23:35:00    4.30   -3.83    0.61         NaN\n",
       "2015-03-19 23:40:00    2.26   -5.46    1.24         NaN\n",
       "2015-03-19 23:45:00    3.04   -4.92   -0.06         NaN\n",
       "2015-03-19 23:50:00    2.91   -4.64   -1.03         NaN\n",
       "2015-03-19 23:55:00    3.20   -5.14   -1.05         NaN\n",
       "\n",
       "[1440 rows x 4 columns]"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def to_pandas(hapidata):\n",
    "    df = pd.DataFrame(\n",
    "        columns=hapidata.dtype.names,\n",
    "        data=hapidata,\n",
    "    ).set_index(\"Time\")\n",
    "    # Convert from hapitime to Python datetime\n",
    "    df.index = hapitime2datetime(df.index.values.astype(str))\n",
    "    # df.index = pd.DatetimeIndex(df.index.values.astype(str))\n",
    "    # Remove timezone awareness\n",
    "    df.index = df.index.tz_convert(\"UTC\").tz_convert(None)\n",
    "    # Rename to Timestamp to match viresclient\n",
    "    df.index.name = \"Timestamp\"\n",
    "    return df\n",
    "\n",
    "df = to_pandas(data)\n",
    "df"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d5df4550",
   "metadata": {},
   "source": [
    "How can we get the extra information like the units from the metadata? Let's construct dictionaries, `units` and `description`, that allow easier access to these:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "f70872c8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:33.667727Z",
     "iopub.status.busy": "2025-06-21T21:48:33.667569Z",
     "iopub.status.idle": "2025-06-21T21:48:33.672831Z",
     "shell.execute_reply": "2025-06-21T21:48:33.672291Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "({'Time': 'UTC',\n",
       "  'BX_GSE': 'nT',\n",
       "  'BY_GSM': 'nT',\n",
       "  'BZ_GSM': 'nT',\n",
       "  'flow_speed': 'km/s'},\n",
       " {'Time': None,\n",
       "  'BX_GSE': 'Bx (nT), GSE',\n",
       "  'BY_GSM': 'By (nT), GSM, determined from post-shift GSE components',\n",
       "  'BZ_GSM': 'Bz (nT), GSM, determined from post-shift GSE components',\n",
       "  'flow_speed': 'Flow Speed (km/s), GSE'})"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def get_units_description(meta):\n",
    "    units = {}\n",
    "    description = {}\n",
    "    for paramdict in meta[\"parameters\"]:\n",
    "        units[paramdict[\"name\"]] = paramdict.get(\"units\", None)\n",
    "        description[paramdict[\"name\"]] = paramdict.get(\"description\", None)\n",
    "    return units, description\n",
    "units, description = get_units_description(meta)\n",
    "units, description"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "678fd61d",
   "metadata": {},
   "source": [
    "The [`xarray.Dataset`](http://xarray.pydata.org/en/stable/data-structures.html#dataset) object has advantages for handling multi-dimensional data and for attaching of metadata like units. Let's convert the data to an `xarray.Dataset`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "0118f800",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:33.674821Z",
     "iopub.status.busy": "2025-06-21T21:48:33.674535Z",
     "iopub.status.idle": "2025-06-21T21:48:33.701353Z",
     "shell.execute_reply": "2025-06-21T21:48:33.700753Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.11/site-packages/hapiclient/hapitime.py:284: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
      "  Time = pandas.to_datetime(Time, infer_datetime_format=True).tz_convert(tzinfo).to_pydatetime()\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body[data-theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block !important;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-index-preview {\n",
       "  grid-column: 2 / 5;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data,\n",
       ".xr-index-data-in:checked ~ .xr-index-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-index-name div,\n",
       ".xr-index-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2,\n",
       ".xr-no-icon {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:     (Timestamp: 1440)\n",
       "Coordinates:\n",
       "  * Timestamp   (Timestamp) datetime64[ns] 2015-03-15 ... 2015-03-19T23:55:00\n",
       "Data variables:\n",
       "    BX_GSE      (Timestamp) float64 nan nan nan nan nan ... 2.26 3.04 2.91 3.2\n",
       "    BY_GSM      (Timestamp) float64 nan nan nan nan ... -5.46 -4.92 -4.64 -5.14\n",
       "    BZ_GSM      (Timestamp) float64 nan nan nan nan ... 1.24 -0.06 -1.03 -1.05\n",
       "    flow_speed  (Timestamp) float64 nan nan nan nan nan ... nan nan nan nan nan</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-15512cf2-359a-47da-a85e-276c0765ab4b' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-15512cf2-359a-47da-a85e-276c0765ab4b' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>Timestamp</span>: 1440</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-19d4309e-e51b-49c4-a751-1c90fe156256' class='xr-section-summary-in' type='checkbox'  checked><label for='section-19d4309e-e51b-49c4-a751-1c90fe156256' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>Timestamp</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2015-03-15 ... 2015-03-19T23:55:00</div><input id='attrs-eb6a352e-ceb6-46ef-a21d-8f1fc3d0494e' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-eb6a352e-ceb6-46ef-a21d-8f1fc3d0494e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-102a7ee7-97b9-4363-ac07-25400fc30fb9' class='xr-var-data-in' type='checkbox'><label for='data-102a7ee7-97b9-4363-ac07-25400fc30fb9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([&#x27;2015-03-15T00:00:00.000000000&#x27;, &#x27;2015-03-15T00:05:00.000000000&#x27;,\n",
       "       &#x27;2015-03-15T00:10:00.000000000&#x27;, ..., &#x27;2015-03-19T23:45:00.000000000&#x27;,\n",
       "       &#x27;2015-03-19T23:50:00.000000000&#x27;, &#x27;2015-03-19T23:55:00.000000000&#x27;],\n",
       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-bd2744b6-62da-43b8-9188-628b6ada9716' class='xr-section-summary-in' type='checkbox'  checked><label for='section-bd2744b6-62da-43b8-9188-628b6ada9716' class='xr-section-summary' >Data variables: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>BX_GSE</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>nan nan nan nan ... 3.04 2.91 3.2</div><input id='attrs-86608d3a-d845-46bb-ad81-20310fad9b67' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-86608d3a-d845-46bb-ad81-20310fad9b67' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a6b54110-5c7a-40da-b509-a936dd126b51' class='xr-var-data-in' type='checkbox'><label for='data-a6b54110-5c7a-40da-b509-a936dd126b51' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>nT</dd><dt><span>description :</span></dt><dd>Bx (nT), GSE</dd></dl></div><div class='xr-var-data'><pre>array([       nan,        nan,        nan, ..., 3.03999996, 2.91000009,\n",
       "       3.20000005])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BY_GSM</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>nan nan nan ... -4.92 -4.64 -5.14</div><input id='attrs-57ef83a8-ea41-4164-89bf-c61a1f379986' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-57ef83a8-ea41-4164-89bf-c61a1f379986' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e99a278c-291b-4acf-ad82-05eab15f6c0a' class='xr-var-data-in' type='checkbox'><label for='data-e99a278c-291b-4acf-ad82-05eab15f6c0a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>nT</dd><dt><span>description :</span></dt><dd>By (nT), GSM, determined from post-shift GSE components</dd></dl></div><div class='xr-var-data'><pre>array([        nan,         nan,         nan, ..., -4.92000008,\n",
       "       -4.63999987, -5.13999987])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BZ_GSM</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>nan nan nan ... -0.06 -1.03 -1.05</div><input id='attrs-d1742ab5-80ac-43dd-b183-a701cf63ac05' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d1742ab5-80ac-43dd-b183-a701cf63ac05' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-892c8295-4dd5-4d1b-a42f-8c4c7327fe43' class='xr-var-data-in' type='checkbox'><label for='data-892c8295-4dd5-4d1b-a42f-8c4c7327fe43' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>nT</dd><dt><span>description :</span></dt><dd>Bz (nT), GSM, determined from post-shift GSE components</dd></dl></div><div class='xr-var-data'><pre>array([        nan,         nan,         nan, ..., -0.06      ,\n",
       "       -1.02999997, -1.04999995])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>flow_speed</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>nan nan nan nan ... nan nan nan nan</div><input id='attrs-77d68deb-6bd4-4e1a-8fbb-cf4b564cff53' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-77d68deb-6bd4-4e1a-8fbb-cf4b564cff53' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-07ef2ce2-db88-4f2b-b1b4-561a1d7552a2' class='xr-var-data-in' type='checkbox'><label for='data-07ef2ce2-db88-4f2b-b1b4-561a1d7552a2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>km/s</dd><dt><span>description :</span></dt><dd>Flow Speed (km/s), GSE</dd></dl></div><div class='xr-var-data'><pre>array([nan, nan, nan, ..., nan, nan, nan])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-0cd19255-5345-4347-b7f2-1c4bfbe0a22c' class='xr-section-summary-in' type='checkbox'  ><label for='section-0cd19255-5345-4347-b7f2-1c4bfbe0a22c' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>Timestamp</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-16bb0d8a-b150-48c1-a88a-0324a0d42a79' class='xr-index-data-in' type='checkbox'/><label for='index-16bb0d8a-b150-48c1-a88a-0324a0d42a79' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2015-03-15 00:00:00&#x27;, &#x27;2015-03-15 00:05:00&#x27;,\n",
       "               &#x27;2015-03-15 00:10:00&#x27;, &#x27;2015-03-15 00:15:00&#x27;,\n",
       "               &#x27;2015-03-15 00:20:00&#x27;, &#x27;2015-03-15 00:25:00&#x27;,\n",
       "               &#x27;2015-03-15 00:30:00&#x27;, &#x27;2015-03-15 00:35:00&#x27;,\n",
       "               &#x27;2015-03-15 00:40:00&#x27;, &#x27;2015-03-15 00:45:00&#x27;,\n",
       "               ...\n",
       "               &#x27;2015-03-19 23:10:00&#x27;, &#x27;2015-03-19 23:15:00&#x27;,\n",
       "               &#x27;2015-03-19 23:20:00&#x27;, &#x27;2015-03-19 23:25:00&#x27;,\n",
       "               &#x27;2015-03-19 23:30:00&#x27;, &#x27;2015-03-19 23:35:00&#x27;,\n",
       "               &#x27;2015-03-19 23:40:00&#x27;, &#x27;2015-03-19 23:45:00&#x27;,\n",
       "               &#x27;2015-03-19 23:50:00&#x27;, &#x27;2015-03-19 23:55:00&#x27;],\n",
       "              dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;Timestamp&#x27;, length=1440, freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-81062ee8-5846-41c9-9784-dfc3d7f89a47' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-81062ee8-5846-41c9-9784-dfc3d7f89a47' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:     (Timestamp: 1440)\n",
       "Coordinates:\n",
       "  * Timestamp   (Timestamp) datetime64[ns] 2015-03-15 ... 2015-03-19T23:55:00\n",
       "Data variables:\n",
       "    BX_GSE      (Timestamp) float64 nan nan nan nan nan ... 2.26 3.04 2.91 3.2\n",
       "    BY_GSM      (Timestamp) float64 nan nan nan nan ... -5.46 -4.92 -4.64 -5.14\n",
       "    BZ_GSM      (Timestamp) float64 nan nan nan nan ... 1.24 -0.06 -1.03 -1.05\n",
       "    flow_speed  (Timestamp) float64 nan nan nan nan nan ... nan nan nan nan nan"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def to_xarray(hapidata, hapimeta):\n",
    "    # Here we will conveniently re-use the pandas function we just built,\n",
    "    # and use the pandas API to build the xarray Dataset.\n",
    "    # NB: if performance is important, it's better to build the Dataset directly\n",
    "    ds = to_pandas(hapidata).to_xarray()\n",
    "    units, description = get_units_description(hapimeta)\n",
    "    for param in ds:\n",
    "        ds[param].attrs = {\n",
    "            \"units\": units[param],\n",
    "            \"description\": description[param]\n",
    "        }\n",
    "    return ds\n",
    "\n",
    "ds_sw = to_xarray(data, meta)\n",
    "ds_sw"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4798f622",
   "metadata": {},
   "source": [
    "Now let's plot these data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "552c3caa",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:33.703416Z",
     "iopub.status.busy": "2025-06-21T21:48:33.703093Z",
     "iopub.status.idle": "2025-06-21T21:48:34.335138Z",
     "shell.execute_reply": "2025-06-21T21:48:34.334481Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABOkAAAHwCAYAAADzQDuGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdfrA8c9sTTab3hMg9A4iRcRCEUFUBMUuevbzTu88PD3b2fWw/mxnu/MUbFixIDZQQaSD9N5CCiG9brbvzu+PyW6ypJBACsjzfr1gk9kp39nd2cw88zzfr6KqqooQQgghhBBCCCGEEKLD6Dq6AUIIIYQQQgghhBBCnOgkSCeEEEIIIYQQQgghRAeTIJ0QQgghhBBCCCGEEB1MgnRCCCGEEEIIIYQQQnQwCdIJIYQQQgghhBBCCNHBJEgnhBBCCCGEEEIIIUQHkyCdEEIIIYQQQgghhBAdTIJ0QgghhBBCCCGEEEJ0MAnSCSGEEEIIIYQQQgjRwSRIJ4QQ4ndr9uzZKIrC2rVrW7ys3W7nkUceYfHixa3fsBa67rrr6Nq1a0c3I2jmzJl8+eWXHd2MBimKgqIoXHfddQ0+/9hjjwXn2b9/f7u27Wjl5eXxyCOPsGHDhnrPPfLIIyiK0irbCRw3Df2766672L9/P4qiMHv27BavuyXLtuY+tRZFUXjkkUcOO19OTg633norvXv3Jjw8nLi4OAYNGsTNN99MTk5Oi7cbeE/a+jO7du1aFEXh6aefrvfc1KlTURSF//znP/WeGz9+PPHx8aiqelSfj6Y097Vfv349Y8aMITo6GkVRePHFF1m8eDGKohwT3+dCCCFEUwwd3QAhhBDiWGS323n00UcBGDt2bMc25hgzc+ZMLrnkEi688MKObkqDIiMj+fTTT/n3v/9NZGRkcLqqqsyePZuoqCgqKys7sIVHJi8vj0cffZSuXbsyZMiQkOduuukmJk2a1KrbmzVrFn379g2ZlpaWRnJyMitWrKBHjx6tur3fi9zcXIYOHUpMTAx33nknffr0oaKigm3btvHJJ5+wb98+Onfu3NHNbNDQoUOJjo5m0aJF3HPPPcHpfr+fX3/9lYiICBYtWsQtt9wSfM7tdrNixQrOPfdcFEUhNTW1Qz8fN9xwA9XV1Xz00UfExsbStWtXduzY0SFtEUIIIVpKgnRCCCFEO/J4PCiKgsEgf4Lr8vl8eL1ezGbzUa9r6tSpzJ07l48++oibb745OP3nn38mMzOTm2++mTfffPOot3Ms6dSpE506dWrVdQ4cOJDhw4c3+Nypp57aqtv6PXnzzTcpLi5m9erVdOvWLTj9wgsv5P7778fv93dg6zR2ux2LxVJvuk6nY/To0SxatAiv1xv8ntq4cSNlZWXcddddvPfeeyHLrFq1CofDwbhx4wAwm80d+vnYsmULN998M+eee25wmgTphBBCHC+k3FUIIcQJ5brrrsNqtbJnzx7OO+88rFYrnTt35s4778TlcgFaSV5iYiIAjz76aIMllLt37+aqq64iKSkJs9lMv379ePXVV0O2FSixeu+997jzzjtJT0/HbDazZ8+eYPnawoULuf7664mLiyMiIoILLriAffv2HXY/Xn31VUaPHk1SUhIREREMGjSIZ555Bo/HEzLf2LFjGThwIGvWrOHMM8/EYrHQvXt3nnrqqXrBgsrKSu666y66deuGyWQiPT2dGTNmUF1dHZxHURSqq6t55513gq9LINOwqKiIW2+9lf79+2O1WklKSuKss87i119/DdlOoBzumWee4YknnqBbt26YzWYWLlxITExMSJZO3WX0ej3PPvvsYV+b6OhoLrroIt5+++2Q6W+//Tann346vXv3rrfMwoULmTp1Kp06dSIsLIyePXtyyy23UFxcXG/er776isGDB2M2m+nevTsvvfRSg6WZiqLwl7/8hffee49+/fphsVg46aSTmD9/fr11Hu7ztHjxYkaMGAHA9ddfH3ztA+V/jZWGzpkzh1GjRmG1WrFarQwZMoS33nrrsK9hUxorZ2zOMdGYb775hiFDhmA2m+nWrRvPPfdcs9vT3Pcu8Bpt3bqVK6+8kujoaJKTk7nhhhuoqKgImbeyspKbb76Z+Ph4rFYrkyZNYteuXc1qT0lJCTqdjqSkpAaf1+lCT7/nzZvHqFGjsFgsREZGMmHCBFasWNHq+71u3TouueQSYmNjm8xyGzduHDabLaSbgMWLF5OWlsZNN91EQUEB27ZtC3kusBw0/Ploj9c+8J3q9Xp5/fXXg8dIUw732m/duhVFUfj000+D03777TcURWHAgAEh65oyZQrDhg07bDuFEEKIpkiQTgghxAnH4/EwZcoUxo8fz1dffcUNN9zACy+8EOyHKTU1le+//x6AG2+8kRUrVrBixQoefPBBALZt28aIESPYsmUL//d//8f8+fM5//zzuf3224MlsnXdd999ZGdn88Ybb/D111+HXLzfeOON6HQ65syZw4svvsjq1asZO3Ys5eXlTe7D3r17ueqqq3jvvfeYP38+N954I88++2yDAa78/HymT5/O1Vdfzbx58zj33HO57777eP/994Pz2O12xowZwzvvvMPtt9/Od999xz333MPs2bOZMmUKqqoCsGLFCsLDwznvvPOCr8trr70GQGlpKQAPP/ww33zzDbNmzaJ79+6MHTu2wb6gXn75ZX7++Weee+45vvvuOwYOHMgNN9zABx98UO/C/bXXXsNkMnHDDTc0+brUfV1XrlzJ9u3bASgvL+fzzz/nxhtvbPT1HDVqFK+//joLFizgoYceYtWqVZxxxhkhgc/vv/+eadOmER8fz8cff8wzzzzDhx9+yDvvvNPger/55hteeeUVHnvsMebOnUtcXBwXXXRRSCC2OZ+noUOHMmvWLAAeeOCB4Gt/0003NfoaPPTQQ0yfPp20tDRmz57NF198wbXXXktWVlazXsNAdmPdf41p6TFR108//cTUqVOJjIzko48+4tlnn+WTTz4J7u/hNPe9C7j44ovp3bs3c+fO5d5772XOnDnccccdwedVVeXCCy8MBte/+OILTj311JDMrKaMGjUKv9/PtGnT+OGHH5osrZ4zZw5Tp04lKiqKDz/8kLfeeouysjLGjh3L0qVLW3W/p02bRs+ePfn000954403Gl1vINi2aNGi4LRFixYxZswY+vTpQ0pKSsjxvGjRIhITE+nfv3+T7YW2fe3PP//8YIDtkksuCR4jjWnOaz9gwABSU1P58ccfg8v9+OOPhIeHs23bNvLy8gDwer388ssvnH322YdtpxBCCNEkVQghhPidmjVrlgqoa9asCU679tprVUD95JNPQuY977zz1D59+gR/LyoqUgH14Ycfrrfec845R+3UqZNaUVERMv0vf/mLGhYWppaWlqqqqqqLFi1SAXX06NGNtu2iiy4Kmb5s2TIVUJ944omQNmdkZDS6nz6fT/V4POq7776r6vX64PZVVVXHjBmjAuqqVatClunfv796zjnnBH9/8sknVZ1OF/JaqaqqfvbZZyqgfvvtt8FpERER6rXXXttoewK8Xq/q8XjU8ePHh+xnZmamCqg9evRQ3W53yDJ79+5VdTqd+sILLwSnORwONT4+Xr3++usPu01Ave2221S/369269ZNveuuu1RVVdVXX31VtVqtalVVlfrss8+qgJqZmdngOvx+v+rxeNSsrCwVUL/66qvgcyNGjFA7d+6sulyu4LSqqio1Pj5ePfS0ClCTk5PVysrK4LT8/HxVp9OpTz75ZHBacz9Pa9asUQF11qxZ9dr88MMPh2x/3759ql6vV6dPn36YV6y+wGezoX8ejyf4/tVtR3P3oaFlR44cqaalpakOhyM4rbKyUo2Li6v3mh5OU+9d4DV65plnQpa59dZb1bCwMNXv96uqqqrfffedCqgvvfRSyHz/+te/Gv1OOLQNt9xyi6rT6VRAVRRF7devn3rHHXeEfOZ8Pp+alpamDho0SPX5fMHpVVVValJSknraaacFpwXekyP5zAb2+6GHHmqy3XXXFRcXp06cODHYzpiYGPWNN95QVVVVL7vsMvWSSy5RVVVVXS6XGh4erl522WXB5Rt6j9vrtVfV2u+AugLfxYsWLQruU3Nf+6uvvlrt3r178Pezzz5bvfnmm9XY2Fj1nXfeUVW19nt7wYIFh22fEEII0RTJpBNCCHHCURSFCy64IGTa4MGDm5Vh5HQ6+emnn7jooouwWCwhWUbnnXceTqeTlStXhixz8cUXN7q+6dOnh/x+2mmnkZGREZLF0pD169czZcoU4uPj0ev1GI1G/vCHP+Dz+eqVhqWkpHDKKac0ub/z589n4MCBDBkyJGSfzjnnnBaNivjGG28wdOhQwsLCMBgMGI1Gfvrpp2BGW11TpkzBaDSGTOvevTuTJ0/mtddeC2bvzZkzh5KSEv7yl780qw1AsDz5vffew+v18tZbb3HZZZdhtVobnL+wsJA//elPdO7cOdjujIwMgGDbq6urWbt2LRdeeCEmkym4rNVqrfd5Chg3blzI4BXJyckkJSUFX/sj+Tw1x8KFC/H5fNx2220tXjbg3XffZc2aNSH/GupL8Wj2obq6mjVr1jBt2jTCwsKC0yMjIxt9TQ/VnPeurilTpoT8PnjwYJxOJ4WFhUBtBtmhx+ZVV13VrPYoisIbb7zBvn37eO2117j++uvxeDy88MILDBgwgF9++QWAnTt3kpeXxzXXXBNSAmu1Wrn44otZuXIldru91fa7qe+hQ9s/ZswYli1bhsfjYcOGDZSXlwfL2seMGcPixYtRVZWVK1eG9Ed3OG392jdXS1778ePHs2/fPjIzM3E6nSxdupRJkyYxbtw4Fi5cCGjZdWazmTPOOKNV2ymEEOLEI71WCyGEOOFYLJaQgABonZ07nc7DLltSUoLX6+Xf//43//73vxuc59A+oVJTUxtdX0pKSoPTSkpKGl0mOzubM888kz59+vDSSy/RtWtXwsLCWL16NbfddhsOhyNk/vj4+HrrMJvNIfMVFBSwZ8+eekGzxvapIc8//zx33nknf/rTn3j88cdJSEhAr9fz4IMPNhg0aOx1+dvf/sb48eNZuHAhEydO5NVXX2XUqFEMHTr0sG2o6/rrr+fRRx9l5syZrFu3rtH3y+/3M3HiRPLy8njwwQcZNGgQERER+P1+Tj311ODrVFZWhqqqJCcn11tHQ9Pg8K/9kXyemqOoqAjgqAaT6NevX6MDR9R1NPtQVlaG3+9v9Dg4nOa+d3Ud+p4EBiup+54YDIZ68zWnPXVlZGTw5z//Ofj7J598wpVXXsk//vEPVq9eHTzGGzoO0tLS8Pv9lJWVNTjAw5Hsd1PfQ4caN24cX3zxBWvWrGHFihUkJyfTp08fQAvSFRcXs3Xr1mBQrblBuvZ67Q+nJa99oIT1xx9/pFu3bng8Hs466ywKCgp4/PHHg8+dfvrphIeHt2o7hRBCnHgkSCeEEEK0QGxsLHq9nmuuuabRLKW6IzoCTXZenp+f3+C0nj17NrrMl19+SXV1NZ9//nkwcwZgw4YNh2l94xISEggPD6832ELd5w/n/fffZ+zYsbz++ush06uqqhqcv7HX5ayzzmLgwIG88sorWK1W1q1bF9J/XnN17tyZs88+m0cffZQ+ffpw2mmnNTjfli1b2LhxI7Nnz+baa68NTt+zZ0/IfLGxsSiKQkFBQb11NPQ+NseRfJ6aIzDwSW5uLp07dz6itjXX0exD4DVt7Dg4nOa+dy0RHx+P1+ulpKQkJFh0pO9xwGWXXcaTTz7Jli1bgtsBOHjwYL158/Ly0Ol0xMbGNriuI9nvww2iUFcg6LZ48WJWrFjBmDFjgs/179+fhIQEFi1axOLFi0lNTQ0G8I5WW732DW0Hmvfad+rUid69e/Pjjz/StWtXhg8fTkxMDOPHj+fWW29l1apVrFy58rB9LwohhBDNIeWuQgghRAMOzfAIsFgsjBs3jvXr1zN48GCGDx9e719D2VON+eCDD0J+X758OVlZWcHSsoYELrYDbQStw/U333yz2ds91OTJk9m7dy/x8fEN7lPXrl2D8x6ahVe3XXXbBLBp06ZmjVR5qNtvv51vvvmG++67j+TkZC699NIWrwPgzjvv5IILLggO+tGQhl5PgP/85z8hv0dERDB8+HC+/PJL3G53cLrNZmtwxNbmaMnnqbHPZEMmTpyIXq+vFzBtC0dzTERERHDKKafw+eefh2SyVlVV8fXXXx92281971oiEKA69NicM2dOs5ZvKPAD2uckJyeHtLQ0APr06UN6ejpz5swJlnaDVgI8d+7c4KijDWmL/a5rwIABJCYm8vPPP/Prr7+GfB8pisLo0aP5/vvvWblyZbOz6JrjaF/75mrpa3/22Wfz888/s3DhQiZMmABA79696dKlCw899BAej0cGjRBCCNEqJJNOCCGEaEBkZCQZGRl89dVXjB8/nri4OBISEujatSsvvfQSZ5xxBmeeeSZ//vOf6dq1K1VVVezZs4evv/6an3/+udnbWbt2LTfddBOXXnopOTk5/POf/yQ9PZ1bb7210WUmTJiAyWTiyiuv5O6778bpdPL6669TVlZ2xPs7Y8YM5s6dy+jRo7njjjsYPHgwfr+f7OxsFixYwJ133snIkSMBGDRoEIsXL+brr78mNTWVyMhI+vTpw+TJk3n88cd5+OGHGTNmDDt37uSxxx6jW7duTY4M2pCrr76a++67jyVLlvDAAw+E9AHXEhMnTmTixIlNztO3b1969OjBvffei6qqxMXF8fXXXwf7m6rrscce4/zzz+ecc87hb3/7Gz6fj2effRar1Roc3balmvt56tGjB+Hh4XzwwQf069cPq9VKWlpaMOhTV9euXbn//vt5/PHHcTgcXHnllURHR7Nt2zaKi4tbPevnaI6Jxx9/nEmTJjFhwgTuvPNOfD4fTz/9NBEREYd9TVvy3jXXxIkTGT16NHfffTfV1dUMHz6cZcuW8d577zVr+X/9618sW7aMyy+/nCFDhhAeHk5mZiavvPIKJSUlPPvsswDodDqeeeYZpk+fzuTJk7nllltwuVw8++yzlJeX89RTT7XrftelKApjx47ls88+Q1XVkEw60EpeZ8yYgaqqrRqkO9rXvrla+tqPHz+e1157jeLiYl588cWQ6bNmzSI2NpZhw4a1ahuFEEKcmCSTTgghhGjEW2+9hcViYcqUKYwYMYJHHnkE0Mq91q1bx8CBA3nggQeYOHEiN954I5999hnjx49v8TbcbjdXXHEFt99+O8OHD2fx4sXExcU1ukzfvn2ZO3cuZWVlTJs2jb/+9a8MGTKEl19++Yj3NSIigl9//ZXrrruO//73v5x//vlcdtllvPzyy3Tq1Ckkk+6ll16iV69eXHHFFYwYMYJbbrkFgH/+85/ceeedvPXWW5x//vn873//44033jiiztTDw8O54IILMBgM/OlPfzri/WoOo9HI119/Te/evbnlllu48sorKSws5Mcff6w376RJk5g7dy4lJSVcfvnl/P3vf+eiiy5i6tSpxMTEHNH2m/t5slgsvP3225SUlDBx4kRGjBjBf//730bX+9hjj/Huu++SlZXF9OnTufDCC5k1a9YRlc+21j40ZMKECXz55ZdUVlYGX9OLL76YG2644bDbbcl711w6nY558+Yxffp0nnnmGS688EKWL1/Ot99+26zlr7nmGk4//XQ++ugjpk+fzvjx47n77rtJTEzk22+/5frrrw/Oe9VVV/Hll18GP0/XX389UVFRLFq0qMnjpi32+1Djxo1DVVUSExPp379/yHNjxowJZqA1lfXbUkf72rdES177s846C51OR0REBKNGjQpOD2TPjRs3LmQACiGEEOJIKWrdHG8hhBBCtIvZs2dz/fXXs2bNmmZ1zn+icbvddO3alTPOOINPPvmko5vTJI/Hw5AhQ0hPT2fBggUd3RwhhBBCCHGcknJXIYQQQhwzioqK2LlzJ7NmzaKgoIB77723o5tUz4033siECRNITU0lPz+fN954g+3bt/PSSy91dNOEEEIIIcRxTIJ0QgghhDhmfPPNN1x//fWkpqby2muvMXTo0I5uUj1VVVXcddddFBUVYTQaGTp0KN9++610HC+EEEIIIY6KlLsKIYQQQgghhBBCCNHBpIdTIYQQQgghhBBCCCE6mATphBBCCCGEEEIIIYToYBKkE0IIIYQQQgghhBCig0mQTgghhBBCCCGEEEKIDiZBOiGEEEIIIYQQQgghOpgE6YQQQgghhBBCCCGE6GASpBNCCCGEEEIIIYQQooNJkE4IIYQQQgghhBBCiA4mQTohhBBCCCGEEEIIITqYBOmEEEIIIYQQQgghhOhgEqQTQgghhBBCCCGEEKKDSZBOCCGEEEIIIYQQQogOJkE6IYQQQgghhBBCCCE6mATphBBCCCGEEEIIIYToYBKkE0IIIYQQQgghhBCig0mQTgghhBBCCCGEEEKIDiZBOiGEEEIIIYQQQgghOpgE6YQQQgghhBBCCCGE6GASpBNCCCGEEEIIIYQQooNJkE4IIYQQQgghhBBCiA4mQTohhBBCCCGEEEIIITqYBOmEEEIIIYQQQgghhOhgEqQTQgghhBBCCCGEEKKDSZBOCCGEEEIIIYQQQogOJkE6IYQQQgghhBBCCCE6mATphBBCCCGEEEIIIYToYBKkE0IIIYQQQgghhBCig0mQTgghhBBCCCGEEEKIDiZBOiGEEEIIIYQQQgghOpgE6YQQQgghhBBCCCGE6GASpBNCCCGEEEIIIYQQooNJkE4IIYQQQgghhBBCiA5m6OgG/N74/X7y8vKIjIxEUZSObo4QQgghhBBCCCGE6CCqqlJVVUVaWho6XdO5chKka2V5eXl07ty5o5shhBBCCCGEEEIIIY4ROTk5dOrUqcl5JEjXyiIjIwHtxY+Kimr37Xs8HhYsWMDEiRMxGo3tvn0hfs/k+BKi7cjxJUTbkGNLiLYjx5cQbeP3dmxVVlbSuXPnYLyoKRKka2WBEteoqKgOC9JZLBaioqJ+Fx9mIY4lcnwJ0Xbk+BKibcixJUTbkeNLiLbxez22mtMlmgwcIYQQQgghhBBCCCFEB5MgnRBCCCGEEEIIIYQQHUyCdEIIIYQQQgghhBBCdDDpk04IIYQQQgghhBDiGObz+fB4PB3djHbh8XgwGAw4nU58Pl9HN6dZTCYTOt3R58FJkE4IIYQQQrQPeyns/A6GXAXN6DxZCCGEONGpqkp+fj7l5eUd3ZR2o6oqKSkp5OTkNGuwhWOBTqejW7dumEymo1qPBOmEEEIIIUT7WPka7F4IvSaCNbGjWyOEEEIc8wIBuqSkJCwWy3ETtDoafr8fm82G1Wptley0tub3+8nLy+PgwYN06dLlqN4jCdIJIYQQQoh2UnPSaiuQIJ0QQghxGD6fLxigi4+P7+jmtBu/34/b7SYsLOy4CNIBJCYmkpeXh9frxWg0HvF6jo+9FUIIIYQQxz9ThPZoy+/YdgghhBDHgUAfdBaLpYNbIg4nUOZ6tH3oSZBOCCGEEEK0D79Xe6w8GDo9bwP4/e3eHCGEEOJ4cCKUuB7vWus9kiCdEEIIIYRoH26b9lg3k65kL3z9N9j2ZYc0SQghhBDiWCFBOiGEEEII0T6cldpj3Uy66mLt0VbY/u0RQgghhDiGSJBOCCGEEEK0DZ8XVrwG9lLt90AmnbMCtn8NXpc2iASAIqelQgghhDixydmQEEIIIYRoGwfWwqaPtYAc1GbSleyBJc/BhjlQVVP66ijrmDYKIYQQotVdd911KIoS/BcfH8+kSZPYtGkTABs3bsRsNjNv3ryQ5ebOnYvFYmHbtm3N2k5lZSUPPvggAwYMIDw8nPj4eEaMGMEzzzxDWVntucW+ffu48sorSUtLIywsjE6dOjF16lR27doVnKdue+v+++ijj1rhFWkeCdIJIYQQQoi2UbhdezSGa49uW+3PoGXSVdWUvlYXtW/bhBBCCNGmJk2axMGDBzl48CA//fQTBoOByZMnA3DSSSfx4IMP8sc//pGSkhIACgsL+dOf/sQjjzxC//79D7v+0tJSTj31VGbNmsVdd93FqlWrWLZsGQ8//DAbNmxgzpw5ALjdbiZMmEBlZSWff/45O3fu5OOPP2bgwIFUVFSErHPWrFnBNgf+XXjhha37wjTB0G5bEkIIIYT4HTpoO8iMxTN4ceyLpFpTO7o5x5aDG7VHR7k2equrCmIzoCxLm67TS5BOCCGE+J0ym82kpKQAkJKSwj333MPo0aMpKioiMTGR++67j3nz5nHbbbfx0Ucfccstt9CrVy/uvPNOqqurD7v++++/n+zsbHbu3El6enpwet++fZk8eTKqqgKwbds29u3bx88//0xGRgYAGRkZnH766fXWGRMTE2xzR5AgnRBCCCHEUdhWopVjbCnZIkG6QwUCb45ScFdpP0ck1QbpFEUrc1V0tQNICCGEEKJRTo+P3DJHu2+3U2w4YUb9ES9vs9n44IMP6NmzJ/Hx8QDo9Xreeecdhg4dylVXXcUPP/zAhg0b0OsPvx2/38/HH3/M1VdfHRKgq0tRFAASExPR6XR89tlnzJgxo1nr7ygSpBNCCCGEaAGH14GqqliMFgBUtLu0bp+7I5t1bPJ7tUd7Kbjt2s8RCbXPK3qt5DU6HcpzwOMILYcVQgghRIjcMgd3fLyh3bf7wuVD6JlkbdEy8+fPx2rVlqmuriY1NZX58+ej09X2vNavXz9mzJjBU089xdNPP03v3r3x+/2HXXdRURHl5eX06dMnZPqwYcPYuXMnABdccAEffvgh6enpvPzyy9x99908+uijDB8+nHHjxjF9+nS6d+8esvyVV15ZL4i3adOmevO1FQnSCSGEEEK0wIPLHiSnKoePJ38MQLmrHIAypwx8UI/fpz3aS8BTE6QLj6t9XmcAnweiaoJ01cUQ07n92ymEEEIcJzrFhvPC5UM6ZLstNW7cOF5//XVA6z/utdde49xzz2X16tXBslObzcbHH3+MxWLh119/5e67727RNgLZcgFffPEFbrebe+65B4ejNuPwtttu4w9/+AOLFi1i1apVfPrpp8ycOZN58+YxYcKE4HwvvPACZ599dsg6O3duv3MTCdIJIYQQQrRATlUOANmV2XSJ6hIMzhU6CjuyWccmv1cLxDlKtSw5AEudIJ3qA58botK036uLJEgnhBBCNCHMqG9xRltHiYiIoGfPnsHfhw0bRnR0NG+++SZPPPEEAP/4xz8wmUwsX76cUaNG8e6773L11Vcfdt2JiYnExMSwY8eOkOldunQBIDIykvLy8pDnIiMjmTJlClOmTOGJJ57gnHPO4YknnggJ0qWkpIS0ub3J6K5CCCGEEC3QM0Y7cVudvxqAUmcpAEX2E2zgg9Vvwp6fmp7H74WIRG3gCHdNB9DhsbXPe101QbqavmSkXzohhBDid0tRFHQ6XTDDbeHChfzvf/9j9uzZnHTSScycOZMZM2Zw8ODBw65Lp9Nx2WWX8f7773PgwIEjakvfvn2bNUBFe5IgnRBCCCFEC3hr+lnLrswGTtAgXc5qWP8+LH4KKpo4Mfb7tP7mVD+Ua69XSCad26Y9mqPAHAl2CdIJIYQQvxcul4v8/Hzy8/PZvn07f/3rX7HZbFxwwQVUVlZy4403ctddd3HqqacCcPvttzNgwABuueWWZq1/5syZpKenM3LkSN5++202bdrE3r17+eKLL1ixYkWwb7kNGzYwdepUPvvsM7Zt28aePXt46623ePvtt5k6dWrIOsvLy4NtDvxrz0CelLsKIYQQQrSAx+8BYH/lfkDriy7FkkK+PR+3z41Jb+rA1rWT7V9DQi9tlNasZTD4sobn83shrgfkroWi7dq0un3SuWqCdAYTWOJrR4MVQgghxHHv+++/JzU1FdBKTfv27cunn37K2LFjueGGG4iOjubRRx8Nzq/T6Zg1axYnnXQSH330EX/84x+bXH98fDyrV6/m6aef5tlnnyUzMxOdTkevXr24/PLLmTFjBgCdOnWia9euPProo+zfvx9FUYK/33HHHSHrvP766+tt58knn+Tee+89ylejeSRIJ4QQQgjRAi6fi7iwOArsBeRW5VLhruCU1FPIz8qn1FlKSkRKRzexbfn9kLceBk7TRmIt2AI0EqRTfRCVCoYwKNyu9U9njqx9PpBJpzdpZbFS7iqEEEL8LsyePZvZs2c3+vzbb7/d4PSePXtSVVVFZWVls7YTHR3NzJkzmTlzZqPzJCQk8NJLLx12XaqqNmubbUnKXYUQQgghWsDtc9Mvrh8An+76FIAz0s8AoMRZ0mHtajel+8BVBWknQ9IAKNgKWSu0rLq6VFUrd9UZITYDKvO0oJ7RUjuPq0p71JtrgnSSSSeEEEKIE5cE6YQQQgghWsDtc9Mjpge9Y3uz8uBK0q3pdI3qCkCJ4wQJ0gEk9tUCddXF8P29sOCB0PlUv/ao00NMhvazMRwMZlAU7fdgkM4IEfGSSSeEEEKIoKioKKxWa4P/fv31145uXpuQclchhBBCiGZSVRW3z41Zb+bKvlfy+e7PGdt5LGGGMKxGa3AQid81ewmYIrSAW6cREN0JKnJBOeTeb80AG+gMYE3SfjaGawE6Qzh47IeUuyZp6/b7QSf3kYUQQogT3bp169A1ck6Qnp7ezq1pHxKkE0IIIYRoJq/fix8/Jr2J/vH96R/fP/hcXFjciRGkc5RCeKz2s04Ho++Cnx7Xgm51BYN0eq2UFbS+6QCMYdr8dQeOiEjQsu8cpdrPQgghhDih9ezZs9Eg3e/VibW3QgghhBBHwe13AzQ4gmt8eDxF9hOgTzV7qTYSa0DayTDiJq0/Oa+7drrfpz0qdYJ0Xqf2GFGTWRcI5AX6pINju+Q1Zw0seLCjWyGEEEKI3ykJ0gkhhBBCNJPL5wLApKsfpOsc2Znsquz2blL7c5SCJS50WlSaNlBEVV7ttLrlroHMOHe19jj5BRhwYe28elNt4O9YHjxi8UzIXNLRrRBCCCHE75QE6YQQQgghmsnt0zLFzHpzvee6RnWl2FGMLdDP2u+VvRTCDw3S1fQLU3mwdlogk05nAMshQTqTJXSUV4MJwmK0eY/lIJ2i1x5VtWPbIYQQQojfJQnSCSGEEEI0UyBIZ9Qb6z2XEaWNYJpVldWubWp39pL6mXSB3x11+uSrm0kX6MPO46h9vm7JsN6k9W9nTYLKOtl4x5rA4Bg+T8e2QwghhBC/SydMkO7JJ59kxIgRREZGkpSUxIUXXsjOnTtD5lFVlUceeYS0tDTCw8MZO3YsW7du7aAWCyGEEOJYEwjSNVTumhqRilFnZH/F/nZuVRtR1dDMONCCU66q+pl0Oj2ERYGjrM7ygUw6Xe1orXWDe4Y62YiBgF1SfyjY0jrtbwvBIJ276fmEEEIIIY7ACROk++WXX7jttttYuXIlCxcuxOv1MnHiRKqrq4PzPPPMMzz//PO88sorrFmzhpSUFCZMmEBVVVUHtlwIIYQQxwqXX+uTrqFyV71OT5fILmRV/k4y6bKWw8fTtfLWgOJd2mNMl/rzh8eCo7z297qZdAAXvARTX6t9PhCY0+m1fwCpg7VtuA8ZKfZYoSjaowTphBBCCNEGDB3dgPby/fffh/w+a9YskpKS+O233xg9ejSqqvLiiy/yz3/+k2nTpgHwzjvvkJyczJw5c7jlllsaXK/L5cLlcgV/r6ysBMDj8eDxtH8pRGCbHbFtIX7v5PgSou0cL8eXw+VAVVV0qq7Btna2dmZf+b5jfj+aQ3dwC4rPi//gZtQup2nTMpeimKz44nrBIfuoM0dDdQn+wHS3E72q4vOjzZs4QJte87yCHp2qgs6IL7BM4gD0Pi/+vYtR47qDJVHL0DtG6FVAVfE5bWCM7OjmNMvxcmwJcTyS40u0NY/Hg6qq+P1+/H5/RzenRa6//nrefffd4O9xcXEMHz6cp556iquvvprTTjuN//znPyHL3HPPPXzyySds2LABRVGC+94Qt9vNyy+/zEcffcTOnTsxGAx07dqVyZMn8+c//5m0tDQACgsLeeihh/j+++8pKCggNjaWwYMH8/DDDzNq1CgAunfvTlZWFh988AFXXHFFyHYGDRrEtm3beOutt7juuusa3V+/34+qqng8HvR6fchzLfmOOGGCdIeqqKgAtA8KQGZmJvn5+UycODE4j9lsZsyYMSxfvrzRIN2TTz7Jo48+Wm/6ggULsFgsDSzRPhYuXNhh2xbi906OLyHazrF+fO317KXCWcHinxYTpoTVe77UXcoW1xa+/uZr9Iq+gTUcPwbm/ki8rYL9i78gK6EcgJOzvsZpjGX7d9/Xm79fXilGXy6b7N8CYHXmMayigt9+XYotbF+9+ZMqNtOvogK/rppfv/02OL2/P53ob/+FyWujKLIf29KvbJsdPAIjCgqxuCtY8+MC7ObEjm5Oixzrx5YQxzM5vkRbMRgMpKSkYLPZcLuPryxuj8fD+PHjefXVVwEtWPbEE09wwQUX8P777zNx4kTOOecczj77bADWrFnDiy++yOeff45Sk7neWFWjy+Vi2rRpbN26lfvuu4+RI0cSFRVFZmYm33zzDf/3f//Hww8/DMBFF12E1+vl1VdfJSMjg6KiIn755Rdyc3ODSVZ+v5/09HTeeustzjvvvOB21qxZw8GDB4mIiMDpdAbnb4jb7cbhcLBkyRK8Xm/Ic3Z78ysETsggnaqq/P3vf+eMM85g4MCBAOTn5wOQnJwcMm9ycjJZWY2Xrdx33338/e9/D/5eWVlJ586dmThxIlFR7X/n1+PxsHDhQiZMmIDRWL9TayHEkZPjS4i2c7wcX0sPLGXl5pVMnjAZk75+v3Q9ynqwcdVGTj7jZDpZO3VAC1uP/qN3QR/NYLYz4Iw7ICoN/Wcfo2aMotuI8+rNr1uxByV/E50CJ7eF29GXfcjosWdBXPf6Gyjshv7rHwFCToipHoF+7vXg0ROZmkjX8+pvq9VUF0NEQrNn138+F8o8jD3zNEjo1XbtakXHy7ElxPFIji/R1pxOJzk5OVitVsLC6t8cPJYZjUYiIiLo1Uv7e9mrVy/uv/9+xo4dS79+/bj//vuZMWMGmzZtIiwsjNtvv51bb72V888/H1VVqaqqIjIyMhiwq+vpp59m5cqVrF69mpNPPjk4fciQIVx00UWoqoqiKJSXl7Ny5Up+/vlnxowZE5xv3LhxIevT6XRcddVVvPjii1RUVNC5c2cAPvnkE6ZPn857771HWFhYkzEep9NJeHg4o0ePrvdeNRXcO9QJGaT7y1/+wqZNm1i6dGm95w79AATe3MaYzWbM5vr90hiNxg79ou7o7QvxeybHlxBt51g/vnyKD0VRsJgtDZ4fxFviURQFh99xTO/HYbntYC+GtCFwcCO6HV/C6X8DnwtMFvQN7VtEAjgr0AWe0yugKOhMZmho/sSewT7edHWfj0mDCY/Cd/eA6mt4W62hZC98dgOcMxO6nt68ZXQ6bZ8Uf8P7dAw71o8tIY5ncnyJtuLzaecdOp0OXWAQJo8TyrPbvzExXcDY/EChoijBtgPYbDY+/PBDevbsSWJiIg888ADffPMNM2bMICkpCYCnnnoKnU4XLHGtu3xdH330ERMmTGDYsGFNtiEqKgqr1cq8efM47bTTGozdBKSkpHDOOefw3nvv8cADD2C32/nkk0/45ZdfeO+990LfgwbodDoURWnw+6Al3w8nXJDur3/9K/PmzWPJkiV06lR7hzslJQXQMupSU1OD0wsLC+tl1wkhhBDixOT2uTHpTI3ewLMYta4u7J5jdOCD5goMjDDoUvA4tFFdAbwuMDRygh4eC84K8Pu1YNahA0ccytREtyBdToVh18L2+UfW/uZw1wwelrW8+UG6QAmz19X0fEIIIURbKc+Gz29u/+1OexMSe7dokfnz52O1WgGorq4mNTWV+fPnBwNe7777LkOHDsXv97N06VLCw8Obtd5du3YxduzYkGkXXXRRsPR88ODBLF++HIPBwOzZs7n55pt54403GDp0KGPGjOGKK65g8ODB9dZ7ww03cOedd/LPf/6Tzz77jB49ejBkyJAW7fPROmGCdKqq8te//pUvvviCxYsX061bt5Dnu3XrRkpKCgsXLgymS7rdbn755ReefvrpjmiyEEIIIY4xHr8Ho77xu6EWQ02QznucB+n8Pu1RZwBFB6ja714nGBq5Cx0eC6ofXBXaz4GOnhsL0h2ONRnsJeB1g6F+afFRU2vaV96C0XiDo7tKkE4IIUQHiemiBcw6YrstNG7cOF5//XUASktLee211zj33HNZvXo1GRkZ9OvXj4svvpjy8nJGjBjRonUfesP0tddeo7q6mpdffpklS5YEp1988cWcf/75/Prrr6xYsYLvv/+eZ555hv/973/1BoI4//zzueWWW1iyZAlvv/02N9xwQ4v3+WidMEG62267jTlz5vDVV18RGRkZ7IMuOjqa8PBwFEVhxowZzJw5k169etGrVy9mzpyJxWLhqquu6uDWCyGEEOJY4PV7MSiNnz4Z9UZMOhPVnup2bFUbqJsFp+i0gJvfp2XUGRu5yx0eqz06ymuCdDXraGoAjfOeBXtpw89ZtSoHqosgOr3Fu3BYgWzBsv3NXyawL77jq/NuIYQQvyPGsBZntHWUiIgIevbsGfx92LBhREdH8+abb/LEE08A2uAYBkPLQlO9evVix44dIdMCFZGBwUHrCgsLY8KECUyYMIGHHnqIm266iYcffrhekM5gMHDNNdfw8MMPs2rVKr744osWtas1NF5Q+zvz+uuvU1FRwdixY0lNTQ3++/jjj4Pz3H333cyYMYNbb72V4cOHc+DAARYsWEBkZGQHtlwIIYQQx4rDZdIBRBgjmL11Nq+sf6WdWtUG1EAmnU4L0qn+2hLPpjLpABxl2mMw0NdEkK7zKdBnUsPPWbX+abDlN7/dLRHYH1cVbJvX+Hx7foK1b2s/KzWnzl4J0gkhhBAtFehjzuFwHNV6rrzyShYuXMj69euPaPn+/ftTXd3wDdUbbriBX375halTpxIbG3s0zTwiJ0wmnaqqh51HURQeeeQRHnnkkbZvkBBCCCGOO16/F6Ou6SCdxWihzFXGrwd+5S8n/6WdWtbK6mbS6QJBOqc2rak+6aCBIN0Rnm5GpsCkJyG+5+HnPRKBbLjUk2D3Aug/pf48pZnw02Pazyf/oc6yUu4qhBBCHI7L5QpWMZaVlfHKK69gs9m44IILjmq9d9xxB9988w1nnXUWjzzyCGeeeSaxsbHs2rWL7777Dr1eu0FYUlLCpZdeyg033MDgwYOJjIxk7dq1PPPMM0ydOrXBdffr14/i4mIslib6zm1DJ0yQTgghhBDiaHn8HgyHCToF+qU7rtUtVVV0ePwethduYDA0nklnDAe9CZY8B6aIow/S6Y2QcdqRLdscgSBdQm9t8IiGFO2s/bm6qHafZOAIIYQQ4rC+//77YBlqZGQkffv25dNPP6036ENLhYWF8dNPP/Hiiy8ya9Ys7rvvPvx+P926dePcc8/ljjvuAMBqtTJy5EheeOEF9u7di8fjoXPnztx8883cf//9ja4/Pj7+qNp3NCRIJ4QQQgjRTM3JpDPrGwliHU/qDvqg6JlTtYtvN2zgv/iJbiyTTlEgLFoLZn13D5z1QO06jkVel1a+GhigQlW1LEBVhYiak/O6/dVVF4K/ZpRb6ZNOCCGEaNLs2bOZPXt2s+Y7EmazmXvuuYd77rmnyXmefPJJnnzyySbXtX///iafLy8vP4IWHpkTpk86IYQQQoij1ZxMOtfvoRTykIEjdnjKQVXxQePlrgDumv5dwmOa1yddR/J5tH2xxGmlvB47vHcRvD+tdp6yTK0cFsBWqC0DkkknhBBCiDYhQTohhBBCiGZqTiZdIEh3LGXU+fxqg/3zLt5ZyJYDFfUXqBtgU3QU+Ryg+g8fpPPYtUdrijYaLNQOtnCs8Tq1klpLTdacvaT+PGX7Iak/mCPBVlC7T5JJJ4QQQrSZQYMG0alTJ6KiorBarSH/Pvjgg45uXps6RusPhBBCCCGOPV6/97CZdM6aARaiTdHt0aTDcrh9/OOzjRj1Oh6a3J/YCBOgDar11tJMMuItPJE+KHShQzLpqvweQMWL2nSQTm+qDWD5vTVBPqX1d6o1+Nxa/3qNBencdqjKh9iuWkmsrUDKXYUQQoh2MH/+fMrKyrBareh0oTf7kpOTO6hV7UOCdEIIIYQQzdScctdu0d0odBRi1DedcddePluXS1aJluH25YYDXH96NwAKq1yU2z3Y3VW4vX62HawkLTqMpKiw2owxnQGVmiCb6ser0PjAEQAX/w8WzQS3rSZIdwyfavrcWlAxEKT78dHQ58uztcfYrhCRCNUlUu4qhBBCtIOMjAxiY2OJioqqF6T7vTux9lYIIYQQ4ih4/J7DlrveOuRWTkk5BW8gG62Dbc4t5/SeCZw/OJWfdxTi86scrHAEy1zdXj8v/LiLB77cyB+/u5ecyhxQA0E6PXbFD6jN65MuNgO6ngGuSlD92uiwxxpHOez8XhskwmAGU81ovI6y0PnKMrXH2AwwW2sDjyBBOiGEEEK0CQnSCSGEEEI0U3P6pAszhNE5svMxEaRze/3sKbTRLzWS8X2TKLd7+HV3EX989zde/HE3nWLD0SmwbE8xPqWCAtdeXvvtIxZvP6itQGfAq9TJpNPpQH+Y7DhzJLhsteWux5o9P8LiJ2HXD1omHcAlb4fO4/dr/dFFpoIxHIwWbVAMn5S7CiGEEKLtSJBOCCGEEKKZmlPuCmDUGY+JIN2+Yhsen0r/1Ch6JllJijTz2uK9AJzSLY6HLxhAvNWMqoJfseP2+lm6q4J5W3djRwVFhwcFVC2TztucwTDMkVoWXfaKY7Pc1VVZ+3MgSBffI3Qejx2Kd0Ncd+13k1WbFnhPPY62b6cQQgghTjgSpBNCCCGEaKbmlLsC6HV6fIGS0Q6UW6oFk7rEW1AUhdG9E3G4fVhMeh6c3J+U6DASrVrgrXOCHwAFHasjv+HfBruWSRdYmerH15x+9syR2uPBTVr22bHGVVX7c93+9erum6MU8jdD2sna7yaLtpzq10arrbsOIYQQQohWcgze3hRCCCGEODY1Z3RXAINiOCYy6fIrncRFmDAbtLLTK07pTF65g0GdakeeTYw0w0FIT/CzoRrshi2Eq+CAmnJXABXw42lOkM5krf35WCwLddlqfw5k0gFEpkB5jvZz9kqt7Z2Ga78bLbWBufAYcEuQTgghhBCtTzLphBDtyq/6+d/m/1FoL+zopgghRIs1N5POoDs2gnQFlU5SomoHejAb9Nx3Xj8mD04LTkuM1LLJTCY73RKtxFlBUVQSUECnr5NJp+I9XH90UJtJd6yqm90X6G8PYNLTMOAi7ed170J0J21kVwgNPIbHhQb6hBBCCCFaiQTphBDt6kDVARZmLWR1/uqObooQQrRYszPpdAa8qhdVVduhVQ17Yv42Fu8sIjm6idFY0YJ0XqWUrRXL0Smg1ymgogXnFL02oquq/edTmnHqaIk76ra3KVdlbSDR46ydHp0OQ6bXzFMFw2+oDeKZImrnC4+tKX3tuPdWCCGEONZdd911KIoS/BcfH8+kSZPYtGlTg8/X/afX6/nwww+btZ3KykoefPBBBgwYQHh4OPHx8YwYMYJnnnmGsrLakdv37dvHlVdeSVpaGmFhYXTq1ImpU6eya9eu4DyB7a9cuTJkGy6Xi/j4eBRFYfHixUf/4jRBgnRCiHaVWZkJwP6K/R3bEHFEih3FfLPvG/aU7enopgjRIVqSSQfgVTsmmy67xM6qzFIAosKaDiqmx+opt3yMx28HQKeAgooXBXS62nJXleYF6UwRcMsvR7kHbcht07LkALyHDABRNxjXbXSd6Zban8NjtQEkvK62a6MQQgjxOzBp0iQOHjzIwYMH+emnnzAYDEyePBmAl156Kfhc3X9nn302GRkZTJw48bDrLy0t5dRTT2XWrFncddddrFq1imXLlvHwww+zYcMG5syZA4Db7WbChAlUVlby+eefs3PnTj7++GMGDhxIRUVFyDo7d+7MrFmzQqZ98cUXWK1W2oP0SSeEaFdZlVkhj+L48l3md8zfN58ukV14ZvQzKHVLxYQ4AXh8zRvd1aDUBOn83mYF9VrbzzsKiDDrqXb5yIiPaHLeLVUL6ZWq58z0sSzOWYyiaANeBHqT8wYPcxXv7+GYd9kgrgcUbg/NpAMwhtf+XLf/PeMhmXSgZdMZm85SFEIIIU5kZrOZlJQUAFJSUrjnnnsYPXo0RUVFJCYmEh0dHTL/v/71L5YvX87SpUuJj48/7Prvv/9+srOz2blzJ+np6cHpffv2ZfLkycGKhm3btrFv3z5+/vlnMjIyAMjIyOD000+vt85rr72Wl19+mRdffJHwcO284O233+baa6/l8ccfP7IXogUkSCeEaFdZlVno0JFblYvH58HYnE7IxTFjas+p9I7tzfO/Pc+usl30ievT0U0Sol35VF+zvrcCgTyfv2NGeF2fU84pXeO4aXR3rKbGT/c8Pg/fZX7H5O6TuaLvFaiozN+zAAUVT01AzgPU1LviVVpQ4jn9M6209Fjjrq6TSXdIkC4QhAyUvQYcWu4KNYNHJLZJE4UQQojGuHwuDtgOtPt2063pmPXmw8/YCJvNxgcffEDPnj0bDMDNnz+fhx56iI8++oiTTjqJysqmzyH8fj8ff/wxV199dUiArq5AQkFiYiI6nY7PPvuMGTNmoNfrG13vsGHD6NatG3PnzuXqq68mJyeHJUuW8Oqrr0qQTgjx+1PsKKZTZCeyq7KpcFeQEJ7Q0U0SLRBlimJEygjiwuJYkbdCgnTihKKqqlbuqrSg3LUDBo+ocHjILK5myklpRIU13Va7147H76FnTE8AwvRhwTiVF6XmsYaqBqc1izVR+3cs8XnBYwdrsva7x1F/npsXhQ4oAaHlroE+91wywqsQQoj2d8B2gPt+va/dt/vkmU/SPbp7i5aZP39+sEy0urqa1NRU5s+fj04X2n3Gjh07mD59Ovfddx+XXnopfr//sOsuKiqivLycPn1Cr0eGDRvGzp07Abjgggv48MMPSU9P5+WXX+buu+/m0UcfZfjw4YwbN47p06fTvXv9fbr++ut5++23ufrqq5k1axbnnXceiYntc04jQTohRLuqclfRL64f2VXZ2D12CD/8MuLYolN0jEgZwZqCNVw74NoTvuTVr/rZWbqTXFsuMeYYRqSM6OgmiTYS6F+uJZl0HdEn3d4iG6oK/dOiDjuvo6ZPtnCD9mWs1+nRKQp6FNw1h7Y2cISWQec73o93d82orGYrxPeEIVfWn0fXQL97dctdAwE+GeFVCCFEB0i3pvPkmU92yHZbaty4cbz++uuA1n/ca6+9xrnnnsvq1auDZacVFRVceOGFjBkz5ogy1Q69Fvniiy9wu93cc889OBy1N+Nuu+02/vCHP7Bo0SJWrVrFp59+ysyZM5k3bx4TJkwIWcfVV1/Nvffey759+5g9ezYvv/xyi9t1pCRIJ4RoNz6/D5vHRkqE1i+B3Wvv4BaJIzUseRg/7P+B3KpcOkd17ujm1FPprqTKXcWKvBWM6zyO+PDD92lxpBQUnlv7HDaPdsH+wtgXSLOmtdn2RMcJZMUF+ptrSkdm0tmc2jajww8fTHTWlHuGGbS+1bx+LVcu3G/Eq9cGRvDWlLrqqZNVd7wKBuki4ZK3mr+cwVT7c1L/0HUJIYQQ7cisN7c4o62jRERE0LNnz+Dvw4YNIzo6mjfffJMnnngCv9/P9OnT0el0vP/++y26+Z+YmEhMTAw7duwImd6lSxcAIiMjKS8vD3kuMjKSKVOmMGXKFJ544gnOOeccnnjiiXpBuvj4eCZPnsyNN96I0+nk3HPPpaqqfTLoZXRXIUTr8vuhZG/t7/lbYNs8gGAQIzlCy0Ko9lS3e/NEy6iqSn51frDT1YC+cX0x6AxsLt7cQS1r2lOrnuLvi//Op7s+5ZHlj+DxedpsW4qiMPOMmcyeNJsYcwzf7PuGKncVGwo3tNk2Rcfw+LXPUXMy6fSKPmSZ9mR3+1AUCDM03t9KgNMXGqTzqT50OoUwvxFPTWlroFe9MEV//AfpdAboPgYijqBkZdz9cOVHWsDOYD5hy11LbC7eW7Gfcrv78DMLIYQQdSiKgk6nC2a4PfDAAyxbtoyvvvqKqKjDVwDUpdPpuOyyy3j//fc5cKDlffQpikLfvn2prm74mvSGG25g8eLF/OEPf2iyD7vWJpl0QojWtWUurHgFIlO1jrlz12jT+0+hyq1d0CRbJEh3vNhVtouHlj9Ej+gePH764+h12h8os95M79jebCnZwnndz+vgVoY6aDvI3oq96NBxUa+LmLt7LisOrgBgVOqoNhmsJBB4PjvjbObvnc8B2wG2l27nsdMea5V++7aWbCXZkozH5yE2LDYYUBHtKxDsbc7oroERXTsik87u9hJm1KPTHf5udDCTTl8TpPP7UACjqsNTk0HnUQBUTCjH/+iukSkw4bEjW7b3ObU/myNbP0i3/WvIOL22z7tjgMfnx+dXCTPWXpx8sf4AX23IY9meEv591cm4vH6sZgOZxdV8sDKLm87sTkq0fEcJIYQAl8tFfn4+AGVlZbzyyivYbDYuuOACPvnkE5566ilmzZpFZGRkcD7QBoXw+/2HDdzNnDmTxYsXM3LkSB577DGGDx9OREQEmzZtYsWKFQwcOBCADRs28PDDD3PNNdfQv39/TCYTv/zyC2+//Tb33HNPg+ueNGkSRUVFLQ4eHi0J0gkhWo+qwo752s9VB7V/dQSCdHFhcRh0Bil3PQ4E3rM+cX2CAbqAQQmDmLd3Hj6/r95zHWVf+T7WFqzFoDMw65xZmPQmtpZs5dUNrwJawOSsLme12fZHp4/ms12fsb10OwD/Xv9vHjz1wWAQD7RAz72/3ku4IRy/6mdyj8mclnaa9mTxHrAmkeupxKAzkBKRQqmzlMdWaEGF1IhU0qxp3D3i7jbbB9G4AnsBcOyXu1a7fUSYmndMHton3Tldz2FL8RY8vgME8qS8qBhUMKLgO85jdK3GZG3dclevG5Y8B6d7YOC01lvvUXp/ZRafrzvAsIxY9hVXc9+5fVm0s5ChXWLYkFPOA19sYU+RjTeuHsana3NYlVlKtdvHk9MGtWg7DrePPYU2BnWKbqM9ab73VuzntJ4J9Ei0dnRThBDiuPf999+TmpoKaKWmffv25dNPP2Xs2LGMGzcOVVW57rrrGlz2nnvuYebMmU2uPz4+ntWrV/P000/z7LPPkpmZiU6no1evXlx++eXMmDEDgE6dOtG1a1ceffRR9u/fj6Iowd/vuOOOBtetKAoJCe0/yKEE6YQQrcdWCGX7Ydw/IakffHx16NM15a6RpkgiDBE4DhlVz6/6KbQXBvusEx3Pp2qFbtN61b9oHBA/gI93fsy+in30iu3V3k2rx+P3cN9SbaSrdGs6Jr3Wh9RtQ27ju8zv+DbzW9bkr2nTIF1yRDI3D7qZzcWbubDnhfzf2v/jnW3vhATVlh5YSq4tl9SIVEw6E29tfouhSUMJUwww90YAZg8ci8UczTldz+GxlVqALsIYwcHqg9w48MY2a7/QlDhKiDJHBbPhAGxuG4+ueBRo/sARVU4vxdV2esW2WVMb5HB7sZibd4oXyKQz680AdInqwktnvcTft15G4DaKV1UxoA0mcdyXu7YWs7V1M+kC63JWtN46W8GGnHIAXF4/To+Pe+duQlEUbhnTg3kb8/hmk3Yz7s1f97F2fykGvUJBpbNF21i0o5DnF+4C4NM/jQrJ2muOak81+8r3MSixZYHBhhTbXHyyNpcyu4fbx3f83zUhhDiezZ49m9mzZzf6/KJFixp9zu/3U1lZ2aztREdHM3PmzCYDegkJCbz00kuHXdehXfzUFRMT0+TzrUX6pBNCtJ6y/dpjyiCI6Qz6Oh1tVx6k0lmBgoLVaMVitNQrd11XsI6/L/47Fa5j6yLlRObza0G6QP9adfWI6UGYPowtxVvqPffSupeYv29+m7evrh0ltZ3GpkakBn9OsiRx7YBr+UP/P7CpeJM2qnAbOjvjbO4YdgfdortxeZ/L+a3gN3aX7QZbEXx4JSuzfmJQwiBeHPcid424C7vHzqqDq8BWm+JfVpVLuaucbzK/AbSsxbuG38XUHlMZmDCwTdt/ovP4Pdy95G6+3PMlDq8Dv+rns12fceOC2uBoIKDVFB16Ciqd/O/XPW3Z3AZVu3xYmhnocPqcGHXGetmwJkUh0JueD+2urh7wIal0AJijWnd0V1fNhcgx1M+dqqrkVzi5ZlQGT04bxFvXDqd3ciRXndKFtJhwpo/swqnd4zi7XzIr9pZgNui5fHhnyuzuFl3EBAJ0AAcrnLz0425+2VXEkl1FzVr+f5v/xxOrnghmhR6Nzbna+ce67LJ2uRCrdnnx+9t+O0IIIY4fkkknhGg9ZZlgCANrTWmfwQy+moKpD6+g6qQLiDBGoNfpsRgs9cpdD1YfxKf62Fexj5OTTm7nxouGBDLpGipnNegMdI3uSq4tt95zu8t24/V7mdx9cpu3MWBd4brgz3WDdAFnpJ9Bn9g+7dqf2+npp/Plni/5eOfHPBAzFCrzKCx0MKTvRYAWQIwJiyG/Oh8IDy5X5SjDZ46kwF7A2V3OZnq/6ViMFvrH92+3tp+IfH4fS3KXYPPY+GzXZ3y26zOm9JjC13u/pndsb/rG9eWUlFPoGtX1sOty1aSclTlcbdvoQ2SVVLO/pJpYi+nwM6Nl0gVKXesyKbUjuXpR0aOdNAb6qTvhmawhgfWjFiiddTUva6C17S+u5ov1B+iWEMGUk9LQ6RSKbW7sbh9d4yMAiAwz8uylJwWXiQwz8s/z+6OqKkO6xNA13kJOqQOvT6Xa7cPajGxOh1v7GzO4UzSbciv4YWs+P24v4MftWmn56N4ND/Chqipunx+zQU+psxSA3KrcFmd1Vzg8IaMgb8wtx6BXKLG5ySl10CXe0qL1tYTH5+eK/67kutO6cvGwTiHP5VTlcN+v9/Hq+FeJNnd8CbAQQnSUpvqD++677zjzzDPbsTXtQ4J0QojWU7YfYruCriZJt04mnQ+VbWU7iA7XTjYbyqQrcZQAkFmRKUG6Y0QwSNdAJh1AjDmmwczHKncVRY7mZUEcqQPlDgornZzcRaslzK7MRq/o8am+Bjv2jzZHt/vFjk7RMa3XNF5e/zLzbBWMxU+xo4iE8Nr+LWLNsZS5ysBrBJ0B1WSlyl1JRbVWRjYiZQQWY9tdKIpa32Z+y/vb3w+ZNm/vPC7pfQmX9r60WetYsquIfqlROGruT3jbcGThhvxlznoAzuxVP/DWEKfPGRw0oi4zSjAgF+iTzgB4JZFOY46Ekt2tt75guWv7B+nK7W4emrcVnQI/7ygkPTacEV3j2F2otanrYQJViqIwpiaYVuX0BtfZnCBdsU0LYl86vDObcivYXRCanej3qw0OgPL+yiw+WZvLV7edHvz8ZlVmtShIl1Nq5y9z1vHcpSfRKzkSgN0FNsb0TmTJriLWZZe1aZCuqErb980HKuoF6TYWbcTj97CxaCM9rCN4ddEeHji/HxaTXLoJIU4s69atQ6druAA0PT29nVvTPqTcVQjRfHkb4P1LGi/HKdkLcd1qf68TpNuoeNlYtZ/L+1wOaEG6QNlhoKSk2FEMaJ3/i2PD4YJ0seZYypxlIdM8fg9On5Nie3GbteuL9bn86b3feOirrWSVaMHevOo8zuyk3U0bmjy0zbbdUqeknALAB4WreNngwO11hATpYsJi+K3gNz7J/hEiU7BHp+APZKBCs7K2jmWNlYy1RylZS63I00YBvmv4Xdx60q3B6ed3O79Zy/v9Ks/+sJMbZq/B7qwJcKkd04tbRDP7pHN4HY1m0vnQ3ieP6scAGFUFX+s28/hltrZyuWvNutq5T7rfssq4d+5m/H6V5y8bEtKn3IKtBfRIjCAx8vDl3QExFi0rrdzevOB0UU2QLjU6jBiLkV0FVQ0+X5ffr/LJWi2Du6DKSaVbC2xmV2WHzLe7oIoZH63nw9XZ9dYBsLfIhl+F5XtL8PtVluwqIrvUTr/UKAakRbMuu6zB5VpLfs3rHBlW/1iNM2sj/B60HeTHbQVszq0I9g/Y3pweH06PHPlCiI7Rs2fPRv+FhzfvhuTxRm7HCCGab/FTUF0ExbsgfVjoc64qKNkD/afWTjPUntgXKyp6VWVEyggAIgwRwcy5j3d+zJ7yPcGBJTIrM9t2P0Sz+fw+dOhQlIbTZ6LN0ZS7ykOmVbu1oFmVpwqn19mq5aXVLi8frs7mqw15nD84lUU7CvluSz7Xnp5GqbOUAfED+PNJf2617bUGo97I31LH8XHhf9ms84OqkBheW8IVa46l0l3J3IoDXBIzikqjEWy1F7jHc6mT1+/loWUPEWmKZGTqSPrF9aPQUcj8vfPxql4eOvWhRj9b7em/m/7LjtIdHLAd4PaTbw9+T1V7qnH5XE1nMn55q1bmP/l5Kp2179uOg9pNCE8HjO4KEN7MPulcXhdmQ/0gjEkBFe099Cq1fdJ5pdxVY4ps3dFdO6BPuqW7i3n6e60vz3+c04e4CBMx4UbK7B5KbC5+yyrj9vG9WnSMxtSUWX+x/gCxESbSY5q+gCqqcqEoEB9hItFqrhfcyy2zkxwV+jckq7S2q4wDZY7gDb48W17IfGv2l7G3qBqHx8eVp3Spt+3cMq0Pu9WZpQzLiOXZH3YC0CPRitPjY/by/VQ6PUSFaYFHh9vHZ7/lcNmIzpgN9Y+vxrL+GlNYE6QLDJShqipVLi9RYUY8fu11yKrMZc+eHoA2iMdpPVp3lMHsEjvvrtjPDWd0I62B90pVVe78dCPZJXYemTKAYRntPAqOECLI7/d3dBPEYbTWDWgJ0gkhmmf3QqjSyu8o218/SHdwE6h+SK+TwVQnk65c8RONAZ2iJfDGmLXsIVVVyazIxKgzUuIooXNkZ3Kqcqh0VxJlarwPAtE+/Kq/wf7oAmLDYrF5bHh8nuCIl1We2ovMIkcRnSM7t1p7Plmbw1cb8kiLCePGM7oRYdIzZ/MCVlVtx+dXSbceg2nv9lJO++0jBqkR3Brhx+2pJt5ce6ETExaj/aD6qDKFUxlmgZoSSQXlmAhitYSqqlpgR/Xy+e7P2VuxF4ANRRvqzbuxaCNDkoa0bwPrUFWVH7J+4Kfsn4gPi2daz2mcknpK8Pnzup93+JUUbA3+WFYnwJBfoWVD+lVviy/eW4PH17yTeYfX0Ui5q4qKglf14lNry10ln6aGORI8DvB5Qd8Kp9OB4Fw79Unn9Pj439J9nNItjn+e1y/4+Yy1mCivdrOpZgCFU7rGtWi9ESbt78XqzFJWZ5Yy6/oRJFgbz8QrtrmIsZgw6HVEhdcfNTmn1MGwjNBphXVGj91fUkGluxKz3ozNY6PE5mJTbgXj+iYFy0nzK5zszK9idWYJ14zqGlw2t8yBQa+QXWoP7i9AlzgLCVYTby/bz+KdRUw5KY3vtxzk193FbMqtoHdyJCO7x4e06Yet+bzy8x7m3DySyLDa/fD6/Nhc3mDwsq6DFdp+uDw+fH6Ve+duYkd+FW/+YThuv5tKh5fPN20izX0qfVIiWbG3hOkjM0L60Kt2eal0ekiNPrJskpnfbudAuYNeyVYuH1E/kJlZXE12iRYUfeOXvbxx9TD07fxdJsSJzmQyodPpyMvLIzExEZPJdNydGx4Jv9+P2+3G6XQ2Wu56LFFVlaKiIhRFwWis//esJSRIJ4Ro2t5FWkBu9ZvQfSxU5EBpA5luBVsgIhEi63TYb6gTpEMlRqn9gu0R04PP93xOsaOYzIpMRncazbrCdZzd5WxyqnK4ecHNPHH6Ey3uBFq0Lq/qbbTUFbRgK0CFuyJYwmmrk11S4igh3ZrO57s/Z0LGhKPKCnN5ffywNZ9JA1O49rSuGPU6+me4KNw+j8JCFb1OITk85YjX32a2fQlGC5GXvsPoNc+xdP8ConS1x0asORb8flD9lOgVqnQ6LeAN7TrIxdHaUboDl8/FF7u/YGfpTvxo+3BV36s4v/v5+FQfqw6uIiE8gX5x/Xhw2YN8vvtzTko8qcNONjcWbWTWllmM7zKemwfd3PJ21Olvzu31U1pdW6ZcZHMDCip+yuxu4psIVLSWuqNEVjiaV27o9DU+cEQwkw4/BrRsaMmkq2HW+jDDVQkrXoE+50OnYfXnK80M7QaiMcEgXRX4fRC4OVKeA8ZwiGi9DCqnx8c1b63C6fHz4OQuIQHkGIuJcoeHTbkVdIm3EG1p2YVG3WMo3KjnuR920jclkkuGd26wj7rCSheJNcfGlad0YWS3ODJLqvlucz7JUWbmb8rj3EEpIZlrRTYXep1C5zgL24v3A5ARlUG5s5ynvtvBjvwqhnaJpcjmJN5qosTm5q5PNwJw4cnpwSBabpmdM3sm8OueYr7bchC9TuHRKQMwGXSYDCZO7hzDvA15vLkktAuO/1uwiz+N7c5ZfZOD037L0kpj//drJndM6A2Az6/yxDfb2XKggsemDqR/WuiNx4JKLYhoc/lYua+EHfnaZ2BtVilYXVS7vGCo5I3LhqHTKcz4aAP/XbKXf5zTN7iOv320gYJKJ1//9YzgNFVVKbK5SIps+u9HUZWLA+VaNuH7K7OJMBuYPDgtZJ4V+0qIMOt5aPIA7pm7ic0HKhjSOabJ9QohWpdOp6Nbt24cPHiQvLy8wy/wO6GqKg6Hg/Dw8OMmKKkoCp06dUKvb141Q2MkSCfEsc7vh3XvQHkWDLseYjMOv0xrKc+BHx+BpP5gK4Cx98KOb7RRXA9VlQ/RnaDul6i+9qK0XPET4699LhB8W1uwlgp3BenWdCZ1ncTI1JF8vudzALYUb/ldBenW5K+he3R34sPjyanMIcGS0ODF8bHEr/obHIQhIBCkK3OW1QbpPLVBuiJHEfnV+Xy661NizDGcnXH2Ebcls7iaapePcwakBC/2luZ/T+/4TpwaeRvfbd+F13d0d67aROYSyDgdrIlM7zKRsbuXovjdgDZioq4sK9gB/ZyqXeRWOKEmXf5Y/nz4/D7cfjfhhnAyKzJ5ePnDgPaZuLj3xSRZkugR0yOY3WjAwOhOo4PLT+s1jafXPM2usl30ievTIfvwbea3dI/ufmQBOoAKrV8st8/Pxa8v5/SetYGU/AoniqoHfFQ4PO0SpLPX6TeqT0pks5Zxep3B47guM6CqCh6/B6+qolfBgIqz3pwts6ugip6J1nbPLGx1Ju345df/g/1LYc9PcMsvofPsXaT9DZ32X0g8zGe8bpmrqwrCY6C6BD6+GlIHw5R/t1rTc8scOD1+/nJWT3okWkOei7EY2V9czd4iG6cfYWnl0xcPJjHSzIJt+Xy0OoeteZV0TYhgbJ+kevPmlNqDgzP0SYmkT0okn6/TjqsZZ/fmvs83szWvkqFdarOPi6pcJFjNpMeEs6b0S5IT4xmaNJT3t3yOuybQtfVgBUVVLoZnxPLD1oLgslkldgamazeL8iucnN0vmUqnl9+yyuibEslJdQJQnWLDg8G3uhweHy8s3M2o7gmE12QO+moC5It3FjJtaDpxESZ+yyrjt6wy4iJMfL0pr16QrrBKO5qqXV4WbitgQFoUigLrs8sZ0NuN0+sjKkyHJcyL1WTlylO68N8le5k+0kFaTDh7i2zB/gNLbK7gd8w3mw/yn1/2Mfv6EY1+7/j8Kp+szQHggpNS+XqjtkwwSFfzN2hnfhUD0qLplxpJclQYS3YVSZBOHDtUFQq3Q1K/0OuP3yGTyUSXLl3wer34fCdGTrvH42HJkiWMHj36qDPT2ovRaDzqAB1IkE6IY9/Ob+G32WC0QP5mGP0P6HJq+2x7/6/aY+E2CIuC1JOgaAdkLdeCh3VTj22FWpCuLkPdIJ1KRp2+FKLN0SSGJ7IwayEAAxIGMK7LOACu7HslH+74MNgZ9O/B3vK9PLf2OfrF9eOu4Xdx15K7OLvL2dw8+OZWWb9f9fPMmmeY3H0yAxMGtso6oaZPOqXxFPPYMO3CqW6/dIFMuriwOIrsReSYtAuBA7YDR9WWzKJqdDqFLnHaBZ3H52FdwTou638hvSO68OPWCqqcDZcVdZjKg1omzbDrAbCYouilGsBbm3HVr07werOrCBQ91GQr9Yju0a7NbS6f38dza59jc/FmLux5IesK1tHJ2onrBlxHz9iezQouDkkaQow5hjX5a5oM0m0r2cbGoo2kW9NDgnxHo9RZSnZlNhuLNvK3k/925Hdoy7UO6T0+7f1atqcYi0mP3e2jtNqNzqJHVXy4m1l6erTsbq3/u7vO6cOZPZsXYHF4HQ1mbJoCI7v6vdrorqgYVOWoMukq7B7u/GQjE/sn89fxx/kNmIReWvb4/qW105yV2t/KgMJt2mNz+q5z27S/8x57bZBu00et2uSAQPbU6Q18RmItRhYWau0d1SO+3vPNEQhGTR+ZwfSRGVzz1qpg/291+f0qWaV2xvRJDJk+omscJTY3vWtGXC21uUOeL6pykRhpJjrcSEHRVq7scgVRpij2l5WRih8FHVsOaEG6LvERnNkrga15lZRWu8ksrmZgejROjw+X10+0xcgp3eL4LauM1OjQ4yDpkL7wRvdOoFuCleV7i9ldYGPpnmIm9Ney6YptLsb3S2Lt/rLgCMuDOkUzMD2K6HATNmf9vilLavbL5vZS7nBzSrd4IsMMfLY2l6T0anx+lTCjjhJnCVaTlbP7J/HGL3vZmldJYqSZR+ZtJcZipNzuYWdBFadZzZTYXHy3OR+AvUXVDQbpVFXlme93sHxvCX1TIrnw5HS+3ngw+JyiKPDFnyAymczi85k4IAVFUTi1exwr95U29JYL0TGKd8GXf4Yz/x7aJ3Ybs7u9hBv1rZ7dlVOVw4bCDYxKGxUywFhAoIzyeAlYVTk9hBv1GPRHVqqq1+vxer2EhYUdN/vcWo794l4hTnQ5qyBlEFz+PkSlw/f3wcGNbb9dr1vLmgtIHqSV3yT20S4iKg4ZLc1WANbQE21q+iibq3eyV/ER4ws9Se0X348DtgPEhcWFdKR/Yc8LGZI4hEJ7YavuUkf6NvNbIo2RbC/dzr9W/Qug3oALRyO3Kpf1het5fOXjrbZOqCl3baJPuihTFGH6MPKr84PTqjxVhBvCSbYkszp/NR/u+DDYxpZSVW3EvRd/3MXWvEo6x4ZjMmh/ujYVb8LpczIiZUSwY++6HfcfE2oy5EgZpD3WHBPUGb01NSyBj901ZcCKjmd6Xc1Mj5VHRz7IbSff1o6NbR63z819S+9jfeF6esf25tNdn7K3Yi/X9L+GQYmDmp39p1N0DEkawrrCdY3Os7loM4+ueJTvMr/jzU1v8n3m97y+8XU8viN/n/eW7+XWH2/llfWv0C+uH6PSRh3xuqjUyk586IKZJ3a3jzCjDr8KJr0RFR8eb/uUiDrc2t315ChzszPV7F47FkP9gTFMaKFin9+nlbuqYFBVfEcTpHNWkxfxJPN2Lg8pzT0umSJg/EOh08oP+bvoKNcem/N5dVZCRE1QLPD9kLtGe9S37o2HA2UOYizGBstPAzc5YixG+qe2Tr+wnWItwcBgXQcrnbi9fjLiI0Kmd46zcPPo7pgMOqxmA6V27fXYcqCCf36xmbxyB4mRZswmDx6/k7SINMINFkDl8lOSOatvEsv2lODxqSRazdw9qS/v3HAK3RMjyCzWBjaqrCkHjw7XgnQAyYcE6ZLrjGrbNSGCuyb24ZJhnXj+siGkx4STWWzj759sYNayTIptLlKjwxhRpw+/zbkVjOuThNWs10pX6/D5VcrtbmIsRqpdXsrsHmLCjQztEoPD42NDbjGKaiLMqKfUqQXGzAY9YUYddreXg+VOyu0e7pnUl3irie0HtQzCe+ZuIrtmYI3M4oaDw3uLqlm+t4Tbx/di5rRBJEWG8Y9ztBslj8zbqmXnFe3Au2cx+qqDdE/Q3p9uCREUVDqD3zNCdLjADZBNnwT/BreVzbkVPPntdm6YvYbL/7OSH7e3/jXKB9s/4P3t7/Pw8oepcLXhSN+2QijZ23brR7sJc9M7a7l+9pp6338AZdXuetOyS+zy/VKjXTPpNm3a1OJl+vfvj8EgCX/iBKWqWl9vvc/VTt4nvwjz/grLXoKL32qb1G5Vha2fw75ftBLWLqMge0VtqU6C1tcKRTshtqv2s88L9hKwJoeuq6bc9RO91u+KyRv6hTwoYRBLcpcwOGFwvbtRSZYkdpTuaNVd60gVrip6x/bFqNez8uBKQMtQOVr51fk8/9vzlDlrS3IK7YUkWeqXFR0Jn9/XZJ90iqKQbk3nux1b2ZvZhxln96bKXUWkMZKE8AS2l24PznskmXR5Fc7giHsA4+pkXKzOX026NZ1OkZ0or7mIq2ogW6FDlWVpfVeF15RqBTKWvK7aeeqWEys6MqxpoOohuhu0U7mrzW1jUc4iluctp3NkZ24efDNGXehdS5fPxc/ZP7MibwVZlVk8dtpj9Inrw/6K/RTaCzkp8aQWb3do0lAW5yym2FFMtCG0v8JF2YuYs2MOvWN7c9fwu7jtp9uYtXUWOnREm6K5qt9V9daXX53Pqxte5a8n/7XRY2DB/gWoqFR5qjin6zlHdyfcoR13fp8Xk96DGy3AEWbU4/T4MRuM+PDhbqfSlGqXtp0IU/PPmxxeR4Oj15rwoxIod/XXjO56dH3SVbq1QEKl6UfsnukNBomOKzGHDIpjK4CPnoQz7oBOw8FZc5HlakYmnbNc+xtanqMF6apLtCxcvQk8R1tkHOpAub3RUVcDgxJMH9ml1UqSO8WG8/2WfCJMu/nLWbUZlFk1AbOu8Y2PnhwXYQpezM3bmBcc4GFEtzhcFOLzq8SHx1Pm0AJT8VaVhIgIftxxAB3GYCktaKO27q7JEqyoE6RLsJr54+juDD1k5NLAqLKn90zg3nP7hjyXHhsezD7bXaCtM8FqJiM+gh+315bX9k+L4kC5g2p36N+mMrsbvwoZ8RY251bgV7V97Z5gJSrcwJa8UizmOIw6OyWOkuByEWYD1S5fMOjZKTacEV3j+GVXEdeOygj2c5cYaeb9ldl0iYuolxG5LruMcKOesX0SMdZkuMRFmGqeK+fjNTncrtPjdrvp4suia8I52vtUE6zLKq2mb0obDOxlLwW/F6z1v7tVVeWbzQcpq3YzeXAasRHHUMa86Dhu7TuEilz45k4Y98/amx2HWL63GKvZwOBOMS3eTInNxQNfbqZznCU4IM1vWWXBTNqjUe4s5+2tb6NDx/rC9VzY80J+2P8Dc3fPZVzncWREZTRZ0dLyDeZo3SgAXDEHrzWVvHJnyHdla9hfUo3d7cPu9vHr7mImDdT6jPb7VeaszubjNTm8cPlJ9EyKDE7/x2cbuXhoJy4b0XoDzh2v2vXsaMiQISiK0uyhaXU6Hbt27aJ79+5t3DIhmiezuBqnx0e/Ztxddrh9ODy+4InPEanM005aAlk4Oh2MuBHm3wEHftMuAlrC69YCfAOnQXwjZXQHN8Cyl7WfT79d2372CoirOQ7NkdqFSe5a6K2duGEv1jq6jzjkxKqm3FVBy8jo7fGFjIQ3KGEQBsXQ4OiOSZYkluQuqS29aIDD6yC7MrvN+7Py+DwNZpOpqsqa/DUMTR7aZL9tAIt35uH1WJj/h4c4M/1M1hSsYU/ZnqNqV05VDl/s/oKsyqyQ6QdsB1ovSKc2HqTbU1jF5gMVeFzRrM/bS46zkOkjM9iYl018eHxIqr4OrWTH6XW2aDCE9JhwXps+FJvLy4/bChjfTzsh8vl9/Jb/W7CPu8DF/jEXpCvPhpiM2oB6YDAVX50gXc0gEQ94ItD3vro2a8ZX229da9lXsY9Pdn7C34b+LZjx9u/1/2bpAa1kz6QzkV2ZTYw5pl4Q7L+b/svKvJV4VS8D4gcEj7uu0V3pGt31iNrTN0678H11w6uMTRvLz86fiToQxc6KnSzOWczI1JFM7zedaHM0955yLxHGCNYVrOPz3Z9zdsbZIZ9zVVV5fu3zZFVlsbV4K0ld6h8DNreNZXnL6BfXD5vHxvDkFn6HHspZDmhZMalWHxed3guDXsecVVmU2z2EGYzY8OPytE+5q8Ojff4D/WQ1pdJdidVoxeFxNJhJZ1bU4MARPsCMgkH14zmKbAVvTZcHXl0pDrf3+A/SBUZmBi3YvuMb7WJx21fa32d7sfZcc8pdnRWQMlj72euCkpq/D51GaMG/VpRd6qBPsrXB50b1iOeZSwY36zynuQLnQT9sLWDy4DSiwo14fX4yS6qJsRib7KIgNsIYzKQrrrk4HpgexfmDUpm7dS8qEGWKo6xaC1DrDR7m7n+SAksuqfZ/hAQj+6dG8eP2Amw1I6JCbVDygpNCB0yA2iDdoWWwoAXHVh/SPW+C1czgTtE8OW0Q932+GYC06HAiTIZgAD2g2KbtS9f4CDbmaIHHGIsRnU7hlK7xZO/1EBNmISbMFBqkMxmwu70cKHcQbtITHW7k3IEpfL8ln4teWw7AP87pQ36Fk/dWZrFgW369IN2GnHIGdYoOBui017n2PdCmK7i8fuIUG6k1r0PnWAs6BfYXH32QrsLh4er/rWLmRYMY1KnmBs2yF7VS78kvYHN58fnU4MAlG3Mr+M8v+1AU2HyggmcuaflNIfE75NaC80x4DBbN1LoIGnpNvdnW7i/lyW93EGMx8t6NI1u8mZ+2F6LXKTx18WDsLi+zl+8PBvxbyuPz8GvOarpbh9A1IYL/bPoPu8p2YffYiTHHcF6383B4Hfyw/wd+2P8DEzImcNOgm45oWw3a9hUoNQOU7ZjPAssUXl+8l5euGEL3xIb/LhyJzQcqMOgVuiVEsCqzhEkDU/D7VR6bvy3Y12d2qT0YpCuyubC7fWSWVLdaG45nLTo72rdvH926dTuqu86rVq0iMTHxsPOpqsrAga3Xr5IQreHD1dkUV7l4/vIhwWkOt49fdhUSGWYkOtxI5zgLeeUOHv5qKy6vjxln92Zc3yMMmBRs0R6TB9ROSzsZLPFayWtLgnT2UvjlacheqY0Ud9pfGp5v65daEG7cA1r2XHm21iF2ap0TogHTtGBfj3GQcRq5hVtIQ0V36N3PmmCDRVW40GdmgGrQLkRq7nLFhsXy8lkvExcWx6ESLYk4fU5sq14jMmUIdD095PlCeyH/Wvkv8u35XNHnCi7qdVHzX4tmKnYU88H2D1idv5or+lzBpC6TcKkuXlj/An8Y8AeK7EX832//x8W9LuayPpcFl/P7VRQldJS7arcbgz8SiyGC4SnDybfnsyJvRWgQcsOH2nsz4MLDts3n93HXL3cBMDJlJOO6jMNisPD4ysfJs+VxctLJrfIaNJVJ99bSTLYcqKTKqEMXXorqVLlh9hoKw3cwpe8puGoCUX8f9nf0ip5n1z6LzWNr8YilnWv6oKt70bijdAdVnipGpIwAwKDXEW7SB0uYjhnl2bUBbqgdTKVOuSteLUtmkGqA2D7BoB2+1g84qqrK+sL15Nny6BHTA1VVWXZgGQD/HPlPUiJSWHZgGZ/s/ITRnUazPG85qw6u4pyu57D0wFJuG3IbGVEZDQ40cCQCo/1uK9nG1uKtVHgqeH3z6yiKwqSuk7h2wLXBO8iBvhZTI1L5MftH/rn0nwyIH0C/+H70ie2D3Wsnq0oLWBfYGw5q/JL7C6qqcsewO45qpOFgZpOjHMKi8FUVEW/yBIPIX9R0fB9mMGFrxz7pmptJ5/K5+OtPf+WWwbfgx994uatKMJPOAhj9fjzqkWcF+ur0S1rhtJN4mNEnj3l1z4ctcdrNM4CwaO3Fq9QyrYLZHnX5fdqxb4rQymFdVbUZRD53MEuTqFQo23/ETSytdjNn5X5Sal76KqeHrJJqpjQQlAItQNOaATqACf2T8asqC7cV8OjXWym2uYm3muidHEnGYbI34iwm8iuduLw+9hZXc8uY7sHBDTxUAAp61Yrqr+nDVuegwlOMweDn5tGhN/n7p0WhqloGzObccoBgVwkNCTdp2WbDDsmwA0ipCVxZzQZsNaVcSVFmFEUJDkwBoNMpRNTMU/fvfaA/ukAfqwCxNcHKCf2T+XSfl3CDmWRLPNtKtwWXtZj02Fxeql0+OsVoIx52T7RywxldeXvpfkDLojujZwIHyh0N9gXY0PsfVydQ6nI6we/F5fXRJdIdzKg0GXSkx4Y3uM6WyqkpyX17WSYvBM6pC3cEj6k/vLUKs0HPh3/U+mBen11GjMXIa9OHUm4/xv7OH0cOlDvYmFPO6T0SGh25efmeYnLLHMdENlNZtZtZy/eTGGnmmlMbGDjPbdOuNbqPgd9maVU9DVi5r+Hph+P3q7z+y16+35LPWX2TsJoNWM0GTu0ez6+7i2tK1puXjKGqKv/b+C4/5nzL/pJq4mx/5t/T+7CucB23n3w7AxMGYjFYMOqNXND9Alw+Fx6fh0XZi7io+1TizdG1N3qPhKrC5k9hy1wYcpV2XZizmrLOkwB4b2UWD18w4DArOUSgbDauO0SGZhWu2V9Kv9QohmfE8v7KLPx+lR+3F7A+u4wHJ/fn3z/v5mBFbZZ4Von2nZBd83iia1GQrlevXhw8eJCkJO0k4vLLL+fll18mObl5qZ5jxoyhZ8+exMTENGv+0aNHEx5+7I5sJ048RVWu4Ehas5Zlsjm3gjF9Evnfr7W3U8NNeswGHRnxFlTg6015Rx6ky9+klZTW7YhaUbQBGipbOAT3xo+0gScAqg42Pl9FLqQPg6Sa0o7YDLjqkM6r+1+oZdL9+CjOy2Zz5/r/Y4rexfRDy10NZlRUnIpKGDUXM7aCkFT0+PCG09KjTNo+V+38lkiPs16QLsoYQ0lpEmnRiSzM+omLel2EqqrkVuWiqGEUVxqbPQJZfnU+8eHxeHweLEYLTq+TmatmsrNsJ7FhsaRHpLP0wFImdZlErjeXtQVrybXlckrKKQAsyFrApb0vDWYK/+n935g2tBMmg4KCwri+SaiKBwUD+4qr6ZlkJTE8EZfPRZWniii3UxsBsGCr1qBmBOnWFGh9FaVb05nacyo9YrTMyJSIlJD+4Y6WX/U3mEV4oNzBlgOVXDMqg53lZWyoXoPfYcPjseDVlZJbZOHmoedS6a5kaPJQ9pXvA58He9EO6HLGUbdrVf4q4sPi6R5dexEWFWag6ljqk87v14J03cfWTgtkydUt/fbUueAxhtdm2fnq99dxtNKs2oVZblUu3aK7sbtsNyoqdw2/i8GJWhbP5O6TWZi1kDt/uTO43Ftb3qJ3bG/OTD+z1TtKPrvL2fyY/WPwdx06Xhn/SoOdJgOEGcJ46NSH+HDHh6wvXM+Kgysw6Uz0jO1JakQqcWFx5Nka/n7cUbqDfvH9ji5AB/Dh5aAzaoGZqE74CwuJM9R+9gKZbOFGEyo+3N72GjjCh6KA2dB0aUyZswynz0muTQsmNlzuqqKi4FN9wXLXMFXFqR75vnj9tQE+m7t1Szg7zIWvaYO9LH1Bu2AB7eLH49D6b4WGg3Rbv4BtX2r9zQbKYgN/QwNBOpMVzFHgPfKgyOrMEr7fWkBvk8JUYFteJaoKg9KP8hhogQSrmekjMzi7XzJzVmXz845CSmxu9ig2TjvM4BRxESa2Hawit8yB36/SM6k208OpVqD3R1Ht8uPz1twA0WnfnxnxFs4dFJoUkBodRnS4kedqulDQKQT7OG3MnRMbztQPlIadOyiFT9dqx1FynaDz0xcPDq47wqzH51dxef2EGbXvhmKbC6NeCd6EAjCbtEBev9RI+qVZ6BQbxtSe5/Hk6ifZWLSRIUlDiDAb2FVQRZXTGzLi7dST0kOCdDqdQnJUGOtzykPaXe3yUunwkhIden0VZqx9Hcoqtc+j2+snPSz0OL3o9Gq6Rh9dENfvV9lbpGUh7Sm04fOr6N2V2vmhomNPQQUen4rH5w3e9Pwtq4yTO8cQGWYksonAqmja20szWZ1Zyk/bC3n2ksHodnwNcd1qK3aAJ7/Tupo5tXt8i0sgs0vs2D3eVimHPlDu4E/v/Rb8veEgXXXtSNuWeHA0PLDJnkIbRr1Cud2D3e3FcsiNrOwSO8nRZsyG0PPdFftK+H5LPreM6c45A1KC0welR3PVyC4t2h9FUfh2637yPNV4/SoqLj7a+QmdrJ0YlTYqpKQ10ZLIn0/6M3aPnS3FW3h6wZ+4m3gSpr6u9Q9+JHZ+BytehZOuhOE3wrp3IGdVsDuBU7vHN1m91KDctVoCSMpAGHs/2+2RVDm9pMeGszGngjsm9CIqzIjHp1JS7a4ZRTuKU7rFkRodRn6dIF2gL80D5Q68Pv8RDzbxe9GiIN2hZarffvstTz75ZLOXX7RoUUs2x7ffftui+cWJQVVVyu2eDumPotjmosrpxe728vk6rX+t/EonfVIi+cu4nvhUled+2InD4+P+8/qxYFs+X23II6/cgc+vhpyMNUv+5tryl7qi0qEsE4r3aCWwcc0oCS/cCp1H1oxG92vj8zkrtIuCpuh0eM74G8YPLqMyayn4vWw0wHRT6P55dHrW6bz4LPGEDbgBlv1XCxAm9z9scyNNkaCqVLkratPZP5oOPc6CETdS6fSTqk5m3Z6leKPW4PF5mLNjDt/s0+5Q6bxJXNj3dE7rNIzN2ZCQuJe8MpUzuvUgOSKeJblLSLIksaFoA78V/EaYPgyXz8XI1JE4vA52lu0kIyqD24bcxoGqA7y0/iU+2/0ZC5wLiDJHUWAvCC5X5a6i2lON1WSltNrNwQonX6zPJa9c++Nzavd4dDo/+Az8llVKzySrFoBwVVEy7y9EdTmzNkDXzH4nvsv8jn5x/XjktEdCpqdFpHGwuokgbAt5VS86nwdsRcGBQVRV5cWFu0iKNDPlpDS8aiw3LfiAS8fq6RGTzj9+MZBXHE5FVTiZu87E3qcmCOAow77ilaMO0jm8DlbkreCM9DNCTiaiwoxNl7s6K7W7rtaU0JGJ20p5lnaRnti7dlpgxGNvnQufuj+bLOCu+VvbBkG6cEM4ieGJ5FTl8MDSB9hboXUc3Dmy9o65UW/kj4P/yMc7P+a0tNMYlTaKjYUbGZ4yvNUDdAA3DbqJIkcRGwo3ADC289hGA3QBqdZU/j7875Q4SihyFPHw8ofZVrKNUamjsJqsjfZnWemuDBmk5oioau2AAIoOUk/C5/+NOGPt+xVuNNQ8GlF0/kYz6V76cTcWk75exs+Rcni8hBn1h+1LLDBoTYlTyy5oaLAPs+pHpSaTDh8GVSHM78OtHnmGp7fO62BzuZqY8zgSyHQPZDjoTVo2R92Mjpq++EKUZ0HFAS2YH/g8BYJ0XpdWSh0eowXuj6JPurKarKPt5dpnYvOBCuKtJpKj6o/62daSo8K4Y0JvJvRP5r7PN1NU5aJrfNMl/bERJkqqXfy4TcuOTa0TXHL4ytGrkVQ5PXi9WuBGVWo/V8X2YlKtqcHfFUWha4IlWF7akrFLcqpy0Cv64I2OAWnRvH/TSIptLj5dm4tep4Qcd4ERbqG2OwabSzs+VVVlxd4SuidagyPYqviZ8csfuaKvVhmQkWDCarQwJGkIUaYo9pTvYUjSECwmPTmlDmIjTEyvEyTQ6RSqDetw6feTZbMQFT6QxEgzZdVu3F5/MGAYyFw5tIS37nd7RUUFfsDu05NoCA0Qz9v7KaPSRtEr9shHZ35uwU5+3V0c/L3c7ia+XCvvdnq8fLd6a81rovL5zoVE+QeSVWLnpjPbsPsjR5l27nukAZCWbMrt4+M12cRZzY1mtLYFp8fH+uwyRvWIZ+W+Et5fvoc/7HwVOp+idVfjqsIR1S04/9eb8pjYP5m3lmYyaWAKY/s0nXBQVu3mtjnaQFBz/3zaYQPgh7OrQPvenFRTzl3p9BAVZsTnV/ly/QGqnB7+oKtGFwjShcdBVf0bdG6vn/0ldsb2SeSn7YUcKHPQq+a4A+3zd9ucdUwbms71p3cLWfa7LQfplxoZzN4NiI0wceUpLQvSATw89hbuWLSTSncFLsM+fstfzz9O/lOjfc5ZjBYeyJjCU8se4vFYeB444k9oz7O1G4tdtOxUwmP5t+cAm0p+YVSP00OCkM3W4yztenTTJ6gfXcV/7Nex19ALs0FHvNXE6T0TKKjQvpNfXbSH37LKuOIU7XwzJTqczbnlFFY6SYoKY39xNQa9gtencrDC2fJr5t+Zdg9Rdu/enZKSI0s5FR0jv8JJhcPDjvzKdt2uqqrBzjmrXV7mrMrmvRX7+XV3MTe/u5bCqva9C+/2+oMp9vkVTmJq0sSrnF66J0bQNSGCHolWnrv0JF664mRiI0ykRIdT5fRyy3u/cesH65izKpuK5qbpOyu0TucbCNJVmZPYs2srjs9vw/v5rfi3fKmd6DfG54WiXZDUX+uLrjKvNvB1KFelVqrThApXBTf++g9ejQyj8sAa8HuoMtS/s/l15W6eN9jBGEF4Qm+tP7uq5mV5RZmiwO+jUvVrd8p8Xi3Lb927ACRFhvHspSdxTp++OD0+Hlv5GN9mfsuIhAlEOiZj1Sfz5e7vuXPRA7y9+0GeX/k+7++YxT2LH+UfS/7BwqyFvLXlLUocJVzS+xJOTTuVawdcy77yfeyr2Md9p9zHM6OfISMqg5OTTyY5PJlPd32OWqfT9P0VufSPPwm318/6AznatJq+FPLKnQTO1//43lq8fg869Hy1IY+F2wrILPSCx4m9dK/Wj1FETeCggQ6TgZBRq/ZV7GNH6Q7O7XZuvdmSI5IpqG5m/0Uum/Z+NFFW6Vf9GCoOwLza8ugql5cd+VVcMyqDMKMeq8lK1+iuHHTswq2WEmbQ43HG8uJPu9ldaOOD1VlaOZ3qx64/+j6oFuxfgN1r57xu54VMjwyrLTtqUOYvWqC3FQbsOKzyHCiqKd1JrNPheCBIV3e0x7pBOqNFy9CCNmtnujWdxTmLgwE6oF4fhkOShvDkmU9yQY8LSAhPYHzG+KPPPmuEoihaUB6I18Vz44AbIXsV/PDPw46KGR8eT5/YPoTptQvO2LBY0iLSyK/Ox99AxleVuyq4rSNWrV1cltk9uGylEJWGz68Sra8TpDNpp1dhBhN6xd9oJt2eIhuepr67W8ju9mFpRn90wSBdTV9XDZe71vZJ51H96AGzX8V5FEE6T51MOnsrD4bQ4Zw150idRmgBukC5anhsw5l09lKttN1VEezbsF65a3iMNtiM13HEIxcGsv9tHoVql5fle0sY2S2+TQLuzRUYgACo7Y+sEWN6J9I51sL8TQcJN+qJCqv9G+JV7ehU7Tyr2uVHp5r5Yu+nwecbKns/XFCwMXf9chd3LL4jZFpg0AnQ/v40JqImSGevKUffVWBja14ll4/ojL4m482PExT4OftnQBtF21STeZ1mTQtmBwfW1TXBSKw19Fg3WHJwGnbzzNqnWZG3gsSa0WlLqmsDl/mNBOkAnrlkMJcN74TDbsPt9VOsiyNOCf3sVroriTrcjdzD6FGn36su3v3YM1dC8S5AK4PdtWcvkwam4NUV8fbW/zB77TJO6xnf7OqIFvP74d0LYdV/8PlV/vbRepbvKT7sYkdqU245c9cd4M0l+7jyvytZtLP1RwltyIaccjw+lWtP68rVIzNYs2YFXrdDu0k85zKYeyPba671hmXEsnJfCV+sP8DWvEq+29zwuXtOqZ1//7Qbr8/Pkt1FwenLWuH1219cTVKkmQtPTge0bDiAX3YVMnv5fuauO8DqnTm49TV/vyzxYC+rt55le4rx+VXG9NbOs/fXKadUVZW5NUkXpYeMNrpwWwEbcyrqBeiOxpD0FD656GW6WFUM+i+x2HWc8v2j2vVeI7rs/plnok/m1jEzG6xsaTaDqTZAB3jMkSxVXGy1f06i9Qhv2hjDIF3reqna5aWbN5NeSVbG9knkuUtPwmzQk1RzQyjQD90pNSNgJ0eZKbZpAdK1+0tZl13GmT21G7R1y2BPVC26WlIUpd4f9Zb+kd+/fz++dhrlTBy9CoeH2z9cj1/V0vTP7JXAjLN7t/juSIvTZ4EF2wp45ec9dImzUFDpxFXnIueUbnEktXNfNnVPcrJL7ZTbPaTHhHOg3BHsmwRqT6CAkOmn9Yjnw9XZVDk93DKmkUEb6sqv6Y+uTgp6cPveWExuOztKtdK4bj8+Q0xS39oS1XqN36Od9Cf1rR1JsiI3NMMHtLv3XtdhM+l+zv4Zl8/FEr2HpPy1YPBS1UBmUjU1x7qiaBfRkSlNl9rWYTVawe/BpqjgqYaKnAbn6xnXCe9+lV2lu7CarHQyjCZOKebtK2/kX99s5beC9UTH5JHEWAamxfLV1k3cfGpnxnQ5BY/fU6/M69xu59b7vIYbwumuu4Zt+SvoFZnNqV1G8NGujymsclGW76PKZOex79Zw1UlhIR2hTxyQQs8kK6/8vAfV4mN0rxQyMxVe/mk36BxYYr1UK6p2MTbun1qa/rp3tcCEo0y7YPN54If7tQyL0VofdN9lfkdCWAIFhWn8aivizF61mUGx5tjgBXiTvC6Yc7mWWZbYF6b9p8HZfH4fepcN4oYGpwWy1eoOitIntg+bijbRM7YnFpORaixkl9jR6RSW7ynhutPTQPXjaIUMtmV5yxiZMpJES2hGVFS4kT2FNpweX7CkKERZFkSlHV2fHs1xcJM2CrOi0waNMNW5KAwE4OoOHOE5JEgXKJHztk2mUZeoLmwo2gDA3SPuZm/53tYdOewIRBi118ikmLSsou/u1p5oRt+biqJoJa7VecSFxZEckYzH76HMWUZ8eDxr8tdQ6apkfMZ47QLTdJRlOMW78KtaZnWsX8UclY5PVYmqE6QLlNKEG43o9N4Gg3SqqlJQ4WRs76PM7KtDG1H28O9l4Dui1Fla084GMunwo6oKXr+XMk81MSiEA15VxeP31Bv9tznqBumqfy/lrgGBv61pJ0POqtpMupgujQfpQPuuD2TSWeK17w2fW5sWHqtl0qmqNs3Q8gupgkonqdFhVFRUsGR3MUVVLk7v2XSJaVuzmg2YDDqGdI4JDs5Ql81tY2vJVkamjiTGYuL8wam88vMeYiOMIX+bPaoTHWaqnB6qXV4SOZNy18rg8w11/ZBRJ0jX0LZbKhA0vKgmkNCQQB+RgZtIWw5UEGbUMaymXPXFK4awozCHZzdCqUv7XLj9dYJ0EWlkVmbWrEv727a0+lEeWtaPJ8+srWjq39lPVqW2T4WOQnomaZ+XzKLqYAZiXoWDCLO+wZLRfqlReH0qq1a6sDm9lOgSiKS2c3yPz4PT5zzq79BAn4d6ncIM2wtYFpqo7ns24TFdoXALfb3buSoynK6u53m23IDbXdG2GWe2Ajx+lWVLfsIVNY19RdX8sDWf03o2ndHt9PiocHjwer28v0dH5ZpcrjmtW5PLgDayb3DTLi/PL9jFqO7xDZ+3tIKDZVWw6ClSctYxPPIm0mPCOatfEvmLd+P0+PCW5GM26Ag36oPJERcP7cT9X2wO9uW2I78Sm6v+YD/fbTnIgm0FZJZUo1MUeiZZiTDrmb/p4JF39VNjf3E1XRMiSI0KIzLMwJfrDzAoPZqvNx5kWEYsA9OjyVlYRGKyjh4AljhUeymeOpmjXp+f1xfv5cxeCQzpHMOgTtHMWZXF6T3jsZgMzNuYx5frtSCd3R0an/hy/QFO6xnPmb2a/hy0VITJgqk6jwjVT0pJFJVeD3Hbv264r/CDG+HAb1jHP9Qqg+R9siaHIpuL28b1JEfV3mvV58McdmSDYADsV5NJ9vjw+FS6kcvfRrkgNgVqAn+Bz7VO9fHawJ2kx2rXE+P6JOH1qWQWV/Po19sAmHxSGr/uKQ7eXDqRteisXFVVrrvuOqZNm8a0adNwOp386U9/Cv4e+Cd+P6LCDNw5sTendIvjmlEZrNxXwhuLdlG8bwOV+ZlNLjtrWSZfrj/A4/O3ceWbK/lodXazt+vzq3y0OpvocCN9UyK5dHgnZl0/gpM6R9MnJZI/tlJpUEsEOvkFgqUSV5+aQXpMOKc38oc8JTqMwZ4NxPlLuO+8flxwUior9pXgb06NRcEWiEjQAluHyFI64dRF8EXsdTxpvR+vT206+LX3Zy07LrFf7Qis1UX15wtkAoQ1fQL2S+4vnJF+BpaweJb4ysFtw6PoggMFBJhrsltQFG2wgMiUZmfS6XV6rIqBKlQt6690X+2T274KZn91jtZee69f5fnRb7BkZxXdEiKIDDPy1MVDmHfTH/j0yvt57arTuebUXoTRGWdVN4x6Y4P9MGnNrVP24fCwp7CKRVtdhLlPZsu+sXy4JIzCwChziT1ItJo5rY/C/7a+wjdb9wf7oxqeEcvE4PDsXlIirbx8XhJ/TdmK6jdRWe3QMgVBC8iZo7SLuU0fwweXwodXwle3Qc5q2P41VOTi8DpYkrOM/IN9eHNJFs98v5OsOiMhRZoicfvd9d6Leop3awG6yFQo2d1oJqZP9aF3VYaMBlxdc6FR92Qt2hxNtaeaCmcF8eGxKDV9EM4Y34sKh4dqpw6dqmLXH91JaImjhKzKLIYlD6v33HmDUimqcjFr2f76C+5dBJlLtD4e21rOKu1R9WvlBXXpdFo5XN0AXN3+pkIy6dqmf73zup2HDh3ju4xnWPKwkEFPOkogk8usmFH2LtQCHkZL06X5dQQGn4kLiwtmBRbateyE59Y+x383/5dKdyU2t+3og3Sl+3B5tZN5t8+PGh6LXTURpat9TwMnpeFGIzqdH08D5a42lxeHx9cqgYIAt9dfr0+dhpTXZG41lUkXjoofKHWUUum1k6TqwKuCAq4jDCDXHTii2v07KXcNOPsRGHOP9l3u92rlrDqDdoMlZzV8/bfam29QG8Szl2mZdAazVu5uMGt9VjrKtNFjAwPteBwcicJKF0O7xACwYFshRr1C/1YeGOJIfHDTSP55Xr8Gn/vv5v/y/G/P46nJpO1V0w/doRfR2mjh4VQ6vFS5vHQyhnalUOWpX2YcWNczlwzmtelDQ57bX7G/xfuhKArz/nJ6vSBdkb2IMqeWORJh1o7Jarf2t3NXQRU9k6woCjyy/BEOVO8lLlI7L/TWZFC7fe5gIDzNmsZB20FUVcVS83fXoFPYV7GPn7J+wq/68at+ip0FweBEkb2I5EgzXRMiePHH3ThqXruiKleTN7kzEiyYVSdVLg8uSwr6QJYnWhYdcNTfoYF+BaNqRtYtrXazccNaSqP741P0XBe2hNjf/o0xzEu0WkFifDkeQyY+f+smeXh8fj5Zm4O7dD8Oj48KNYJXftbKbjfkVhy2j9s5q7K56Z21fLQmh3y7wsdrc/lu80HeX5kVUtp/qNLq+l32tHRgA1VVeW/Ffj5Zk1OvO6pDrf3iZSq3LcBTWci5YVopcXyEiWHqVvYYepFrg9wyB1502JxeLCY9fVIiURTw+Goz0O75bBOvLtoT7E8QCFYY7S6wsTO/ii5xFiYPTmNXQRWbcytatE91Odw+0vd9ypCwfHQ6hX+c04cNOeV8se4AewptnNU3iUuGdSLB7KVarbl5YYmjylbFVa/9zNcbtczTfcXVODw+pgxJQ1GU4DnpvA3a8z9tL+SkztFMGphCfp3AkM3lJbvUzild41o96zjMEBYsq+7hzddu4u34pvYaLKAsCxY9CUn9oPu4o97u3iIb763M4vst+TjcPjI9Wv+kiurDqRw44vX+9asccsu0bp0Gebegfn8PGxY9VK+aIcO3n7TdH8DyfwOQFhPOtad15a5z+nB2v2TG9E6kV5KVpEgzOWV2CqucPP3DLqqOoa6m21OLgnTXXnstSUlJREdHEx0dzdVXX01aWlrw98C/w9m2bRubNm1q8p84NiiKwsju8dw9qS+XDe/MP4b4OHfldMo+uJEDs6/nue+3cMt7a3l8/raQL+28cgdfrD/AW0szWbu/lP9n77zD5KrL9v8550yvu7O9p/feE0ihhRCKFEEEVBAVRV5R7Nhe9feKvip2RFBABSkGQUooAZKQENLbbnrZzfY+vc+c8/vjOzM7W5NNAfT1vq5c2Zk5vXzL/dzP/Vw6uZiSnMGLgGia8BfYXiciiI3uEJ2BGF9fMYH/umgsH5lbSb7NyP+7eio/u376WZ3UDIWaJi9/21JPmy+SiS7lWPSZ1N/JpQ4e/NjsnuNp3g3Pf154xQGOpIdbg49yN08AsGh0Pl2BGE9vb+B7/6zJyME1TaOuM8jaQ+3sqd6L1nGYhk1/5+3wSMLx/h19bTyHh0f+ki9//HrsjhxisrEX+bW30cP+Zh9dgSi7TnTD0TcEWaDoRGReVgYh6VId6hBKutZgKy3BFhaULGBa6Xza062Ioqcj1Hubpow6I0XSOSug+9jQqblZsKPglzRBXGWTdBvuh3X3gaqSZzPiiF6EyXs9n3hkK43ucMbjBYSBe7qDtZv0TCtzsrV2YGPZgfDpv2znS0/vQdXg7osEUSVrPc/yly+aTUVOHp3aZmL6Q9SHdnHZlGL++Ik5zB/Vk1Jk0vzkRlrJ3flbLu7+Gw41iElL4kkrbGxFIh0YoP2A+N9ZLu7Jxd8TxE79ZvZ27KUzECLiG8VXLx1PaY6JRzbWomkamqZlUvn8A3kggZj8NWwTJLBigAWfE1UGswbi2UjGAiiJGOSNyXyXVtJlk3QWvYVgPIg76ibHmMN9107lgZtnZarcHe8IYkEidIaKrW2t21AkhekF0/v9NrHEwUfnVfLqvlZqmrIGh6oqCnME2t4bkq5+syi+ctF3YeYt/X/XGXv7zWUr6RRdT3GJk6R6ni5yTbn8deVf+eSUT56T7Z8OMko6DMjH3hSFYiZeKcjVROwka4PLLEi6XFNuxnOuIyzaI6dBPIOv1b2Ghnbm6a7+Fvx6ERyIJVSCxgLCmHHI2Z50CrIEZp0BWVJ7KcHTSEeKz6Y3WLb31FBwRwV5EElGkNLtcx8YNRVF03HUcxwkCXM4ic8XJamK9U4HvZR08X8zki6nAias7LEuaD+YpYRTxfigWfg1CV/DLCVdthesohdK27C7Z30Q6frDRCKp0hmIUpFrxmnQqOsKMbrA9oEw5B7KOzHdf4USQlWcroDaN5U7lAjhMFjpCAjll93UQ3wYZAORRP/ndES+lT99Yg4TSxwYdDKhlHJ5T8cevr7h6xlvzOFgoEyju966i7vX3g30ZFiklXSH2vyMK7ITSUY40H2AJw8+STDeE2wLxUPEkjGMqWrgJdYSIskI3ZFulNR+0vfwoeqHeLP+Tboj3cSzAjvtoXZ0isynF48kHE/iCYv2yReO4zQProJ1mPTkm1QSSQ19boWwY4iK+5Em6c60DTXoZH7rfIKfTO9J8yxItrM1kM8q8/XEi0V1+pheRq8oJC3buG/rfayuPbte5XXHDmF887u8+upLaJpGVBLXe9HoPFRVo65z6CqTTR5BnK891EmRWRBlD6w7xtPbGjjcNrgyqTsYxWXR84uPTOfBj81mUomDtQeHl/LqDsV5Znsjf918guahUgOTccZ1vcU7hvOpK1jGlKTwa5W6jzOKJp6NzuVbjvtYZb6eaDxJMBrPKF3Tqdzjiu1cN7uc+u4Qr9a0smZ/G75InA5/lBNdIS6fVpLxRyzLMTNvhIsJxXZ+8cbh01ZEPbOtniXB11iqF+PhmZW5zB3h4q+bRVpoemxpl6ME0iSd2UUkkcSu+vnjhuN849m9fPmZPUBPinWhw8TKqSWs2tHI2oPt1HYGWTG5hBKniXZfJEN4HmoVz/yEsx3QiIeRwx5MskFcY0Xij/bPgZYUhYTSCHXDy/eI8eJF3zsrPsqxhJppS6ubvNTFuimIg0mScdpO7z51B2MgSdxv/wqry+5CJ8FmKcZ9XVvZeeQlQAQe7LYgLrUbCUgce5NgrOf9sBl13H3xWL5y6XgkSaLQbuKV6lZuf2w7+1t8vEd1tz5wGFa666OPPnpWdnrRRRcNyPqnKyNKkvSflNgPKBZKNQRzzBy3zcTRuplZh3/DotwSDtUb+MbxuZQV5uMOiQbepFMIx5MsHV/Yz4izLzQN9jZ6eXpbA7+5aSbHO8VgZWTB6XmHnA00ukN867lqJEmiusnDzMpcbEYd+TYjxzoCKLKU8aXL4MQ7gvx4/nNwyQ+Q3HVU5lnQGTygaUwudTC7ModnNh8jIelpaGqgqCPBq20OXmtQyFHdfNf33xwFumUXv5MvYf66o9zTp7pYizdMSY4Zp1lPaa4Fjz+P0kAPSfet50S0fuHoPPYfq+NRXSf6UjHoQZbBkj8wSRdNERuDKOlqvbW82/wuOknHlPwpdEe62WzOFYoAxUB3pJtye3lmeUVODZglSRiTVy2C3X+Dtmoo6U+y9IVNAx+aUHx5+igxHaUgSeTbjdgS8/B5QZY07rlEKD8Hw6RSBy/sbj5pCnYsofK3LScy0WezQWHp2HyuG5lkTbcRCQmzQcFlziHXlMsJ3wlMehkpYmBKmbMXkayQIE9txXXgKai8EBl49BKZz2xQ8alJ4QJrLRAkEoC7TlyrFVmFed59AKI+trZsJxp2cfP0ySwZV4BOlrjvlYN8/m87mVLm5NIZYvAciAX6m+9rmkgjbN4lPhdOFEVIQOzb0v+6JcPdwqQ2qzhJWkmXnS5j1VlJaAnaQm3kmHIyAyhN07CbdBztCGDRJEJnMM7QNI03699kTtEcbAbbgMtcMb2E7Se6+dZz1dyxdDQrp5b0TpXuW4H4bCOZEITy+V+CMRcNvIyi76Oki/T/Hc4ZSQegk4fV/Z9zpFWtRskAnoMwbgVUzheq0tr1MPaSIdfPM4n0PZfJhUlnwmlwZpR06YnroW5R0fFskHSNukrsNHBcKieu5RGRTNjknvs4usDK1HInemXwwhHtPvEMFJ7FoFM0kTwlks4b7SGxTTrTgOnOMkn0mo5jHuFd6EpIuDVhtj8Q+XEqULMCNKF/N5IujdwRwouycasIbqT7WkkWfoadR8Q7n36/w26hkksXXlKMvQtHpAnUDfcLj1rXydPp0ugMxFA1QQRX2TROJEXV0w86dJJon4LxIE6jE50i89VLxzO6sHe7H06EcVnstPki6BUZu0mH3WDHH/NTaCkc9DlNv3OHug/x3U3f5Ufn/4juFGmaJvdPBZFEBHfEnSlOEYgFaAo0ZaqOpxXtRp2MQSfjC8dp9UboCsSYWOLIEISyJGcISRAkerYnXZ5ZtG+eqIdQXFwbJWv88mrtqxl1m4SEhtajkk0Rm8GUH54vEifPOnRgwJBKg8sbPQuqV4lntmzWWSPpSCaoCu+HPbUcSX2lUyTe7nKwzzCeOxZ/BP75MXyShqJIpIT5Z7VyPcDYfCPF5sPs7O4ialAxaeJ5uWVBFe8e76LFGxaeiXXvwJHX4ZLv91q/wx9lbKGNw21+Rjs0xkwoQUPilZpWvv7sXspyzLhsBlZMLmZJlq1BdzCOy2pkTKG4jjMrc3hx78AVyQdDdspsiydM2SBCCK1pJ7qol7LFH+aSsgi8+QPwtcDL9xC3l/GWshdZayGayCcajxMKhzKkss2oo8MfJd9q4IqpJVw6uZgH1h6lOxjj1ke2Ek9qyBJcOb2EcUV2nthSz4h8a0b5du9z1fzqzSP86Jr+tj2DIZFUhdprxxGutEo4kp7MbzfOrcgE2dN2K1YpSkcyTdLlkkhqzCuT6LC62JYSflgMCvqswMQtC6o41Orn/jWHMepk5ozIZecJN5G4ii+cwGnRU9PkxWHWUTqAd+MZ4Z93Qb6wGpIkcFrz2RIcTWfeJPLTAXqAuo2CqLvmIbCeHXuCiSUOfnvTTG7/83aqm7x06H044lDlsBFM9vfyOxWkFaCNSgXPdkko5Z+hvWAntGxGa9kD467i0ZpHieet4asTLoG98AfcvP3qJ7hjxue5sPLCfttMP39Os57vXj6eA1vfG8/GDxrel1H6li1bKCg4ex4s/8F7BG8THFqNddpVTF36NTj8GlVb/gCGIAsNbazU72RffCYeDISb6pi57Bpy3DXkj5gOjBty07Is8aVLxnL7n7ezZn8bkXiSAruxn/cBngahNjLnnLPTBFEeftPRLvSKzDWzynhxTzMVLgv5diNWo4Kmgd2s60/ydB0TFVQlGdZ8F5IxjDllIhW1rQapeCpfG9OAWv//0I1bTtPetahv+LkUuGjK9bjCdURDMrsrPoZt6uV8Wm/jV28eIRRL8pVLx2dSqFq9kUyKrdOsp1t2CeIl0N6r8MC7x7oYnWjDF4+T5+whz7AWQLCDJk+YX645zH9dOFaUWU9LrQdQ0oUTYb6x4RsALK9ajllnZrRztEjJtbhAkjODwjQSBou4FrIiPOkKJ4t9127IkHS7GzxMSkW0+8KuqvglVXh0eRuhaIogQSsXwNzbxTJZz8jznz/vpLL0UflWAtEEXcFYJkqYRiiW4LFNdVw+tYQmTzhjJgs9voojbPA/i6fw24PF+ON+bHobeaa8FEmnoElxkUqkqqIIhzmHmdJ+dgEmScp4kRlPrMMK+NNycEXXQ456G6GsdxoORjvJsId9wRakeCEXprw+Fo7OY2yhjSPtARq6w1w4eQQwiJIu0Caek9m3in1UzO95XgJtgrTrA08ohAV6+aqNXX8X14ZLMenPy3yXJs2a/E3MLZ6b+V6SJKZX5LDpaBdWIMTQ92cotIfaqffX85HxHxl0GaNO4f9dPZVfrDnMk1vruWxKMVJXahow5mIYtfS0939KCHUK1cwAaeoZKH2UdIkIjF8Jy76e+j1N0p396q4fVKSVdGYNQVDYi4SXV+EkEfw4CUmXb85HRs6kvRZYCugIdRBOhDOT33qfIPrPeILpa6EhMZYNpf+Po0Ezn2j2YpPMWKUeQmD+qDzmj8rjVzvfQpKSA3rStfkjmPRyLyP8M0U8qWI4BZVUtm/lQJVdQfjH6DQDjYFGrIoRJxJGTRIetSdLpx/s+LKUdJF/V5LOYBEqaE+DUMLN+7RQ1jZsFQGtZz/Ve/lwt0h5T98HnVEsl4yLgNoAfoGnih61pok5BRonWnub9n9QkQ4iBOI9aotskiOcCPP73b8nEA8w0mKnrSOCxaBjVL6Vq6fexQvHXkDV1JMqPqs7qwFoCjRliOqkNrRIIKkmM+btj+57lHUN6/jdRb/DaXDyrY3fojXUyhWjrui1jiRJ5FkNdAZi7G7wIEswtcxJd0zYlCiS0ktJF4wHiSajGZIu1yi86362/WeU6OYA49ErPX1pY6CRP+z9A5PyJpFQEzQHmukMd5JUkxl/zFAq1dYbjjMqv/cz4I16eav+La4eczWSJHHhaBuWkJHz5y+AgxZRBKlsVmZcccaWAb7U2MrsAgQpajXqOBrNBQmceaUgKyJIiyTeBU2jM3yWizmYcjDpFUqTTQSiEnZdmLsuHEOFy0Ke1dCT/li7nsjht2ifdAeVZcIbT1U1mj1hbllQxeeXjWT3pnVctbAKvV7PluPdtPujNHnC5Fr1/PS1Q3QFo+w44ebelRNxh2KMzhIhuKwGfOEEiaR6yipXTxZJd7wjyKzKXFbtaOSfe5pYNDqfO5eNRpIkfN1tqJpGbvlYcKaCM0ffgLCHhjk/JVL9faARS/4Koq0q8ZAfm0kcW9rfNM9mRE4VOHFZjaLgUVKIbVQNynMtjCqw8dhtc8lLjasLHSYun1bCE5vrUVXtpBXH09ha280/djbxkfFmcusMvapkjy2yc/dFY1GytmUlgi+ZGjOZnMSTKuXmGJ+7chLhWJJmbxhdn32b9Ap3LB3Fl57ew5QyJya9kilms7PBzbJxBWw82nluCuxULoADL5BEBGmKJy5nfJODTR0mrtKyUk47D4uAz1ki6NKQJImqPAubjnZSKx9jqWqiVGfslwl1qrhgfCGVLgs/efUgnlCc9qIlHGI7GKyED6+GuMqWZAOyLKEFG4kYrexRfZCM89yR51hWsaxfkDB9v3514wwcRpkDA+34/wCGNTL85CdPLTXmkUceGfL3yspKCgvPzEzyP3gPkYzD4ddgy4NCiTPhcvH9uEvFP0Byn6Boyx8o6twFqpdkmQtl1w/FcnXPgecYTL1hSK8zu0nP/JEuXqlppdBuZGR+HxWdpsFLXxID2Kt/f1LftDPBr948wlsH25kzIpeR+VaC0SRH2wLk2wyZCVC/Sl6aJgo0TL4GJn1IpNcFO+BDvxNeNLufhBVTsfjrwKCDYDMjF13HanU+Y5r/ycT2V8SA/qZfU1m1MLVJDaNe5ldvHOFPG2uF0Wd3iBafn+ZkNbFkGU6zHp9qBPdheObjMHIpOUzHgwObUcc8R5hom9ajmAKwCZJuzb5WDrb6+dnrh/j1R2cKUkmSYQCVUrpi6NLypXxi8icAqHJUiR8lGafBmTEhTyNmLxReZpKc8mCQRSGMDtHkHmnz853na/jYgipumFvRb5+OZJwmCZGO2X2cwKyP8cVgNd+efAUjUsukO9CZlTmn1Jmmn6vDrX7yRhsIRBOs2tHI2EI7z+5s5Gh7gDX72yh1mpFliU8vHskf1h+nPNeS2p9Ic3bUpo2PFUbljGJn+05yzHqWjsoXUaC9f4edf4Zb/sHNVZ3saZPQo4gIJkBbDTZJIqBp6WFob3LU2ruNPKKT+HbDc3RoObgs52XUEJIk8aVLxrGz3s3jm0+ws1akX/Qj6eq3wDu/FH9PuLyHnNM00JkIu1u49+ndJFWNX35kBrIs4Q3H2V3fxVzUjCn6mn2tjGg9ylL5WK/rnfa08sa85Jhyeu16+aQivvvPfUyzJwlx+rr15qCINI9wjhhyOUWWuHBiIesPd9DQHaay86ggzS76zmnv+5SRTjsfrEovpDynsgtHhHsbwisDVID9d4WmwabfYA02AmBLq+jtQplC2Szh1aJpPddpgOpmi8sXU2GvyExqiyxFtIXaMpO6QkthRll3RiSdmkQLtHE0PJuJcyZwaFcTB1r8TJVMmLX+hIAiKciDVHf1hRM4zfqzOgmIJdRTMh/PJukGm3DLJNFpejQNioy5yFILBg2S2umnuyZTikJFkgifo8IoHwikSGfK5ggVsmsUdNeKMUI2rAUiuGew9pBxil4EUdK/Z6ciD7Pic5svgiQJ/ymXEX5/8wzKcv91SLq00qwvTvhOsKVVeH8WWO0cPh7Fakwyd4SLGYVjmVE4g59s/clJFZ/piqmeqCdTITp+knY3nAhjM9jQNI0dbTsAeOHYCxRbijMqvG2t2wCw63vamjybga5AlHZfhLFFdqxGHY1BcX6KrPRS0oXiIeJqHEMqG8FhdCAj0x3pppvX+fVNH+Yb78qZa5VQEwTjQT4+6eMUmAvY17WP+3fcjzvqxppK908r6bxZ6a6rj69mR9sODIqBne07WVy+mHxzPjOLjdDqAkWBgvEZCw5f1IdBNgyYHj8spNXtBisFdiPxpIZJLxOVxHYNeh1YC/GFfaLt765Fh0Znzln2ozY60MsSOkUikdQoNsaYOFkE2IqdZix1b0DZVOgUaZuvrVvPZ27+KABdwRjRhEpZrplKl4WaLJ5BTWWL/eWT88ix6PnOP2t4ZGMdAAda/HQHY8wZkZtZPq0K84Tj/YLHg6E7KJ7T0hwTf918glU7GgnHk0wotvNqTStzqnKZPyqPbo+buKSnPM8OptR9O/oGGO1I+T3ZE+/o3uKqZJLyjvV8uPMfkNiAPkPS9aSR59sNvHGgdyGcdPXOvD7HPrbQTjSh0ugOCyFAX0S8wgYgK3i68WgnI/Ot3DJVgjpE4DMLF2d8ngVMWpj2iI4TXUEqcxzEkyqFBvHemw3KoEGJMYV2vnLpeKaUOlLX0cz0Cif3v36YXSfctHoj3LnsFIr8DRcjFsOux0kaEmArxD75GhaZDBxrzEFzv4u05SGY80mhXs0fWuByuijLMbO9zo3f4kZR7VTIEmvbd/Krnb/iCzO/MKwxSVT1oxrqqXBZ8IS82E06/D4/mJyEg11w7C38hbmgN1LnOc4PDX6Ialzjms5z/sPUemsZndP7On9q8UgWj80nz2YkHv8/MA4eBMMi6R577DGqqqqYOXPmSU0q/4N/E2garP9fIfMunAiX/e/A5FhuFaz4Ueajoqqw/U9CCeFthF1/BX8bXPitwfelqlw0oZB1hzrwheN8pU+KJ13HBOkl6wQBdtn/CvXRWUabL8JbB9sx6WVumFORUfMdaQ+IkvCp6FE/lV+oS3Q4eWOEsuyqX/f8NvV62Hi/qNYWdgtF2NW/QwauAAiPg225MOMmkcaZgiRJLB5bwNH2AG8dbOfOZaN5flcTems9e7yv8U7TSJzmMWxUqjg/P4zDXgpH3+DW4E62TvsBd104hm1Pv45HyUUNt1NmKxONr7UArfMIm7pTMmV3SCjFIj6hVBzA+6AtJEi6myfenBlA61OKnzE5Y1A1tR9JF0/GBelHVnpd/jiofxdUldWpku7ZfobZcMaj7NMbSQWc2KeT8DtL2BpuyZB0AM/csbBXVHkoFNiN6BWRIqpXJJIamUIesiQqtKmaxot7W/jInAqumFZKea6Fitzeagabvqfjn5I3hVWsQpYlcm2pyfjRNcLHpWUPBbE69Hod+qjaE0GO+rFJMnW6PKJTr8MEPZ500C8t85isiXWSQUYVF/bqRCtcFipcFvY2etnbEEJn1uGL9zGg3fEo+FLpFNYsJbMkga2QlqZ6jrYLonRXg5vZVa7UfVFFqDR1/yJecc/kPs9IWgkFkGPM6fVbOvXVkEgSkk6/72gKNGFUjBm11FCYVOJAp0jsbvRQGWjr9V6dUwRSsvyh0mp1xt7VXROR3mqZ9LtyjgpHfKBQtxFqnsUiJaGkFHv6uqSvX8kM2PU4rP4qNG4TbekAFdCMirFX5bMSWwnVndUZde+YnDG0h9qRkc+MpAu0k0gmaVFzWFbh5NWaFg60+JioWNAl+hMKOlkHg5B0A1XKO1PEkuqQflMAqqbijXgzaYFFloGfVVlT0WtGEppGnjFHBI00hCfdaaa7ppV0siwRjv8bK0UnXC4IuUlX9XxnzRN9Xxp6M8z7DKz9H/G5apH4XzH2kHS2wkwfCgxbXdvmi+CyGjJK9WKH6ZQVLe8nskm67kh3vzY/W/VRZHMQT2p4QnFc1p5n36QzDe7NmsIRj1BZt4faMynz6ZTObGQboAfiAWwGG43+RvwxPybFRGuwlXpfPTMKZ+COuDnuPd5vG3lWI5uPdxFLqpniZ2liTpaEN55ZZyacCOOP+UlqyUzQQZZkzHpzRm3nTfYUbhvlHMVh92EARjhGIEkSxVZBNLkjbkY4xLULxRKoqkYgksBhFtf3sPswNV09xUzcEbewyYiHROEeEGPa1HPrj/nPXIkMPfYliTA5qfYqqWmZsR4A9iK8kSPCqwsYq+qoDbae1KpkWFB0YLRj1kfoViVs9BRnmafuZs6Jh8BvIZbUiCVUlI4Dmf23eMWypdlppu46MNn4xmUT2dvoyRSHWDAqL1Nw7kibH08ohsvSQ3yll3MPkOGRRro4SPrdcAdj2E06OlNF7cLxJBdPLBLeXn/fw8vVLcwflYfH40GSTBQ7TCCbRRDeXQcV81F1HgDywh8laX2Kg0qS8o6XWGNJ8LGwh08sHMEf1h/jueN/ZWbhDOYUzyGvT8ELWRLPdme4E6fBmZkXAIxKqQWPtPsHJukOrhYCkE+8CCYHdZ1B3j3exS3zqyCcyoAIDqGeVFWMWhSfauSuv+3idzfNIoiFfN2p9U9L+1RWv+28kXzn+RrWHurAadYzrTznlLYzLBSMB0UvwtWSgl1vJ98G72ouVE1D2f0EFE5E6zqGNG752d8/gqTTiKNKYVTNhSMRBKOJHOOpiR2ysat9F3/Y+wfOy/ke1Y1gMsRJaAmhpFv2Sdj6FETaQV/EwWATmIwgh1ms5PAcva030sixGJg/6v2tQP5BwLBGh5/97Gd56qmnOH78OJ/85Ce55ZZbcLlOPlnKxtKlSzEYDCdf8D/4YCDigfb9wgB9MH+lgSDLIsUjjUlX956U9oWqwuvfZkbhBB697SMoaOQefQ5qjEKZlvZ30Zvhkh/Cu78VZJft7KdN72/2UWBSeeDWhZj0CvGkiiwJnqLAZsSXqvbUr3x9l/DtyTbYz6ByoSA8m3aIDqevfNmcA0u+MugxTa/I4R87m/jhSwfYVtfNyDHdtCVhbcNaynUar5nXccxg46qKCczNraD81YeQRuZgN+nJS7azxWDh1fVfZl7xPGYVzmKBNQ/F00xbLMgFE4pZe6iDQDSBveOgIFwHQFuoDZNi6qe6+NPyP6FX9Px656/7pSLEByIZCsZBPIy2+QG21Ym0yL2N3v5yeE0jLxqm2ySjoiEjcTgpBqjpgWvm8hlOrhxJQ5IkvnflZDoDUcLxJMFogqllOfgiceaNcGWO4Ya5FVhSipQZFTnifLIiOg6DIyPRHpPbc8+D8aBIc+oQ/lfUrifefRzsdvTR1AQrbwx0HcWKxAHdSFrH3SJIx2w1VZ9nW9FZSKoaspagzDawV+Psqlx+v+4YbkecR2sepcxaxtSCqdC4o6cYhbgIvVe0FZF0t2LUyZTnmvnjhlosBh1H2wJIJNEhZVIwx+jE5Mgt5fQiSrNJy/RkJw29ImMz6jAnk4S001fStQRaKLYWD+if1RcmvcKYAhsHW3xcpYV7JhznGoFWUUl5qBQ1Rd+7GEI83FstI8uCqPt3VhqlcfQNAKwakExgT0TFtUsT1iXTYeQSUZkXRMBoAJKuL8pt5fhiPur9YjI4yjmKTc2bKLWVntLzMyiadxFNqDQp5YzIs1LoMFHfFUI22mAAQkAn60S66yDVXW1nMdUVIBo/eeEIf8yPikqJtUSQdNYBSDpNQ0ZF0QzEtCj5xlw0jZSSTjv96q6p91+WJCL/zs/3pKtE4ZPsttaSL8YtaRhsMG45bPyFIEXSbYAuleIlKyIdMJsQHaa6ts0XFZPzfzGkq4Mfch/iV7t+xZdnf5l5JfMyv2ePNcqcOYAI9GUreYyKkfbE4F5GoXgoo65tC7ZlijQMRNLFssjRtLovHbiclDeJ5kAz7aF2bp96e0ZdB2I8cKj7EONd48mzGYgmVIocRi6bUtJrWzpJRzAeJM+UR1OgKVPYJVuxlq3wS5OLINS6Hxn/EQotPcG7XJNQabkjbsbmyugViWAsiT+aQNVEcQiArkgXMjJqSuGerkZLPNzThzlKhUJcVemKdPULwp0W0iRdOrMAoa7VZQdbq87D590FqYDjWE3hQMRDMB4c1JP2tGCw4TB7OBDPxxlrFWN1SWK01Ew0kSQSTxKOJfHKOeRH6nCH4hh0Mie6xL0rsBkFkaipKP+4HfRmxt/+GmUuiXAijFlnZnoW2bO1thtVg3x7z7OaJuy6g4OT8A/vfZi3Gt7iryue5J2jnRzrCJBrMXDl9FLWH27nymmlzEhVcb50cjG/fvMI7mCMgN+L1WjtaYpMTuHzXDoDT6wVSdNhUCsps5dw0NjIPvzsNGtc6j3O+PIFfPtDlXzujft4t2UTjxQ/knnH9IpEPKnhshpQZInPv/l5bHobv7zglxki12LQUWg30ujuIT+jiSSN7rBQuHlEEQg6DqGVz+EPbx+jxGniyumlcHCr+C0WhFiox7MzG/EQiiwRSYr35NmdjcyXrVTIp1cJe3SBjR9dM5X/enIXC0fn9UqrPWuQJBGEDHeCrGAz2Ciwx+mS80kkNRSdROyd39LQ7iGUKOfU3fxOHaU5ZpKSGK9MrBjHyMC7YDVx5egrh72tQmuhKMhlEf2Uouu59pFkDO/I8+DIX0ArpC4RADmX7zumURASbU13pDvznqTxduPbvHTsJX6y5Cdncpr/8hjWSPWBBx6gpaWFr3/967z44otUVFRwww038Nprr52ysm7t2rXk5ORkPsdiMRobG6mvr+/17/3EAw88wMiRIzGZTMyePZsNGza8r8fzvsKcCx9+dHgE3UCw5g2tZJFlodTb9ifyu3eR27FNRFfe+VUP2dFaLRRoFXPFMZ0Dgg7gAmknf1R+jAnRWeoVmao8QYrk2w0Z5YPVqBPk4oEXxYS766hIWRnIi8pWILwFGreLwbclv/8yQ2BSqrrQ1rou3MbnaYptxmlwcsh9iPXtT6NoNpaWXcwLx17g3hPPs9GSwKmJBjg32sJenehodrfv5sG9D7I+3k04GiVf62ZxKpLk9oVoadrKppyB0/Tagm0UWYv6RVlsBhtGxUieOa+/km4gki4l347vfho12MWHZ5cTiCY43tlHTRcLkJdIkFQMeNBQ0djtrwMGjrwMB9MrcrhoYhFXTCvlI3MrmVTqYMGovF4kocOkH9Ib5IbxN/CxSR8DQC/r+cWyXzAud5zw0Kl+RhCvI86HY28RVxNgsGNI+7EVTQbAquhJSAm6glmT1Q/9Tpjm5/dWktaHRLU1NBg5yMR+8dh8Spwmwskg0bjKC8deEOrNNd8Rnkjn3Q2X/KD/irZCCLSRbzPylUvHE4ol+dqqvfx18wk0KSkGranobZkqBtU+tffEL1tJV2rr/667LAqmZJIQp1cUKJaM0RRoosxWdvKFUxhfbOdwm7+3KuBcw982tB8dpDzpUvd851/ExL0vqacYhp3a9i+HWEhUwp30IfKQmW8fweh4Ugxg0+2MzgDLfyjei9EXiJR8byO89T8ihXsQlNuEB+eBrgPY9LZMEZW0wuS0Ufs27dZxqKYcXFZDhgCRTTYxmegDvawHSSU+AEkXjCawGs4ySZc8OUmXTnVNV8EdUEmnJpEAnWZEA/KMOaho6NOFI0433VVNk3QQ/Xf3XOwbDLHmC7/KNNLBpjQhnW6j0unulnwxNsom8IdN0kUotA+szPkgI+15mCbZs0kp6E3SjXT1TxsE4bU4lOKzwS9SLqfmT6Uj3JHxv/NF+5N02R6MGTVb1IuEUK21hlpRUZmcNxmnUSjHFUlBReW7m77LozWPEpXF/mZW5mYm/2klnYaWIZ/MOnPm/NIpuAAxted9yR4DyZLMtWOv5fyy8zPf2fV2dJKO7qgYk1mNOgKRBL9YIxR3NpPCw3sf5oj7CBdVXcTsotkAmeUFKZLq0x1loCbQAu3s7dzLxLz+3rXDxqSrxVgw3cdNuBw+9Dv+evt8Hrs1RcZOuwGfo6e9HqMpEPUOq7DHqcKsV9Dnj8Rl0QmCEpiUq+I3l9MViHJYGc2RnMVUJk9wsNnLRx/azENvHyc3S6XqCqae0UQEYiF+vuPnPL7/cQDKc81cO6uMKSPivOP/BX79pl7vpdOsR5ZEMYgNjRv41sZvZQodpfFWw1sAvH20nvvXHGbTsS5sRh0rphRz37XTWDQmP+M/OLtKvBM1zV6OBZv4b1c7n3/z8zx18CkCvpRKd/SFtARbqHCU8bVLJzKneDq1BjGXlyRocAvhwfaWrRBop0IWY5S08nFial5SYDeSTCmkA/EAn3/z8ySyxi5Osx5/JE53MEabL8I3n63mi0/t5mCrj+NH9qFqQMcB9jX7qGny8YmFI8Q1DWfNJ/w9ZG4vxIJIkkQ4lSb91sF2gpINZ8ObotjHaWBEvpVPLR7JdbPKT77w6SJt5yHpMCkmCuxGuuQ8PHnTYORifG3Cx++NtrOgWs1CQk2wr2sfZbmCpCtymDh/0kzmROP87cLfn1KWSl+kxw9J2QOAOyL+18t6QokQe52FwrIoFqRWSlBgcjEhdzyGQAd6Wc/D1Q/zwO4HMtvTNI3f7f4dJ/wnzsm7/q+EYYeTjUYjH/3oR1mzZg379+9n8uTJ3HnnnVRVVREIDF5uui+OHDnC4sWLMZvNVFVVMXLkSEaOHMmIESMYOfLUK1edbTz99NN88Ytf5Fvf+ha7du1i8eLFXHbZZe87cfi+QvceKR9nfQzyxwr/oV2PQ/EUkVpbu16QBO0HhEwYzkop6kFRMB45HoRHVsCm3wLwiUVCXTYqvI8Rns0Awuy7eSe8/TOoWQXH3hS+M4NJhUctg+NrhczcOjySzqRX+N1Ns7jtQg2Hqxa9InPnjDsBCMS7cEQv5oLSDwEgy0betKnkJLogEcMebeOIEmVZ+TL+ctlfKLeV00ScYDTJdIef8lQaZ6R+G2+pPh7y1gxIureF2ii2DD7BdRgc/VJL0pHfq0ZnpfwY7bDix0TiopLWVdNLMelldjf0Id6CneQjg2KgS1J5x2KhMdhEJAbd2WqE9wmVjspePgqltlLyTXkEm7bD/hdg6g0kbEXEYwHiEqAzoJckUawhVTTDarCgSVG6AlmT1eIpcME3+0UNO5M992SkYWA1mt2k54GbZ2EkD084LjrLmlViYnjRd2HKtQMXTrAVogt1kG83UJ5r4dFb53LxxCLMegWDooEqZZ5ru0NMQIxabxVMdopDoaU/0ZtngoURhVvKLhjw2IfChsYNfOyVj3Gg+wDjc8effIUUxhfbafNFiUWCoH+P1CTehp4B2GAwOQVZr2mw/59CQZlOdUtD0f17Fo6IeOHFL8Ib34dHLxMTmhk3ozfYudsxjcpIK1r+APe4eAos/C9BFj/7KaGoO75u0N0UW4uRkTnYfRCb3pZRep7OIJRgJ7x0j/DOadpOnX02eTYDkiRlDI4L8/KEOqEPRLprkmh8ACVd5BykuybUXlXsBkKapNPL4p1Nq256QUumXnkFTdPIN7kEV48EqnLa6a6J1GROkSWiiX/D53soWPsEFvNS/YcxpQrKeNIZei8vy3DLP8Tfw2wTOgJRCv4FlXRpUiytdEv0CVikvwfRj6aRnYpnVIxDFjg54TuBjMyCkgW0Bduo9YgU0pMq6VLEmjcmUsbTpBxAjiknozTLePYCr9a9yvMNvwTo5becVtJFk1FCiRAWnQWr3pqpNDtQUReTYupFJA6kDJYkiVxTLp7UhNliUDjS7mfHCTF20mQ/b9S/gYZGub2cr839GoXmwh4lXSyQRdKJ/uxE207cETczw2Fo2dNvn8NC4YTeY5H5n4XiKRj1GpYUdxVNRolkFfGYYC2HaIDmA8+LtvhsQRMBifPnzsasV0QgCNDF/NgLyvmq6b/5Hz7NiElzcBDkybXbek4ji2jLDfWkOCeatnHEfYSuSBfBeJAH9jzAiIo6sOwmIXcSUQ4TV5v49eYfsal5E7Is4bQY6A7G2dG2g6Oeo/xi5y96eTKm2+vqjp6siDrfCX6z6zf9fBRdVgMlThOPbz5BQ6QTOeV5+NzR53hx7AIonwv2YtpCbZw/cjRLxhVQlTuWLj0kU5YkDd46AA4ffA7CbuJu8bkyz8KcEbl8/oIxKLJEgd2YUX5OdE0kmoz2IpEdZj2+SII/rD/GV/6+hyPtop/86jN7CLUdJxBNQPtBNh7tpMhhZN7IVB8ddouAndEuCvENhHgQs15hzrhyVkwR85OE3o4S9cJr9/bOWBgGPjSjjOKzXdU1GxUpIlqWkSRJKCllhZ2Tv01g3hfxhuMossS2el/GjudsYEPjBn747g8Ja+1cvSiEy2ImL38SAMqJTUJ4Mky4TC50kg6HTTyrJS5xvEWWIsKJMFsCdYzRFPTJOJ2SSr65QBQGC7Rlgvvpol4AD1c/nPm71lvL/2Wc0ehQkiQkSULTNNRh3thbb70VnU7HSy+9RElJydmvnnKauP/++7n99tv51KdE9a1f/vKXvPbaa/z+97/nvvvu67d8NBolGu0ZBPh8onGPx+Pvi9lhep//qkaL0sgLkLf+AQB1xU+Qat9GOriaZMV5KKFuVNdYtHN9brYylDRJtfcZVFMu060F/PnWxTjX3YvW1kinKQ9rcDnqhlVior35QQC0cStQBzu+cZejbH9UnJsxZ9jn4TTHWd+6ivkl0/jm3G8iSRKfm/o52v1B/tLoIBJRePDCB3mp5k2e7fwB+Ru+QrJuLgkpSZcSZoRtFIlEgiJLEZtbWlgQk1laEMKuF++w+cDf8VpyCKHhCXt6pS8CNPgaWFK2ZNBnyyyb8UV9xGKxzPscjoeZlDuJG8bc0Gu9er8OfShGRSHYDBITi+2sO9jG3gY3yycVcrDVzwXWE+SpoClG/p8+TH7eOCpMpbzbFKXG2NBrP+8VTvZ+mdyNNHccIjH7C2iTP8zv3riLrQYfVyWNaChIV/2eeO54pOZdyJqGVWdDSkRo94VP+s62xnomKaXa0MvfNek7/GnXamp06wnQhnnEElSdFQZZRzLloYt5yDf1nNvnllTxmfMr+cI/dKhBeq732JVsL6hmcfTtfseQJneTiSTJPoo5lz5BSUyi2DFmWO2Tpmk8d+Q5NE1jkmsSy0qXnfL6Y/PNaJqGx+slr8w4+Lt5tqBpKJ1HUKd+ZMj3W8odjVy3EXXX35ADHaiX/BDNUtTr/iiyATUWOfft3XsMefufkZp2ig9GO9rYS1FNLuSCCVC3AWu0jUTB5IHvlcGBtOQbyDXPCtLY04Ba/RyEutBmfaLf4nmmPNrD7ZRYSig2F6NpGotLFp/y8yPVrkfe8Sha0WSkxu1iYpqMU2OYjlPWEY/HmVHu4J2jnUwdUYy6I0AyFusdqFFBI0kknui3X38kjkkvndX+OhpPoJN6t1HNwWbiyXiGNOgMdqJpGiWWEjRNw2Vw9T+GmFCTxKUkqqbh0NkzkwVNVQjGgqd13LGEWEeWFMKJ6L/sWOW0YHBmxhbatI+iTv8oxOMoOgtoGpqsR43HkWU9kqahWfJ73gNNQtG0YbUJiaRKVyCKy6y8Z2PDSCLCIfchphdMP6PthONhNE3LeM/5Ir5ex94eas/0N3r0XDmtmBf2tGBWes5RL+lFAYbU5zpfHVX2qsy4oc5TR4m1hIVFC3n64NPU+eoA8Ea8vFn3JpNckzIK3GA0mNlf+li6Ql3Y9XZMsglN09DLehRVwaJY0DSNcms5xzzHMsdcZMvFpVqYX+XMHJMv4kPTNMLxMBIS+eZ8TIqJjlAHmqahQ5dZ9sNjPsz6xvXE1TieiCdzPNnLZMNpcNIZ6iQej2PWyRxo9mbWkaRQ5m+HzkE8HsdhcNAR7CAejyNH/GByiOfPlIcCbG/ejFE2Mnb/6yRjKmpqcn+6kBQzckqln5SNEI9z7zv30hnp5KGLHqIr3IUmyXwpbsamSVhnXINr/+85Uf0kC9qOo668/4z2n4aSFNkCqnMEsqaR9LaIcw5148wpwucRaqbRE2cQ3yrj9B9F088EwKKXM/M9c6ybZOUc6D7GiYbNxJIx/FE/Lx15kfUN62n2NxNIJkCDpORl4+Yf807nTro6DzIvCsX6JLXuE3hNzUxxTeGI5wgP7HqAL8z4AqqmklSTaJrGYfchynLOZ1xVC2s7HmNDo8LS0qVMdPVWOE4ttfPa/nbKiGCW9dy/+H6ePvw0r7dtZercLzM+Hqc92M6swlnE43GKLMVokkytPglI1PnricfjuAPCh7hbTbXXmsq9K0RGTLHDSInDSJu/DU3TWFK6hP1d++kMduLQCaWd1SDT4Y/S5o/izkrndaheLFKUJiqwte1jh9bFjIocEkE3yuv3QtiN5hqFNmIJ8vof87tt9zOlYGYvxSghLwoaK2aVsbXbwiupQmjpwh3q0bfQRp9hJti5wISr+TRRdkVaM+9ujkVPmzfEq1E9By03ccm8qfh2xmno8vf2PTwDzCucxyPyI3x53ZcBuHn8zUjOESTL5yOt/184uJrkFb8a9nbzTHkEEx3847PLWVO/BhkZl9GFP+Jnf/cBPiRZ6EokcAMucwEJcz5yqBuLXIlb02gPtRONRfFEPbxx4g2uH3s9b9S/wZHuI0x1ioTff5exwnDOY9gkXTQa5R//+AePPPIIGzdu5IorruC3v/0tK1as6GckPhR2797Njh07mDBhwnAP4ZwhFouxY8cOvvGNb/T6fvny5WzatGnAde677z6+//3v9/v+9ddfx2J5j9KrBsCaNWvet32fCRRVz3i1HFmLU7O7DUOyjNmdnShP3IasJdi8p5HYvtXn/DgKrZdgirup6lqPvOZ/Adgw4QfMP7aD1qSPsNOHbv+v8MU9mXW85goOdxYQWj348U3Qqijy7WXvrv24D5/6ixpSQzwVeoqoFuVD5g/xyiuvZH7TEuD1elmz/h3G52js97SiodEc9FNyYC2NkkbEbOfAjuPE9kXojnZzyH8UN05cTdt4c00Js7w7kf1bOFQxBq/Xy6pXV1Go9KihIlqEukAdY31jWX104PM7EhdRwxdWv4BeEhG/w+HDqJrK6s6edUIJWLXPzf+ocSbQwOrVq7F4JYJheLtW5u2aE6KYg+VdrksG8dqsePUFtHY3U5YsIRbWcbB9F3c8ewdXW64+5Wt4NjHQ+yWrMfzuWtxJlZebckg0vsQb3oOYkkn+ToSAz8vGd3awTzmOLdLCbK+XKGYSuijv7NyNvX3vkPts9HnAoCFL0LRrC1sanYMuawWsESvtgSBHPHUkgyU0+Qd/LnOCxymJxgkc387qaG/D63DIh6bCqhdeIe3JPcYUwuLvYnWfZ93rF9HTvt8DdDe4icRivLNlJ54az5Dnmg2P6uFw8DCXmS+jrKOM11597ZTXBTDGZNr9rTTLRznReW7bDlPczfyOZqoPd9DdPNT1bmd6Vzuk2pZ39jSTqOm9/LzOLjqiu6ltPTdp/e81ZDWGKulYdPRJWp2zqM9bTEI2QiewejVl3TrGtG9HAtYdchOpHeJeKSsY0fEmxb5dhBqbMMU9bE1dJ3Osk0nNz7Cv9Eb8CT/epJfOQCeb3Ju4mZs58M4BDnBg8G2noEuGmVv7GwyJANTX0GmfiCPYQESfw7vH3Nj1blavrgPg9krYs+8QE91dbHj5BVS5R1V6IHqAQMBLQ0cLq1c39drHiWaZ/FgLq937hns5B0VLm8xBtZ3VHaI92Rfbx/roegAuMl3EeP14dsZ2EolF0PZrXKRexN6397KX3u2PLhlmgc9HzKgSCATYv3Mf86NRkkmIxKP8cfsf2bV3F/MM84YVLDnQWUdSTRIPJ+mMdAzYVvzbQlNZ4vMjaSo76zX8HeK+TG7qID/g5fj+IzS0rWZ8Sx3FXi91DR5OpK6PrMZY7PVyYMsm2g+cWtaKNwYej8LR6h0k6sR353psuD26na2xrVxvuZ4C5fTarpgWozZUi1ftUePsDOxkdaO4FpqmcTRwlAQicLX29bUUIPOxMnj11Z6x0YHYAVqjraxevZq6RB2rw6u5wnwFlbpKALaFtqFICm+89gauqIv6mFBzBLwB/rf1fylXyrnKIrIA2pPteEPieDZu30hob4hd4V1EtSj7uvbhjXgxSkZeeeUVdsd24416aQ234o31nINBNrDM2sDGtQ2Z73ZFduGNeznuP46GRkgJ0aV24VbdhLUwm9ZvokYWhR0MGLiES3gi+AQePHhVL5P1k6loqRi4zw1306a1sbphNR2tMk0BCbNO47ZxKhs27cUbFse2b+s+OpQO3GE3rVorqxtXM6vuMAFTCYfDYrsLgirrjr+L1TyGQOt+ahO1NLWf2btb4NvPJK+XsD6Xra+8CsBev2iHVq9enbrmPiyBKBXxJNurD6HqRrHV4MWmLkM7S23Hwo42DIkAG/a0cJ4vwPE3nqEpt555Jw7TblPQRTxMz9N4d0s34zQzhYFDVOSNoMYtc/i4h9WrxZhpbqyLQy0urDGZTQfW47UmaezeSf6eF/E5izjhP4FH9aJFc4nrOjjcdIykLsnxll34932WK5JFfCWmkGvUWGBcwAxpBq8fepXIsU7KTRPoDnYjIdEdPExJeDTblL8haXG84QDPrH+Guca5vc6rKAnXFoG/K4AhobLhjQ3kqDkkwgm+vebbfNz6cY4EjlDYXcjq46sJqYK47VY0dKrG3tbDrF69mmZvB5qWpD3k5aWXX+LBwIPM0M9gkWkRS8xgbG3ilaYjeCNe6nfW4w15eWX9K4zUiay4pmaJAx6JUCKVjaHXmFegkRs6joEEf/OM42bfa7RpR4jIdt594QjTGkShkuPRCvzug0zyelh9cDUvHXqN8brxXGi6UCjQAodxBjx87c17OE++Fq+3EoUmfCklX9Pb/+DooeF7n26LbmOMfgy58gAq87MGB+NwsLpFPMdht8yW3W2oSHi0sVS2hPB6ozz32lpGnsWs1ynxKTQmGplimIK2X2P1gddAW4TTWYY+GKTzNN6rUCjElo4t5B7PZWt0K7F4TPh0JtvxaT4cARkl7iEpJ+ls8LGx/igzvF68LW14Efdq1curaEg24At7UA8kIApru9ZiPypO/l+V1+iLUGjgiuUDYVgk3Z133slTTz1FZWUlt912G0899RR5eadXfWPSpEl0dg5RseV9QGdnJ8lkkqKi3v4sRUVFtLa2DrjON7/5Te65557MZ5/PR0VFBcuXL8fhGKAK6jlGPB5nzZo1XHLJJej1Q1d4++DiGgAq0x995ws1w6hlXFx1/qBrnV2sBEB56W5oEwOklRctRmn5OcdUI0ZFQ8mx4cCMev5XkE68g3XpNyg9mSF5fBnynqdYOP2jQxvL98Efa/6Iq83FvXPvZYRjRK/fNE3jiZYtTJg2gsumFBPeW82BHQ+RdNqwj7+GrvaDyP5WLjxvJZOLSrE2WtmwcT8UVDG+zMbYS1dSdOQvdOaej3WkA6fnKBOmT2BByYLMPg50H8C51cl151+X8Xrqiz0de9i6YyvnLz2fPLNoF2q212BQDKycuTKzXE2TD2PDu1QqVsYsm4lWuZD0r19dVc3RDuH3UqGLkJs/Dac5jD+SwGJQGGFewPHQARI6IwsmnMfKKSvTF0H8f46VdYO+X5qG8sjFqEqUarOJFZetYG/nXizvOri3M8l95iROp5PlS5ZTYCmAQDvK039jXMUELO5a7Hl5rFy5cND9tvki/OWZP6NXZGRZYkZ5IdOWrRx0eYCDb+3ghZZnwWZixrKrmF4+b9Bl4931NB17nGWTipl/3sW9fnvjn39GDnoYPXMRs1KmxNIRHfLbG1l56cU9qVmAo8lBnjmvX0QXQN6wCeldHYuWXiT8J4eBq+NXY9aZT0s5GdzRhPymyuQZ85g8behrdqaQt/4BqdPJgis+BpYh+saID+WJ5wFQZ9/G8hkf7reI8uwqCsvHMnF+zzFLTduR6t9FXfhfZ/vQzy2ifpTHr0YbtwLJpif3ko8xoWx272U8U5BXbeKEWsTiyz9y0v5LOqIgv70bjDGIaaxcsRxkHcrzd4AxTPHkQqoDUwm0hJhSPoWVfe+9porUW3PWIDzqT6V4SShPXg9WBXXht0FvwVoxX/gnaSr2F5qYU5XLykU96WxSfQ7ymjdYceH5ve594niCXXtqcWmFrFw5q2f3msaf6rewcI5ot88W/ty0lTmzKlg5TaSovb3xbS6yCCXBIfchvnDBF2je38w47ziuOO+KwTcUdiO3P8Do0EwWjlzBteOm0V7/LIlYEgs5OBwKR6Wj3L3s7mGlEB/d9Dpbjik4rE4Ug4WVK8/tO/lBg+J/HIIdLL5kpfD6AuS3q5GOtDBt9nymTlqJvHYH0vFappx/OZNHpewB1CRK22+YO2s62rjLTmlf+5p9OFv2c9Xy6RTZdO/J2NB7yMuh2kNolRorJw3v3h7zHOM3e34jfIjs4KQnEGUxW1i5VGzPG/Xyt7V/49ZJt2KQDSwtH8DCAbA2Wtlbs5fly5fzxMEncNY7qZpQxWUjxPXb8u4Wym3lrJy6kqquKmq31WLVWzOec6PzR7Ns+jIkSaLOV8earWKSOHLESFZOWMmOLTvIM+WxpGwJW7ZvwWlwsvLClZR1lLFvxz6unXMth7YfwmlwsqRsCZtbN2fOIY3aPbU0tjSSZ8kjrsaZWTqTBn8DOzt2YsDAFRdd0S+rYeM7G+kId6AlNH54yQ/7FdJKo2N/B/u797Py/JVUv3YY7/FuppQ5+PBVk9jcspn1ewRJfNWyq3CZXL2WV1Y9jVY5kzHzxPEG39xCZ8db3D7nCnI9+3AuWMr0MZcM6/72hdSQh/z6GhxFk1i5ciWxZIwn1jwBwLKLlnHIfYg1O9dQFk3iiMeYs2gphyOiANCly644swJA2cexL4y8+QFWXHE1ygtrmOk0M+n8Swj/7XdMnr6Qv09bkVnWk9zErIM1XL3YzufXyVwxr5KVc8qJRyNEDn2fsXOWoQu2EDjxMk6nC1PHEUJmAw6bBc2gYVHN2P1TiClvckyvkpc3CY+3nkhlJda2emRdHk6nhUtnXsrcornkPbuW1eFX2Ws9htPpZHr+dNYdbWT2qHHsU21cU3kNtb5aQokQK+cN/L499szvKDTmZNraGZ4ZfG/z93iKp7A77Vw6+1JmFMxA0zTWPPM7gvEAVarMCZPKeRedx0vPK4yKGqjVK4xZOAbnVicNUgMrL+3Z30vHX2Lvsb3ceNGNvPL6KwTzg8ycOJMSawnBHY0c3dqYeZtnV+XwrZUTkPY/D5tzGTfuOpTNb/Gp8RKXXr4Cpc6M7BNLT734RjA5aHnuWexWC3PKz2d723aKZxYzu2g20nEze9c/h8OZQ2mlBWeXkwBjcBg8aCMWMzHiZVy6j0nGMwXQhkJHqIMn3n4CY56Rm+fePPwH6jSxc/VBUVApnmSESc8NF49hVdsWRk0+u2OElZz9Prepuol6fz0rF62kdV8rcU+ckc6RrG1cixMnM+1j+WP3RhQUPnrhrYxR7Ch//wdVhQUEomL+NnXeVNrq25h1IMR1Y4yYTZfz9OGnWbpkKevfWv8vzmv0IJ1xeSoYFkn34IMPUllZyciRI1m/fj3r168fcLl//OMfJ93WT37yE772ta/xox/9iKlTp/a78O8HwZVG34ngUOW+jUYjRmN/U169Xv++Pkzv9/7PKvJGwPL+asX3BCVToV2oHOTmbSBJBGUJPQmiiSDyvLuQx10M4y7mlOqL6p2w8I5TWzaFaDLK5tbNXDX6KsbmjR1wGafZQCCmodfrUSQnSOCVNJRlX6Vpzz+Qtv8Fg5yDXq+n1FFKPKkStDtRQm0oej0Fkpfd2mwC8VYkSaIr1tXr+WkJt6CX9VQ4KzLl3/si15KLJElEtEhm3QQJ7Dp7r201+aIkdGbMeh2SFoOs38YU2TnWGaLIYcTa3oA8fipfH/8xvvTyn3GbtmP32JEkHeF4kj2Hy1Gm60Sxh1W3i4qpF3xzGFf29NHv/Qp1gyQxWdPxN0nj469/HBmZYmsx0zr9oAhrAIvRItaz5YEkUWArRuc7QWfIPej7erwjwD3P7KXTYOfD1nKuzZ2M0n0U5STv95TSUl5ojOFDQ5c3qtd17osTag4AVeZov+NQZA1FkjneFWb+6JQywuwASULW4pBVMOKCEYP7zeWbEOlyBuuw2yanfnDV4MkwIs+KXo2R0Fkwn8s2sXE71PwdCiciO4qGJoz1ecKDc9QFyPkDVIMG4QWqJXvf59eEyls5/25R+fGDiGgA6t8V3nyWPJhwJQSaxPU48pp4bkqn9X8eC0YTv+5P1GyqoeJU+i9XldhmygdODncKw+/uY2IfkW7MuhzqukKcV2zqv72aZ2HrH+HmZ4TnjacBnr5FVCUffZGobD7jJuRpH+53Lz3hE+Tb+2zT7BT7VaO9zs2oNyJJKtGk2mv5cCyJhoTTOsCxnSY0TSOe1DAbDZlt+uN+FuUuYkbhDO7deC/H/Mc47DnMlPwpQ+83KnwoXVYnLnkeBoOIhegUifGhC7lh+kJ+W/0TgmqQIv0AhScGO0ZJjKcMsom4lvhAjFPCsSQ/fe0QYwpt3DS/8qTLN/gb2NW+q7fX6qnCXgShTmRLTs9zYrSKZ8dkF98F2sTn/NFZz5IeZAVZ0oZsy7PhDieRJImSXCtKqnrnuR4bemIeJElid+fuYe9nd9duOiOdmfG2XtZnik91R7pRdAqyJOMNepEkiQn5ExjlHDXo9mwmW2ZMsqtzF5Ik0RRqIqSGsOlthJIhnGYner2eyYWTkSSJiyov4pW6V0ioCXLMOXzmrc9g0Vm4e9bdSJJEobmQQCKAXq/HF/cx1jUWp8WJJEkoioJer2dO6Rwecj2EzSD2X2ovxWFyEE6G+12TiBpBkiRiWoxIMoLD5MAWs2Wugd1k7zfmMulNhANhFEnBYrQMOj/Jt+bjbfWi1+sJxVUkSWJ8sQO9Xk9YDSNJEl+c9UWK7OL97XWM8RCYHTSEmnhs32Nc4CpGa4kwW2dHliRkW/4pP4eDwpIj2lZ7IbJeT32wPnMuHdEOgklRFMCpMyEn4shmJ3Nyi1hdt5pnjj6TKdx1xphxI8y4UZi0F01Ca9zG59Z+lojUzm/0OgqzzrNg1Axy299Ft/m/WTX9KvRlZuSnv4pcMJGYlkRxVaGYrRw/4kanOghK4EVD0lQSWgJJkvjMvOX8/chaCMPcymWsaVxHbenFhLseRk2Kd7ZUNqBvr+YGr5dXDWDqOsq3Fv+YnUkvLydqKHKY2NoZJMecwwzzDP68789EteiAVW9DyRgOQ37m2ZuQP0H4Faa8SUvsJZnfplcsYdPx1czTjJzQVB6seRCfFmO2plCrJVnfvF74HZpzM+uomkqtv5YCSwEmowmbwcberr18deNXmVM0h3Gm68T416Bg0MmMLRLPIP4myK3ghgvmQVMllWUBMBog6sn0uXLpVIiHaJM1JC3JHdPvILA9wNqmtSwoXwDJCElJQpIVvIlubllwITOrvoNsiQrf2r3PIOt0Yjyy6na4/jFwDl187ID3AJIkode9t/Nop8VIqzeMNxxndKEdk9FAkcNMV+iD0U8OBafZSdATRK/X0xhspNhejNVgRZIkHAYHefpybF0SAUVmQsEkJDUBsowa82Xe+c5oJ/u6arg0FkcXbGdm1eU8cegJnq19Fptm+7fhNYZzDsMi6T7+8Y+fNQ+oiy8Wao2LLuqdK54mxJLJ06sAeCbIz89HUZR+qrn29vZ+6rr/4P8IRl0gqrY2bofjgpQO6BVydAmiWlxUxTzH2NW+i0gywqLSRYMu4zTr8UXiBKMJ3tznwWscRffcjwDgS3SgaDkEY+KdMshWkqpG0uaArn0Qj1CoD1PjNdER9IBExgcG4FD3IRr8DRRaCgcl6IBMtDddIQ1E4Qh9n8hVfXeIgtwcpKAkKohlYXSBDWjj/NF5uBqaiOdcSbvbSE7iQhzaXLr8epaPWc7a48XcsmSOIOjCHnGPuo4KM/7FX84YHQ+IiA82/FxUXh17CQQ6RIES3RlUwEuVkR+j6ZhtzmMHoKIyu2g28omjmcqomWuhN4HBistRjq51K12h7kE2DC/uaSGpathsEkUzbqFSzoO1/yPOwzR4MGNcYS4mVaOLVLn3IXCsK8ZISaZogAz9pJbEqOhFldQ00kbd8ZCoYnsKyNGL58+f1HEa1v2nDbs+CWiENANnx9VjEBx8GXIq4ZoHT03ROe/TQ/+uGHpXcoxmXf9A+9DP+FDoroV3fysKiZhOn/wcEPEwPP858NSLSpXxkHhOgymT99wRos00DPCgAeSORJNOnoqa2VY2fM3QsEUU5TG7wNeMPuXBpiYHMIA+/Lo4vseugLmfElW6AbY+LP4BickfxhuMkWfraRsi8SThWJJcSx/1SnpyFO/dpulkHZKkEowmiSd7ijoEoiJVz2Y8e2RrPFVcxpiqNqhqKv6YH6fRySjnKPJMefxgs6jufP2464feWMqov9Bpob4rCJJdeGTJMjosmGShFhyoEuZQSKgqEmBQjIS1/p6W76XP6F/frSOW1DjaHqCmycvxzsApkXS/2/07ar21XDbisn7920mRVllmT6bT/WpaXe9vFv87K3qvq+iHVd21wx/FbtJh0ivEByhcci7QFmrDqBjpDHfijXp7FVU4GRr9jUzNn4pJMbGtbRvnlZ3HuoZ1gOhPA/GA8E1LVfxLVyceDOnKqH/Z/xe8US+jnaNZ17COdQ3r+OSUTxKIBbDoRFukl/X8afmfMOvMHPEc4WD3wcxYJpQIZQpQ5Fvy8cV8RJNR3BE3TqMzM/ZJ23yAKCAB8Nlpn2VG4Qx2tO0gFA+hamovBVi62FY4HiaajGLRW7Doe45poDGXMVX916QzDfm+uEwuAvEA8WScmRU5VDd6uX5mEdRuIJAQ13JhaY+C36K39BQqiAXBYGVv514OdB9Ac45hBAZch1J2E6nzOyNIMgE0dktxFmkqu9t3Z35qCjThj/ux6W3o5ZSPmcHGpLxx3Drl1oxn4VlvLwom4Nv3LBGT8CLslKHXKL94KjpJAlshxkMvwOGXQFORAqKP0xxlRHR6GqUk4zU9B9Bok1RGmvKoVcOYFBM3zZrJ9gY7zZFORrnGU+I+xP5YNw6dhqIluLFkBVUv3gNImPUWfuccj6njEJb2wxwpnkBU82O3JEhqSWwGGxNcE3ik5hF2tu9kSfmSfqcUUKMZg34QQpSfLf0ZNZ01/P3w33tV9/7kwm8SN9pY4g+ysWMT1Z3VoKmMlkysVYNsaNoAiFTquBpHL+t5p+kdtrRu4ZaJt4j9Zc0Btrdtx21VgHmMLrRx1wVjevpOTz3kpNTo+eOgK1UdN9QlxgmX3y/G5bKeFknDhIzD4GBS3iTWN6ZEQrEgQb14H9pCbdyzJKv9do0W46auY9C6VxTd6Tx8UpJuX6cQZqRJzPcKDpOOI20JOgMxClIFSYodJk50hVBVTcx3PqCwG+wEYgF8MR9H3Ee4Y9oddEZEtuQo5ygkuYD74jbi5lQNAkUPJTNItG8EVwXoDGxp2UIg5mW6qoOIl3J7OeW2cl478RqXqGem2v1XxbBIuscee+ys7Xjt2rVnbVtnCwaDgdmzZ7NmzRquueaazPdr1qzhQx/60Pt4ZP838Hbj25mS8ZdWXTr8we+5QOEEuPzn8MT10LgNTE78uhhWzYc/oYH97EmQB0N1RzVltjJKbINPyp1mPe5gjK8/uxdPOMa4qgq2dR9gx6b/Zn/XAXRqGYGImHSFwqnr6rBDSwDcddiMOmKGAtoCPgrtJtpCbWLZeIjvbhJVlabkTRnyONMRvOwOOqbGMMi9J7MN3SGq8qwQNYvKjllYPK4AVYNR1ig6LcKqYwp/aztGkcPEz29YgC8cp8Jl4avJyegUGdr2wT/vEitPvR7qNsJTN8HEK2HBnbD9T4I4KJudIiQ0ePcBQegdXyeWP7EJnOUw4yZReXX9T8DfCpf/rHcqHICmYYm2o/zpIrjxCchJTaJSVa8A7ilaQs24Zdy39T5mlC4E6RlIDcp7XYsrfoHVUYbx2Ev4Ym5iCVWUne+DAy0+LphQyJ5EigjNS6WKdhzsqRA1AEpzzNhU6NBbTloN+UCrnzE6AwYS/X5LaiomvZ6Dnqx7lR7w9SFZh4JdlyAMeGLSe0PSteyBiA+HfiQxIKjqOT1zhlNAIibahxk3n72Ua0UPataEvG1/z9++5tMn6WRFPP//+AwYHTDtBqEcO92K2VE/6EzieA+tBm8jXPcnQVi+8F+w7Y9iOWsB3PDnntT0M4XRLqokt+wR5+SpF+9h4SRBevibMThTbZbWpy9p2y/eH6NdHP+2P4rK4Xlj4MQ7mcX+cTDMXzcf5K+3zyMnNbHoShlf51r7kHRpgqUvSSfpkGQVDfCE4pnBd5qks57F6q7RhCDC0ySdP+ZHRcVpFEqfr839Gk8fepo9HXuYlHcS0/cUSVecY+X5Ix72Nms4NDDpJFRktKQ43+wqfqcCVVVBAoNsJJFF0nUGotz26DZ+8KHJzKw8lz5APXhme2Pmb5fVQI751MYcToMgnlqDrVQ4Kk6ydB9Y81PvS9Z970vSLfyvVNXnPs9YX+L+JOgIRDPP23uFjlAHC0sXsq5hHUfcR5hTPOeU123wNzCraFamoMEo5ygOdR9ivGs86xrW4Y16BUkX6sCkmPqlgfaFSSdIuk3Nm7hmzDWU2cr47e7fAqKaYDAexG7oMXtKj2HumHYHD+x+gEBWteY0SVdoLqTOV8eqw6tIaknmFM3JHIcygLr5gkqhLrfqrWhohBPhDGGiaRotwRZcJhfdke7McuntpY+/L9LprYP9nkauUbxH7qib6+dUcN2scuTtf4Rdj+Of8+Fe5w5g1VmJJCMkY2GUZAwMNpoDorriQe9RrsyfIsZMcMrBuSFRMIG/Vk5iXegwB6r/xMamjawcuZJtrdvY3bGbTc2bKDQXgpwKUKWqza4YsWKIjZ7pMY2nXVIFSQkElT73tHgKfPx50Ye8dq+wTZj7Kdj6sPBYtRVzItyCCkwNeDigGIgk44zU51AbDVPpqBSKTBSaFR155jym5E+hpm0X42VwJm343tyF6gBFAvLH4briF7Dux9CyFy1/DqBhbXsePA3Y9XZcJhej3E3s3fYAS8qX4I16MelMgszVNIJqjII+74rdYGdh6cJeJG36+68suBe2P8KPmqu5DUBVGWkpojB8nHZN4/JRV/By7cui/bNXUO+vp9BcyJWjrxzwkrZH6oB5jCmw9RRAUFWhep+YWidvDBx4QYwPQl0isJwaX6sSHNXrKFYEKV1qK6U70k0oHsISCxBMtZNNgabeJHjhRDH2fvb2noPx9vhB9kVToIlCcyEnfCLo3hxo7keqZyNNUp4t2E06mr0RVFUjPxUYLHaaeLWmlT+/W8dt5408a/s627Dr7YQSIXa370ZDY3rhdJ478hyAKPQRiVKIDNYswcCK+4j/9XxIhClyVLC7YzcmFMZoCkS8GTLZF/bx5utvvk9n9v5iWKPDa6+99qTLSJLEs88+O+Bve/fuZcqUKciyzNKlA3tIZGPfvn2MHz8ene7sDWJPhnvuuYePfexjzJkzh4ULF/LQQw9RX1/PZz/72ffsGP6doGkaDf4GHAZHJrI4GN448QaH3IcAONB1gK/O/ep7cISniNyRENgCBePxho9DJIoXCWznnqQ72H1wQI+vbDjNejYcEVGLn98wnX+cKGN3+26m5k/l1smf4KEm8ITF5LLdl5KR21NES1sNEjBpfDmv1caZXDiCtlAbzx5+lmcOP5PZR65p6ImTWSc631/t+BVVy6oosZUQiEZ595iXT0xSBakGNHkiTC51Qoc5MxBKw2bUcfm0ErobDtAFvNOkgg6WjivAadbjTE2idIoMiSis/ZEYJAEs/DzMvlUomrb9EQ69IiJnJkePSgZEp73yp1C3QUzsxy4Xk/u3/p9Q/6gJsd7LX4Fl34R0OqK7DnnTA8ytfQ2cTuFVmCHpTmQ2r7O4mFE4g19d8CuKrcVQOgui4rnuFRUvGI8EuMwufHIAd0jcHwlBALT7o1j0Ck2eMNfPLWbL0bBQJTjLhQqj8/CQJJ3VqCMH6JAGH0RomsYfN9Ty5oF2PmwyifPug6SWJN9q4vc39fhppQfLZE1iTgYHQcJIdCdMDJ6gdBbxwhcAsF/5KF1AUBvYt+esQGeAjz51dj0RdUbxjKfhrhOTeS2ZUtrMHmzNoZFTCVf8UqR7th8Qz/2uv4rvLMOkT0Pd8NdrIG80uEbBsbdgzMU970zhBEGGgfB/g0GvUSKp8oe3a3ENp4DXih+L97B6Fex+Qry741aIa9e2D1Tx7Btbt8Abh+HC74hUwjd/AAUTRDsgyRDsEBH9Ay/0kHQV8+kIiOv/cnULN88XEf+H3z4u/DHz+qgBMyRd78CDTtYhS5BAxRPqiZCngyZvt7zA4aDj9FIn+yCWEG1hmuxPKwEcBqG4HeEcwdfnfZ2EmhhSFQ1kSLpSl5jI/3zNMb6XUtKpyISios1PG+Pv79pPZ7hzQCVHNhJaMqOkU7UedWhDtyA3a5q87xlJl41xRTZOdJ1a0KHIWgQdomrusEm64qmCZM+GlCIC0iTPuOXiX1/IugHb6MHQ4Y9SYHtvSLp4Mk51ZzXemJfJeZPZ1baL497jp0zS/XTbT2kNtVJpr8w8tybFxC8v+CWtwVbWNawTqk07dIY7yTfnn1RFlVbSAVxSdQkuk4tFpYv4+Y6fU++vR0XtpTBKo9RWytjcsRnVEEAsGUNCIs+cx97OvWxt2coFFRdQaivtRSoOhvR+gvFg5m9/3E8wHmSCa0KGpLPoLBmF4GAEQFpJlx5zDYb0mNsdcVNoKRRKnJRq3x/p7kdyphV84XAndVKCNt8RmqPtmd+LyhdAc6pa7VlQ0jWFWtio+UGSeaP+DQAuH3U5XeEuNjWLYn0xNdbjI2bof6/OOnKq6NAZIKUQDugHIELNueI9BjEGc4n7HjQW4ZQkWpMhQGJMKAA2E2gqI3VWiEKlXSi9RmoKu2UdOcYcpuRPYc2JNaDXyInoKEq2EjAU4Ix3ivGrrEDJdKIHX2ez4gHg0frHQdKwqyqoKqOiMY7Ej/DO4ef59eEnmVk4k6/P/TpSPEwADWsfQvakyB+PJeKl2FBKq6bitJXyJX8r/yyYyRWjBUnXHGimwl5BS6BFjHVTuKTqEnE+KQQS4phHF2Y9b+37RRZMearYRf448TnYKUi6lOJ4b8deVteuZpcc4xNGQfCU24UvdlOgibGxIMFUXxZX43SEOkT7DGI8Yy8BX1bBJk/9gKcbjAf5+ttf56YJN9EWamNq/lSqO6vpjnRnKjyLnURg3X3Eg+3conTz8ckf5/JRlw/v2g4Cm1GfqaCeJumunVXGqzWtHGgZnmL9vUaa8N/dvptCSyEuk4vpBdN5/cTrzC+ZD7JeeLAas7J/9Gby9HZOJGKMzhlNW6iNMmMuCm2QCv5JkoRFb0GR+gdA/i9gWOyX03lmqTEzZ86ktbWVgoJTq/i0cOFCdu/ezahR78mUDoCPfOQjdHV18YMf/ICWlhamTJnC6tWrqaqqOvnK/wfxwrEX2Nqyle8t/B4JLUFbsI1QIoSExKbmTTT4GzjQfQC9rOeWSbcMGQH7/qLv0xHuYGf7Tv5c82deqX2FWDLGypEr339VnWuUSKXKqcQXqQUtiU/S9VdanWU0BZpoDDTyoTFDKznTaoxJJQ7GFdn5XM7nSKiJTAGHl+w76PCLCWddRxijYiae9lJsq+EVJcbq4J8AkOLFdCT28PCeJwhEEpTlioHgyUi6dLRJReXl4y/zySm3c7jdQ9xfSEcgSonTTCSexB2MUeI0iUltPDzgtlxymKBeIShZue/aqUwsGSCtM+ITHfns28RARpLAaIPpH4GKubD/BSiaLEiDsLuHJDDYwFbQn+Da+jA074Z5nwKdWSjqXv4SXPeIkOG/+k2kbBVQMKvwjbdHkYFRdFaZQcsV95Oz5g48Uc+Ak4oCSx7HJD/tvij3PleNLMGKKSWsrm5hRL4Vo06mPD8JRxH3U5JEql8WMTgY8lDp0HpHATsDUawGHT959SDdwRi1nUFuXTSCkv05vUmhFJKaiiIbex97erAcP7VJLYBF9ROQrbgjZ0lJdYqwKXG6AF/iHAd7jEOrOoYNnannfux+ErY8KNReEW//Sf5w4RoJS74iotmN28Sz/vydcNmP+6eRDobOI/D2z8TfXcfEMc3/HEzMKkYw4xZQjLD3acgf2E8zjVZfhFf3tbHAPgyi02BJTZJGw+OpIKK9WLQtwQ4UVRCzZR07oVMSE6vWvYLYv+T7Peni6XtnT6kTz7sbplxL4g2RfvPU1gbWHepgcqmDHSfcfPHisRllXQb6rBTwLOhkHTpFIkGS7mCMAy0+ttV1Mypf7POIr4akfHbGF7Fkb5IurXLLMeb0O6aTIhX8mF6Zx7VxM2u3d5NUNRRZQtHpONzmx2nIyezjldpXaAm2nJSkU1UNKaWkS2ruzPeRVDqmUffeDMbTk6E0XFYjB1v9gyzdG2lyozlwGu/h6AvFv2ykVazqSVJSFcOwSbpp5Wc3pf2JA09wsPsgPzzvh4CY3BpkA/fvuJ+d7TuptFcyvWA6a6xraA+1n2RrAqqmsr1tOwBTC6Zm0h7V1DOYJpm9US9JNcnu9t2Mzhl90u1WOiq5fcrtVDmqMmMhRVIoNBeyN1X9eDA1nt1gz6SiglDSGRUjTqMzQ6hdl3sdICaSP1n8E0ptpYMeSzZJBxBOhHlg9wMAjHCMYEfbjsxy6bFUMOKBV++Fi77Tq9BYmqRLX5fBkC7okj5eIEMEByJubI7ex5tO/Q2GOvmhPgj1r2HPssooKJoOiMIO/VSew4Sqqfxixy8othRz3djr+NWuX+Eyucg35zPSOZItrVsos5Vx96y74dXviJUG8Fs7U2iaRme4E5fJhSIrBJNh2hz52HxHSSh6AoN1RyYHrPwpa+NdrDr4J+6UEqyyJljStJGOaAe5iglXXEr14xFGYkRGzpD616kWSvPmUGmvxGVyISHRoshcUZJPUfd+TriuZlq+BFPEM0bJdJrcQYKRY0g5wjIUwP78XTDz41RqCuukGM9u/AHkj2RX+y6+/+73+UbVlQTRsA3xbA6IgvEAXO0Yx4NNm8nJqaKgeQ9fGncjmjEXk2KirXkHRBO0BFuYnD85s+qnpn6Kcbnj+N3u31FoKaQ92M4N8wqZNyIrCFi3Ucyfiqb22h8dByDUCa6RaJrGj7f+mKSW5G7bBBYpYg5SZitDQmJ17WpWBJsIKQpmnZlwIkydr47mYDMzCmaIMeuF34aNvxBBbYAja6B0JkzoTaztat9FXI2zo20HcTXOwtKFVHdWU+ut7U3SHX4Fjq/jmJSA/Fz+fvjvZ42ks5t6+uV8m3i/SpxmPr6wir/vaHzP7SCGgzRJV9NZwwTXBADmFM/h6Sue7llogIJxn8+bw9GEj4OplOtSXWpuEflgk5LvFYY1a3n00UfPaGeapvGd73wHi2UQP5o+iMVOfTByNnHnnXdy5513vi/7/iBD0zQiyQhr69fSEmyhPdTO7o7dAPx616855jlGV6Qrs3y+OZ9iSzF3z7ybY95jvfw6BoIkSRRaCpldOJtHeZTH9j0GwNqGtSwqXUS5vXxIX7ZzCldKZpxTibdNDO59inL6KWKngEAswHfe+U4mIjEUlJRXwe2LxXH29YEptJto90X525Z6/rm7GUe+Db+MGLA1bGWdQSFBHJtRR1tHHuSqhGNJwvFkxguh70RvIGiaqET6ZPUbvL19El4tjBWFcMoPr90nSIdip/BkG5TkiXgoyTFx23nTmVzqGLhjshXAVb8eeH3XKDj/iz2fLa6Tq4T6eoRd+Ut48ibY/AC0VoNrJMlFX2L9tlquTL7cmyjxt/Skzg2QzvedBd/JTEL6Is/iRKWe//eySGdUNVhd3QJAXYpAi6Ums3mmVMJmTiV0Hx/6fIBCLU511uG0eMN89q87UDXQKxKqJiJ1180uh8PGQZV0ur5pPGmSLnpqk1oAXbibsOLMKAbPKbImuwY1giSBL3kOlXTnAjqTKF4AgqADcJSKa3+mJF0asgyV8+FDv4PXvgkvfhHmfQbGX9Zb8aZpQrFmLRTG9556kS5rccG1D0NbNVSd1z/931YAC+8UKS1D+CeCSAUF6OrPE58c1rzMZAhbIVjyQVOpjOpwRW5gnvY06IJCOdh5BEYuHtiqoHwuLP0ajL0UAHcohtOsxxuO0+qN0OoVKrkZFTn919UZhSqvT+BBJ+tQJAlJSuIOxXjnWBdrD7bzsQVVKLKEL+om33yaqsg+SCvp0r53aUXScHzBMkgp6WRFx1XTS3lze6qAkgTRhMaLe1ooH2uk1d9NOJakzld3StHuhJYEJIyKkWRWuqs/Iv7W696bSYg33FuymWc1ZPqpkyFNHjUHz9J7WLEAdv61R5k9GBR95r6cDJqmCSXdWU53feHYCwAk1STNwWa+sv4rmBQTkWSEL8z8AgtLFyJLMvnm/N7kUAp/2fcXNjRt4KYJN2VSQdPLfWPeN8g352cUXWnrDLPOjF7W44v5eKf5HVpDrYK8OQlkSWb5iP6KxAJLQaYghXUQdVZf8s4T9eAwOHq9S9lE4QjniCGPJU3SpT3fdrXtYlf7LrGuo2ddi86S2Xc02AGeZmjeBVU9Y99TJeksOgsG2YA70kOGp0k6f8RDef74gY8x3J1ZNpuozLMPk+gZAukg/o/O/xFFliIkpMzkPq2Umls8lypHFSy6G3Y82jtF/CzhkPsQ39v0Pf53yf/SHenmx1t/jEOKUIBMIKvSbzY2Nm3k2cPPsnLUSv588AniyTg/MEaJSRH2Vz/ImNwxFBmcWMJB0S/JCpWaxHcXfjfzzOiDnSwZcT5IEnaDnRHOEdR6G1iWDKPJIXapRUw7/6aenTrL8ckOJiZqKfCMYleuUIfZLQWw63GqJJkE0CSpfKXqQwRdlfx+z+/ZEEsSlCVsrpOT2r1gzQdrARfU7WBZzIHkEPeEqDD6L7YU0bp/FWr8BdqKXFzsmgKtNSIdGDLE1qS8SbSH2lk2yYzZkNU/dB4WQbP0HMpWKFJcj60FbxNMvoZQIiQIupl3s+joRmHTgXj+l49YzqbmTWzrPMQ8YwGV9kqOe49z/477Abjv/PsYlTMKiibBlb+CR7MqYu96oh9Jt611GwA1XTWAsPfJNeVy2H2YuTnjYfsjMP+zIkOn6jwOuKsh1ElYb6Ur3JUJApwJHFl2C64sO40R+VbCsST3PlfD4rH5XDal+ANH1qVJOm/Me9K2MBs21xhmHF9Ht0U4PxameYK0qOL/ON67PFJgyZIlHDp06JSXX7hwIWbzObX6/g9OgngyzrbWbaxvXM/B7oMYFSPBRJASawkF5gIuHXEp5bZyHtv3GBNdE/nc9M8RSUbY37Wf68ddnxlsLSo7dXKtwFKAXtZTYC7grpl38UrtKzx7RKRQj3KO6iWrPtc41H2IV+te5bOlF1EtxZnhKKNLi+PSZLyyRFJNDuhDcqYIxUP8Zf9fiCfj3L/0/pNOsj46r5Lzx+QzrmhgSXuB3cj6Qx1sqRWDL6fRTjARgXl3wJYH8eWXc82Yq4n5xvHMjiasuRBNTfiiCRWzQcn4mwyFPN04ToTrScidFOAGkkjoCKUmPy1eMYEtdqSVdH1IurBHdII6IzpFx5IpI89uCuFwYHIKsqL672LwcNlPwZgDUh2avbRHQq9pwsi/dKZQWw5ARpTbyzMDz76wG8wougShYJLPLh3Na/taqe0M8s2VE5hc4sRp0bOuQQxOMiRdbhUcXyv2Pdj1UVUKtTidaoJNRztZNCafv7x7AlWDG+ZWcP6YfPJtBmxpTyxFPyBJp2oqcl/ljc4ooqD+lpNexgzC3SSMTryh4eQzniaCWQqOUDeKLOFN/IvJ5fUmQfhkqxtlPSz52tlP+3GUCJPmd34lVHWt1TD5GkF6Gayw50kRgQZBzIW6harhxieFoqJg3NDbPxn5QBZJFznN991oT5F0RRnDfZ2vDluiEmPcDXajGOT7mgdXC8pyZvB+qNVPozvEwtF5tHjDLBtXyK/eFMq6vIFSCCVpQHWwTtKBBDazjDsUZ3+zGHzuOOHGaZHwxrzkm/L7b+80kCbpjFlKOpNiOql31YBQU4SVrJBnM2Iz6cAngmmzqvJpbAQFG8/tPUrdsW10Otp72qchkEwVjtDL+gzZBT33P30O5xqdgZ73SpYgx6InmlAzasGhkNTEtQkMI91/SBRPgTvWn3y5QdrogRCIJgjHk+fMk+6Vulf46/6/AhBJRnCZXJxXdl7md5fJxYGuA2xr3cbcYpHSFoqHeKX2FTQ0Htr7ELOLZ+MwODKKu3Sa55gckS4/Lle0K5Ik4TQ6aQ+1s6llE/OL54sJ+Gkiu+DEYEq6vlUya721lNhKMn6EACXWU/cFTRNgaeKxOyrGYnpZ38tv2KK39KTgpgmMbNU+PZ50fT3l+kKSJHJMObijWSRdqj8Jx3uKZmTvGyCUJvX6eHHlm/OFCrT72JD7PRUc7D7IrMJZGdLq0hGXMrNwJgBT86eyuGwxK0euFAuXzxb/zgGqHFXIyBzzHOPNeuF75VN0zFcVjiD38lhO47kjz9EcbOaP1cJvVa/ouWLO3eiOmHnD+CZHPUdZYs7H6guD3ogi6TBGfEzc9zJMuEKM38LuXgW9ZhfNJtJ+gPLO47TpZA5GXGTnz2hAnX4MS8PrMCRldgHkjsRw1Sp4+AKqNAVL4WSq2o8xIymjr1jGttZt/OPoajS9GfvpBGqWfRNevgcJSQgVdCbhAVsyneJEjNaYj86khbg3REnrn8H0Ctz0NFSvojzYhsPgYH7xfNZV/5XuQ6upmHNHz7b9rSJYlo3iKXD0TTG2GLuc7hRZnGfOE3320TdFAFaW+eSUTzK/aB4/WH0rtWaVYr01Q7wD+GJZSiyDBa74hbDl2P0kHF3Ta7fxZJzd7btxGpx4Y14USaHAUsDYnLEc9RyFY2/CvufA5OCdrmqO5V/Cy2GJse4481zTM6T5mSI9FjfrlV4k3Mh80R7UNHkBjZVTT9OP+Bwiu73MDjqcFPljYc+TmOIRSEQx1G8R30f9mXv9fxnvKUm3bt2693J3/8FZgCRJPLDnAVwmFytGrsAb9bJ8xPJ+3huLShdh0VsyMv30oOx08cDFD2BSTBgUA3fNvIvbptzG7a/dzsHug+8ZSRdLxvjD3j/QFGhiZ9tOIi4nV4frCaKyXNXznCRzwn9iSB8SEGkNRsWYuTaheCgzGOqLpJrkFzt+wf7u/cSSMW6acNNJvfxAeNI5ywbvhAvsRsLxJE6znlsWVPKup1BESOd8Gm3C5fjf/Cw5xhwcrkpI+EkkNYyReTgTE5AtWznq2Y+kDU0M1HYGCTRfwXRTlGPK/fzX4nzu26wj1KHLmKS3+iIYdLKIEumt/fybqNsgVEPlcwRJ9n5Hi2bfKiTa5XMF+RZPDQLspdBeI0iysFtMnCZdJYiNivnD2oVRMTJ3pIP/OW8hZoPCRRML2VLbzYKReZlqTt2RbhwGR0/ad06VIAP8LUJdNRDCbip1CqpR46GNRzjU5mfjkU6+vHwcy8YPUJW4rwdaCglNHZiItpeIgdapIuwmbnS9N0o6b5YHib8FRZLwxD8AhWiGA12K8EkXJZlwhXgebadmFzFsWFwiBfTwa7DuPlEEIg1FL5Smx9eL9yHsFs/5GaY8ZSPtmdl9Oko6ECRdsKOneqyjDJO3ljzVKDyjKhf1+M3lDm3AnFQ1vvVcNdGESq7FwOcvEKRB4mTpiAMEHtKppU6zwuE2P20pNfHBVh/FrhgRtLMShYeewEo63bU12Hr6204rtlLv/lUzK+A1MWb+9NIxvLWqnVjUiCoFOOKuJcdOr0nSYEiqSZCEyb5KMpPCk24XQqeoZjtTdGSRdEa9gsUg7lM4nuwJXAyCNLl4Kuc7GGo7g3zhyV08cuvcUyfShlE4Im1vcaYkXWuwlacPPc1npn2mV5r0/q79vZZLE2ppuEwu3FE3P9v+M36+9OeU28vZ37UfFZXvLfwe33/3+9R01rCodFGGpCtMqykshb3TpBDFOvZ378cdcQ9qUH+qyCbFBiPp+hJYR9xHuKDiAsa7xvOZaZ9hct7kQQ3lh9peWpnVHmqn3FbOjxb/qJf3nEVv6bnOaVV+H7P7tNfeyUg6EMUjelWpTKWRhePhfp526XFpMK2AlGQkJDTEcZh1Zrj4eyfd56ngU1M/RSyLcL5tym2Zv006E3fNvOus7OdkMOvMlNpK2dG2g6Oeo9w2+TZcplxm1m7hJ9GGAZV0OcYcGgM9FidfmfMVJudOZvWx1Vw56kr+cvAvFBVOwWifxMX5BVzSehxqhcceLXtg2kfE3/k978y1Y67lCs2KtO4n6PUGdvrsvSp6ekJx/qm7jHFj8ymduACO/F70v7IMl/4P5q5jPDLr40j/vAvq34XxK7ix6jK+UfM3SnLHMKNwxvAvTjYxaskTBO3Bl2HajRQnVI7qFFrHXALHn6XYPBb8beL83v0tDuDhT7xIXEtCPMQrex5m8qzbxbOtqsIbNoukBKDqPLSjb6CdfzeywUqXJxUUM+eJMW8iItZzlMD+FyjvPAhqgmYtzmi9ldun3I435mXV4VW9FKAAlKU8lXMqBemdiIoxL7Cvax+RZITrxl3HEweeYE7RHGRJZmzuWJ49/CyqrgIZ2Lrrj/xaFwHPAcYWTOOOuI2KhP6spWE7UumufdvsfJuRH3xoMmOL7Fj0H8xgc3Y7OjFd3O5UUD4XJJkZHXXM72rigoQJkIXdRixw0gyMf3e8pyTdf/CvB52s46FLHhqUVEqjb9TxTNFXxm/VWym3l3Oo+xDLKpbhiXhOibw6HVR3VLO6djVd4S46Qh3MKJghJNAmB88ffwEkmYuTBl6UZQ53H86QdMF4kOZAM6NzRmcGb5FEhFtfvZVrxlzDjRNu5Kj7KN9651vcOP5GymxlbGndwtaWrUzJn8KHx304U3lvav5UbptyG2W2oUuFnyrSJc8Xjs5jxZQSDu90ZqKrYVkmrsZxGBzk64xIKHxi5E94uL6JPJuBencLGPdT166ycGAxGAB/396ASa9w39XzuWeDk+5oOxYjhNARTJF0bb4IRY6Uv5neLLwnspH2WWvcnjHjfV9htMGYi/p9rRVPgb1/E4b1RakqifYSEakbJgyKAaR4JhXApFeYPcLcq9x6Pzl98VRx/Q6/CnM+OfCGgx0UazJ2i4m21g5e3KPysQVVAxN0kFJp9J8Aqpo6sIeVvXh4aZehbjCPxRM+R0q61hpRIGTZN3or/Oo2oikG3PEP5uBmUOjNYiDZLarrsfDzgnw61xh3KRRNEUVddAahbs2pFCTezFvO2W7dKSWVNyYRTajoh8upXvQd8T6m+4W80VRWv8zFiUZUWYPKBVkk3eAecMFogoOtvgzhlWPpOZAVU04SwR5ISZd6d3KtCrvqPYCIjNd2BjEaxQTwbJF02Z50qqayo21Hv+p9p4wMSSeOf+XUMmLbLSKVVlKwmXS0dptISN0k5DZCsSQW/SmQdJqKhIxe1gEaSVVDp0iZ+/9ekXRdgR6CwGJQMBtEnx2OvTck3Y4Tov890OKjwH6KxLs8cBs9EJo8War1AfDA7gew6CzcOuXWXt8n1SSSJGXGMJuaN2X+Zdtu7Ovc12u9viRd9jP9aM2jfGn2l6jprCHfnM9E10TKbGVUd1RnSLpcU25GITYQHEZHJj00TeadLsptPQOZwYovVDmqKLQUcvWYq3lo70NEkhFKbCXIksxFlf3HBCeDIitY9daMMqst2EaRtaifCidN2FXYKxiNBdzH+/nPpq/TydJdQaS6+6JZqqKUh2QkOQBJlyISA55aQc7LCvnmfMw6M/X+gQ33zwRD3e/3EqNzRrO+UShZ55fMF/7LJfOx7vhFhuyp99XzRv0bzC6aTWuolfNKz+PasdeysWkjk/MmQyp+c0H5Bezs2MmU8VcjuSbwaQD3/4ofS2eApwHe/qn4nBUsUmQFc4EgNxRHMaGgRosvQlmqGurxzgCdSgH25d/G6rLwnbJRmSqkjDgfRpyPBELVXvMPePw6KnIq+XbSiWvJj0//WhusYiygt8C06+HoG/DkjZTGu+kyKGxy5qPLqaTg0ofgbzf0nBvAn69EP/MWbJrELjnJK7WvcPne1cgl00X/0ifArI6+gB91vIvFW8M9LKcr3IWMLKx20n22p14E8Df8HAcadr2EX2/CorewfMRyNE3jn0f/OSC5CoCjFB8qD2/+EXfM+yo2g419XftwmVxcNvIybHobi8uEwm9MzhgiyQgNnTVUoPG4EqHQmMPY8sXcNuU27Jv/ILIOzhLS6a7njemvrH8/iikNB9kBi5MVtOkFkwNKZ2DZ8zT36HKhaCwkwsLnOOL9D0n3fh/Af/DBx8kIuvcKE10T2dq6lRePvciqw6v46dKfnvFgbSgUWYu4fertjHeNR9M01jWs48G9D4KkkI/MKFNeRtn3+z2/J5KIEElGWFa+jHkl89jftT9ToWpj00ZunHAjr514DYCnDj0FiGjz5aMu5636t7h3472AqIz0qamfOqvnkq5EuHySiFzZDDYa/CI6m5aF2w12XGbRke+pDyNL8PUVE/jqqgh6tZCG9p6GV9M0app8jC2yYdIrqKrGnkYPKyYXk2czUmQt4vEDj4sMMFmfUdJ1BWPkWVOD0uwJ7YlNgvDJrrxkOruG12cTWvk8EVU88nqP113fqOApwqSYiCR6FIUHuw/yvU3f4+OTeqpGtYXaeqfEGW2CTDn4shg8WfIFmZitPGzfT5GkQ280cuPSHC4YMWdoVYVihGRvGZOqqaiaijIQSecoFRU0TxWhbmSrC8+5UNJF/fDPz4u/F90FaU8dgLZ97C2+lrePdHPZVC9ThlCcfqCgM3GirRND7T5KHKXvDUGXhjMrOPAejQ29oVgmzbDZE2aceZgKINco4SeXxoI7iVevY1ZsJzGzWXg6bf69SGc19ihQEkmVV/e1cvHEItp8Ee76265em802cz4p9JZBlXTjiy3U1IeoyrMwqzKH2s4gOr2YsJ9KmuipYEZ5Dn//7EIMikydtxZ31H36qvZ0Kmr63Vf0GFJed0gydqOOui4nOqtKTDuKIameEmmlaioyMnpFB6gkVA2dQqZdCMVOzXPtTJEdLDBnK+lOgSRMakm6AjFqstuZYSLdUvsiwyD6TjHd9e/bG3hiSz1lOeb+BU4Q/XealFhYupDxrh5vss+/9Xmq7FV8c/43AXr1TXs69mT+jiQjXDX6Km4YdwN/2PsHUcEvC+miBSB8nv773f8mFA8xq2gWkiQxNX8qO9p2oGkadb46ii1DZ0ikt6eTdaekIBsKkiTxs6U/Y1f7rkG9nXJNufzmwt9kxkkApdYz82Sz63uKUbSH2nupmyw6C6FET9vxs6U/g3U/Bo73U9JltncK18FhcHDMm0pPTXlyamhEktF+afA6WYdRMdLefVQouREpvffMueeMCOkPOqYVTMu8D9kF0mx6W0bl+Zf9f6G6s5rX6sQY/sNjP0y5vZwbJ9wI9BD2ekXPdxZ+p/cORl0gSKnzvyQIr8dTxSD6pvI5K6BgArqZt8NLMbbXdVM6XTxz/9zdTKXLkiHtpuRPYUr+lP4nM/dTMHIpuGvh6JtMnH6jKKx0unCUCh9Xg1Uo2FbcBy9/mUVovOLIY23jOspyx6BYcoXKvmVPqrBZnVh/1+P8CBuP6sI8vvsP7PG0srhzNzEZLunjC/t249tUdwnSK1100Glyij7UWij617aaTJ8kzf8c5bXPckBWMmS3JEnY9Db88UH8ku0lbJMTbG3fweSmjawYuYIGfwNVjir0sp4LK3uK+ox0jkRG5qjnGK2lk2iL1PKjefcyumqpWKBoChx8CaKBs1I4zKRX+NMn5mQqu/6r4Y5pd5xSQZ9+mHkLNO2EggnCZ7y7Fv5+qxjHn4JVyr8z/kPS/Qf/Mrhy9JW8Wf8mjx94nEuqLjlnBN3UgqlMLZja6ztJklhWsQx31I2x8xh0v8Q0cwkvte/CqBjxRD2sHLmSXFMuTx54knWN6yg0F5JrzCWcCOOOuDnmOcam5k3cPPFmphdMRyfrMkq5OUVzeHDvg9w5/c4z8loZDGOL7Dz7uUWZNKhcYy7toXa8UW+GpHManeRaDMiSiPKX51qYWOLgT5+Yx+v7WnltXxuaprGv2cdDbx+ntjPI1HIn/33lZLbXdeMLJzLRnmw/iFx9BX/cUMvhNj/dgRglqUEGtkJhEqsmRWpdxAuBDtFQdxwEc85Zvw5nFfljhQdd+wGwFpx2J23UGXulfaxtWAvAkwefzETsD3Yf5KMTPtp7xarzYN/zgngAsORCWVZ6QvMu8gomo5O9OGyhk6c96YyQ6D0BTHsvKdIgSrpgByQTJzd0jkcgHmLR1HGcP37m0MsOF2E3bPptz+eoX6j2ciozpK9r7g3kb27hBy/u54a5FVwxrQTTBzRtII0wzZCKDwAA04hJREFUBiLhIN6GQ5RUDJ2e+e8AdyjO2EIbW9weGtxhxpXknNkGHSXU2WdRENpIp66YSms+fPKVfou9c6yLP6w/TjSuUt3kxWbsSc8HsJuGIenTmQb2pAMmlVp5lhBTypwZ71BN8WPT2U7PM24AyLKEKZWemjbjP201dlpJly4GkR2sk3XYTTp0ah56RSbOCZKqgYSaECTcEGmACVVFkiR0soxGknhSxaRX3vN0V18fks6cag9C8cFJQk3T0DRBNLpDMfyqn+MdAUYVDL/tT59vs2fgCueapvHu8S4USWLeSJcgkxQDnAJZ8pd3hcJmXNHAx5WuyAtQ56vLkHSapuGOuHFH3Blbjo5wB2NyxnDP7Ht46fhLlNnKeLj6YUCozfSKfsDUxLTv2x3T7qDYWsxPt/2UUCLEgpIFgPAde7XuVW599VYiyQgfn/TxIc8pXTk115g7rDTTwVBhr6DCfvIJYHbaa6Wj8oz2aTfY8UV9PLT3IZqDzVxqvTTz20+X/pSWQB+P13SFw1BvMjiaCqadSgDdaXT23O/nPgtAHFDVxIBeWhadhWb/EbCKZ2eEcwRmnRkz/77+4OeVnscJ34l+xdGseivHvcd5rOYxqjur+a+Z/8XjBx7HHXFTZB1GULZirvgHIjh94XeEp29fKDq49g/YAIvhXf64oZYOfxRfOM6ueg/fXDmhV4bFgDBYhWKvdIawXzlTXPht2PNUT0pn+RyY80n02x/huoJ5/MxfIywMAAonCZKucBLM/gTseAzcJygyOvlcFH7jaaVaTlAtizZ2gdFONs28p2MPVY4q3BE33974bSLJSI8XtizD+BXCGy4eFscz7SNcXTqRA1vvo9Le825a9VaCsUGUdNYCIrIMyThtoTaaAk3UemsHrEpu1pmpsBTxVvtGus06plYs7iHoQGS0jFwqiNezQNIBFA6ifP5XQDbBOSyUzYYL7oWiVIVgR5nww/Q0QMnQRRP/3fEfku4/+JdBoaWQ7y38HsF48PT8Fc4QkiRx7dhrwbQN9r7EUvtoVnm2sK5xHYvLFvOJyZ8AxKQoFA+xuFxIpttD7dyz7h7u3XgvheZCVoxY0U96PiZ3jIicnkOkCToQjenLtS+z6vCqTAqLw+BAkSVyrQa6AjGqUuq7IoeJiSUOntneSKsvwmv7Wml0h7hhbgXP7WzkvlcOsLvBw8zKHCYUiy53SdkS/nnsnzx5+ZN8/oldBINh3j7cSZHD2KNkKp0J2/4kCLnm3cJzq/UpmHmzSFccaBDzQYKjTHTOh18VHfVpwqgYiSSFWkHTNLa1bmNR6SI2NW+iurMaCYm4Gmd2UR/j5KKsKKo5F4680UPSqSq07Eae9CEKAjW91ACDQtFDrLcKSFSi0zANlCphLxVqm0Bbb+XVQAgI7zpjTjEoZz7B6oUNP4faDcLYuLtWTGzC3YI4TZF0502sYPaYUh56+zirq1u4avrZq1J3ruBN6JA1FYP7KEw/M4/PfwV4QnHKckxYdRr13SH+uOE4h1r9/PDqKadNqHYqhRQAHbrBJ1Sv7xPP5mOb6gD49uUTaXSHUTWNOSNcGdPmU4LBOmi6a55Nx4dmlHLhhMJMWkuY1lMiCk4H6TbltE2tswpHAL1VupKMzaRD0RzoFQlNkzBLRUAXCTUxZGpVmsQTFaNFoQbo8dM71QqrZwpvOE6ORY8nJKwG0nYDQ+3/R6sP0OQJM2FCmihL8saBNj5zGiRd2hOv2RMZ8PcX97bw8Nuigvd3r5zE3BGuQS0JMogGoPrvuORSulUrlw1iMN4U6PHszK78mR1c29u5lwUlC+gMd1JmKyPPnJcZ42xr3YY/5h9SpZlryuXh5Q9nUjK/OverrG9cz0SXSOmbnC8mZOnn9LzS8wbeUArpFNW0P9p7hWwi7LSqJGfBYXTgi/noDHeSY8xhSVkPMZBvzs9UxMwg4hXvXyIi2hW9IMrSJF3am+6k+4z60BKxjHozrDeBGhowLc0Vi7CFMOiL+MGiHwyrUuO/KiRJ4uaJN/f7foRzBHpZz6bmTawcuZJFpYsYlzuOJw8+yUjnGQTOxl580kW+tmI8z+5s4p+7haXIPcvHsWj02SkwNCzkjhAWItkoEFV4Z9iqwF9DmT01/itMeZHljxGZJgYbrP0RXPUbnAde5Oto3NL4T0ps5bSE2qkLNjPVIlTkmqaxr3MfyyqWMbtoNg/tfYjpBdMzRWQAmPkxUcCq+u8iSC3LzCicwVOXP9Xr8OwG+4AFPwCQZdqMFkjGqe4U1kbAoP3wjUoe9/9/9u47vq36XPz452gPy/LeI3vvCWGvsEdpoZRR4JbRQqGU8mtL21voouO2pb10UrjMUiiUPcMMO4RA9nYSx/HeQ3uc3x9fSbY8Yju248R53q+XX7alc3SObB1J59EzDDpGs43Lp3dr9+EuVH18xdBN6fzAApNFZXBWr4Xtr6BNO7/P1cY6CdKJw0rXsozRo94k5ljdzMmaw/qG9WpMfEz3YEqOI4ffHP8bNjRsYGHuwkOiD4fb6mZp3lK2NG1JvNmIl07kuKw0dgQZ1+XkdEos+La1pp0dtR0sn5nHFUeV4rKauP991TPruuMnYIoFYC6dfimXTLukxyfeTZ4g6fHR4tnTVXbGusdV9lPebPXpSd5sNWnycAjSgdr3kqMO+GasRiuhaIioHsUf9uMJeVicu5g9rXv4tPZTjJqRAmdBz4EpXcsfZ16gplYtulplKDbHglUFC1jUauOFXS+wKG9RYnpaXCj2RqUj1MHn7VtZoJuZE2hNnIy0BdtA10nt7WQgXqrQXtN/kC7euy71ALN6+hL0wt6PYeJJMO9y+M/XVLPZ+OS0uV+B/DmAKiW4+ZTJhCJR1VfrENccMGACjMFWfK5xh3UeQ6s3hNVs6DPY1uoLsbfJw8ISN5k2+M9nVYkytHe21fXfC64PtYYcpgPl0RxafSHc9uSsuHZ/iI2VrVy1bBwRXWditpOFpRkMbvRLFyabeux1ER+6EtbDXHNcZ8bSWbPz+dRfy3j3kgPd2n4FwgE0tAN/venWkw5QZcKBdlXuajOjYWBCymz2ecpxRKeg8xGhaGi/24xEI2homAxGdE2VuwKEI+r7wcqka/EGyUu10eINxXrS9R+k+3iXymgKVar/cYpN4+2t9Zw/r5DcVBv17QF21LazrJeeQt01tKtMuspeMulWbKrhH+/u4vx5BWyvbefxTypYVJqOZjT3CAInKf8A1jzIVe2ZdJz5J6bn997PZ1/HPoyaMZG1Elfj6RwE1OhrBKDeW8/srOTKgngpbH+69kybkTmDGZkzEr/bTXYum34Z41PHk5+S32+P4XgmXdfy24MhHgjrnmV1IFwWF5XtlbQF2zit9LT+M+ECraphftMu1Rs0FqSLT0/MdvTfy9BtcRPWw3ibdxF/R+e3uiDU0GuQ7xueEL+xZ+F1ZDLePf6QeL86WpYVLGNZwbKky3IcOXxrwbdGfNsLSzNYWJrB1po2TAYDk3KGt+/3kBQuhIVXYZ71Bf44bXnncZ4/R73vKoi9zyxeAlc8oz7gOfoGzMADoauxGq1c/drV7Gnbk6ha2tK0hdZgKzOzZjI1Yyq/O/F3PbfryIDT71JtZhZ/LXFx95L1rr0fu/qw8kP+seEfeDUvRLWkD6/7mki6oKGcvxWfj/GE/ze4XmtiaNJKVEAWMDSWYUgf3hZQhwsJ0gkxWO5Y0+GC+XzJ7mR9w/qkN5+9KUgpSLzJPFRMSJvAW3vforKjkhRzSuJk8psnTebljdUcP7nzDWCqzUxBmo3Py5upbPFx0SL1N5hfkgaoxtsF7uQXsHiArt3fWT4UiuhkxoN0RpMKbpW9pfrPFS+Bcfv/NP2Q0jUwNciJrl3F3ygHIgEa/erEKN2WztL8pby651WMmpETi0/sfeWvPK5Ooi0O2PwcPH0dLP+5KsE1WiB3FpcVzOfT2k/5rPazRJDu05pPWV27mnX16zpP0gJ1fBj2U/jRT/j9ib8HiPXP0Unt7WQiJVcFVdsqgYU9r++qtVLtj2N4em8lVH6qMkuWXN/Zw9DfqsqDsqfDUV/vscrhEKADaAoayAHQoSyUQS/dZw4ZW2va2FnXwVmz8nuU4+i6znf/s46Fpelcd3zv/UpeWKeCuKfPyGHLRp3PvXDs5CyiUZ3/e38PmSlWlUk0ANGozisbazhleg41mnoO2x3O4vL7VnHneTNZWNoZ/F9b0UJUhxOmZg9PHxizo8cwlXgj+HjpOKiTiq8ek8c7rzUMLSNjP/wRf9JU8UHrLUjnylNBOoMxcRxdNvkm9rX4eHbLe7Qbgnyyp46TJvd9nyKxTDo1OCKaCM6FIlGMBu2g9aRr9YWYmutia017crlrH0G69i6948rq29A0yHIZ6WgOc81Dn/L4dUfx29e2sbm6jfPnFbB8Rh4lmcnPm/FJtrqu09ARIMVqor49QHmjh+//ZwM/u2AWk3JSWFvRwrQ8F9ccN4E15c3c+fwmla1u6KcnXWMZUSAl0gr76aVY3VFNriOXbHt2oiwaOoN0GbYMGn2NBCIBmgPNidLV4XbexPMGvGw8y+yAM0MPkKZpXD3rauZnD71NQ6ollc3BzbQF2gaWledvUwGRpl0qOzxVfVixrGAZMzNnDmh4WuIDt8YdKkh3yo/xd+yDz+/G1v25IRKiuLWae5bdTHTGecNSViyGZlreIdg432hSHwgDeV36u2JPh8v+nbxstwBaPDBdmlrKij0rMGgGni97Hl3XmZQ2qccHAj3kz0l88NqXFEsKle2VPS7/tPZT1ffRYGZh1MSakA80A7875U8UuXqZiheNQHM5KVPOSPRoFAdJ/Lln8TWw/t84A7Wjuz+jRJ6BhRis1AK49i0oXMDUjKk8euajB9Ysc5RNdE8kSpQXd73IorxFictLMh18/YSJ5LmTP2WdmpfK29vqAZico16Yi9MdpFhNTM5N6bNXRnu3xtgZzi6fzM68QH2fcb4q5TmcmO2qpHL+5So9+wDFP6kORoK0+FsAdZJ0bOGx+MI+OkIdPUtd41LzISVbldmdc7fK4in/AHa9o6bOmixomsbU9Klsb94OqHKzf275J+9UvEOLv4Xr5lyHhobTaGGcZk3qi5PIpOvtDYrRpO5/e03P67prq1THTfdGyUPVXK6ye1Lz1f/DYFRBBF/zoZ+J2Y8GvwGz0YDRoLGh9dB9g7inwcP/e3I9f1+5i8/2Nve4fmtNO1Ut/sQ0y+4aOgK8tqmGk6flkmo3syhb5y+XzuNbp0zmplMmMyk3hfve20U0OrAyt7X7WvjbyjI+2NnA7mgeTzguYYtJleHES1sjUZ33dtTzUVkjJRmO4WvUbLaryWRdxMtdw9Hk4FO85LBrL53hFIgEhhbQSJS7dgn2xEvsNY1AWF2flWIlO8VKu1cNBnpt87793mwkGpvuajQCOqHYRNpQJIrbbj5omXStvhC5sdc4u8WE2WjAbNTwhXrffnmjagVgMGgEIxFMRgMOK3zjRPXa//2nN7C1RpWLPre2ihsf+4w/vbUj8bgNhCPc9K/PeWl9NX9/dxdNniCLx2cQieq8vrmWjkCYv7y9M7GteJ+7BSVplGQ4WLm9Xn3QEQnBe7+HvavUFPSumnapabmEce1nQm2dr44cRw7ptvSkIN3e9r2k29LJd+bTHGjm/X3vo6ExLWPaYP+8w86gGbhx3o38YOkPDvq2zxh3xuB6kPXBZXFR560jSrT/yazRqHotS4s9P/haEldpmjagAB10Bulamnep56eJJ+O3qJw6Wzj2nBT0wtu/hN3vquM+fZwE6MSIOqHoBNqCbTy8+WFaAi0szlvMtxZ8a1gedy5zZ7lri78lMRV6R8sO9YG30cwCr4f/rm/kp61+ivrq29paoT4UyRj+PuGiH3O+HKuQuYzIJY/Tbu8liHoEkEw6IQ6EobNsy3y4BZdiilxFZNmzyLZnc+WMK/tdfnqei7e31uG0GilKV0EDg0HjymWl+x1K0P3cOilIlzcHTvkxlBx9QPdh1F32ZI9PCgcrfiLtD/tpDqhARrotHYvRwhUzrsBtcSf6+OxX+jhVZrD2MXVifeZvEldNTp/Mu/vepcnfxGt7XqPKU0VhSiEzMmdwSskprKldQ179LnKaK3iky5uktkAbBsBh7CNI5MpT/QP701Y1/KWuoLYdv11NA2uqGmYR9HRO3T1M1fsNmIwaRs3A2towl8SycIZDuz+Ey2am3R8ixWoa0O1u2NdKZoqFfLeNe9/dhS8UYXNVG2aTgdxUK06rib+tLOMbGswscOMLRthY1cpvXt0GqN5bv3x5C3luG1cfozKtPtjZwK9e2QrAqdM7BwHlu22YY5lNVx49jtueXMdvXtvGbcunJErqu3r043Le2FLLT8+bxSe7VdDhhXVV1HvClEw+i0h5M+fPK+C5tVXsqG1nR10Hf31HTTz88uJh7Alntvfo6xgfHNE9SBcv2xup6em+sA+raShBungmXZcS5aNuUFnD9nT8IfWBjdtuxmE1Amq5HbWtRKM6BoPWa2l5lCiaZsBiNKMT5aEP93DLaVMIR3XcdjN7m7yJjLOREopE8QQi5LhsGDSwm9U+OrsNDelqV4MHs1FjWn4qK+ujmAyqV+hZs/PZUdvBG1t6ftL/2qZaclw23A4zf3pLBeD+trIMm9nA6TNzOWNWHm9vreO9HQ0AlNV34AtG2Nfs5dy5KmtK0zRyUq10+MNgM6uMqs3PqS+A61d2brBpFxGDFbPuwb6fTLoGbwNTM6aSbkunJdACwJ7WPby6+1WWj1tOe7Cdel89r+99nUW5i8hPObBy8+HWW3P3w4nL3Jl11G+QLtiher6mlajXNl/vH3L0sPFp2LdaTeFElbsC1NdvYHrGBNA0fLHAuz3e33DjU6q37vZX1e8ZY39QkRhdp5aeytSMqfxj/T+4ds61w9qb1Wl20hJowR/2c+dHd1Ltqea4wuOo89bxlalf4TrHRIxv/UIt7PfBvSfCxQ9DemnyDTWpnqByPIyCrhmTR3DJvQTphDhCmQwm/nzKnwe8/NRYX7oMpyUpa66/flHfPm0yL6yrZmed+mQru2vWiqbBpFMGsdeHmGE4keyaSdfoayTFnJK47JwJ5wzuxtJLoepzdSJd1Jl9NytrFlGifOONbyRu9/LplydOhL+7+Luw+n7ebSwnrIcJRUKYjWbagm24MGDo60UytbDzjcz+tFercubh1laVKAECVFZd9Tr1s3MUmiwPo0qPKs21m41srm7jn6v2cvlRpf2v2I815U38+pVtfP+safzipS0cPzmbm06etN+pcat2NfLzl7ZQlG7n4kXFvLheBWatJgOTc1185fgJuGxm7n23jJ++sJmoDnaLMTEU4MaTJvL46gr2Nnn5sKyRZROz8ATD/HbFNqbnuzhzVj6TclIIh3sGSKbmufjeGdP4n9e28q/Vdq44qpSGjgAmg8buBg+/emVrIvvq412NfLyrEbNRo6zeg81s4AdnTSeq6+ys6+C5tVXc+u91pHTJMjphyjCW8pkdKkDcRV+ZdPHm7yNVvheIBLD3FVwfiMR01y5BNpMFStUHKpctVRk+hel2DBposbeTnlCAHz23kZIMB29tqeO/z5nB7KLO0r5oNHlwxKrdTayvaEHXIdVuIhLVCYSjIzp9uTU22TXNYcZhMeGMPR7cdnPiuu6qW3zku+2qXUO9jjEWpNN1nW+dOpmCNBsPf1TO986YxuxCN1azgafW7OORj8uJH1o5Lit17QH8oSiTclyJDM4mT5A5RW7W72tl5fZ6ojqUZnb2hHVYjDR7QyrbvKMuecf8rarU398K3ka87hmY6z8lpY+pxLquU+ut5diiY0mzptER6uDHH/yYUDREtiObS6dfyr+3/ZvNjZtpDbT23WpBDFq87y+ogQ4JbdWql2zXgHggNsTDnqY+fBpokK7iEzV1vmI1pBaQ4i5kkj2Xj/d8xPFLvqdu2qQe77Z46fS2V9UUxfhrp20ApbhCDFGxq5ifHvPTYb/dxXmLeXbns3z7nW8nMoXfq3wPh8nBzKyZGP2xfnXH/z9493/Uz9tfhYIFKiAXf++492N1XB7mVRni8CVBOiHEgJRmOllQksZXlg6uPOvkabksm5jFRX/7iKuWjet/hPwRxmZSJVf+iMqkS7cN4Q2BKxawykvu69F16MSN827sPSPBaMEeK3HzRXyJIF0qhuSSt64yJ8LONyAcgL6ydnRdZbc5c3q/fijaqyGnSz9IayrUbFDBw/x5w7+9Iaps8fGnt3Zy2dKSzinHvYhGdfa2RrAYDaTaTJw9LZ/XNtVw6ZKSIR8/MwvcZKZYuOO5TRgNGm9urcVmNnD9CT1L9teUN2E1GXnk43IA9jX7+P3r2zlxajbnzyugNNOZlCn1s/Nn8eCHe/iwrBGXzURDR4BffGEW0/JSOWNWPtGozk2Pf85tT67DoMH8knR+ePb0fvsEHjs5i6qWUh5dVU5ZXQef7W3GbDQQjE0EBZhd5E7s553nzeTjXY1MzE5JTLWeWZDKbadP5c9v7SSq6/zPRXPYWddBccYwZrI5syDkVdl0scEuicERfWTSxY//4RaIBIaWSadHVNCgjw8iclNt3HralMTv1x83hb9stpBjNrFhXysb9rUCsGp3Y1KQLqJH0dAwG4zomnq+aY9lr2U41f52BMIjGqRriwXi3HYz3z9zWmKSeZqj7yBdTZuf3FRbbPiIyqQD9X81G818cUER47KcasBD7G922dIS6tr8vL2tnu+dMY2Fpelc/PePAChKtycNMjlrdj7r97Xy57d3UprpSGoU77CY1BTYbh+W+EIRWvfuIG/KosSHJS0pEzHon5BiTv6/lbeVsyO0g21rt+GP+Mm2ZzMlfQrLCpbREexgZ8tObl5wM2aDmUxbZqI/anHKyEwfPuSt/7f6YCl93LDdZNeS2XiGG5EQPHmVChh0nfrpjwXprG4VJGjapUpg+2sZ0VSmMvBevk39/oW/c1z55zxkjOItPQoH4I89J1mDfggH1evovK/A7C/1DAILcZgpchXxo6N+xIdVH2Iz2nh659MA3HvavaryyeqG695RC+96W7VNWfuY+rI44eT/VsG5HStg2c2jd0fEEU+CdEKIATEaNH5y/oG1r7eZjTz59aNH9MTrcBXPpAlGgjT7m0m3DkOQLqdneeytC29ldc1qjis8rvd1TTZskViQLuQj1ZJKe7A9FqTr4/9WuFD17KheD8WLe18m6FETCYc7sy0SUicUXTPpbLHshPmX9b3Po0TXdf701k42VrZy18tb+Oc1S5NK+ura/fxrVQVTclNYOC6d9ohJBZjMDk6cms1L66vZXN223+DeQNjMRn50zgwe/nAP80vS0HX4yztlBMJRzpmTT77bjt1ipNUb4s7nNyfW+9HZ03l2bSVGg8a1x08gtZdMHZPRwDXHTeCa4yb0WrJoMGhccVQpv3hpC/NL0vnxOTMGHHT80sIi9jR6+GhXIxctKsYfjPBBWQP/dcx4SjIcfLKniQ37Wpme72JhaXrSgAhQZYMnTMlmYraTQDjKxOyU4W/K7Yxl5XnqwDIO6JJJpycH6YKxLBaLYWRKOfxh/9B70vUVnO/F0RNyeGKvhe8fPZl82ySueuATojqsjwXrEjerRzFqBswmE6CjoyeGC2U41GOqzRcavj6BvZiQncKTXz860fMxLtVmVhlrXcQzMWrb/MwvTifNYUEnmlgvFFVZxwaD1mO4iaZp3HzKZE6bkceswtSk46EwzZ70+9LxneveetqUpMC13WzEGwzTYnCj+UM4LSYqjMVEWrby3IoP+FrRHNIay8BoptVeTAqQYkrurffv7f9mpX8l7lq3KqF15JBpz0xMqoxEI4mAco6j8wOVXhuqj3XtNfDRn1VW2tm/HbabLUrp/Fsmytz9rRD292wbEc+ks7lhwomw5kFAh1Pu6DuDP9DeM8j21s+YEjURzRxHdTTARMAHmNAwexs7g3ruYiiYN+T7KMShYHL6ZCanTwY6X4OTWhPFj6Gzf6cC4p89rF6/q9fBa7erD3pTC2H6wIfbCDHcJEgnhDgoJEDXu0RPuoifWm8tk9MmH/iNjT8eLvwHZE/pcdXS/KUszd/PFFqjGUesR40v7EPXdRp9jWTo9H2ynj5OvbF54w44/8/JvTtW/R3SSiF7qvo9ZZgz6arXqZOLrpkOjgzVJ2/y8uHd1hDUtvn5v/d382GZykw5Y1Yer26soc0Xxh0LSjR2BPjuU+tp7Ajy7o560hwWAlixGA1gTWFKjouCNBu3P72BoyZkcPuZ04eUUVeYZuf2szoDud5ghOfWVfH65locFiOzCt2J3m7XnzABq8nIkvEZLJ0w8Om8ffUUWzo+gzvPm8HMAveg7oPBoPHdM6Yl+p0BXHt8Z0PnLJcaYLBk/P57ERalj0wPOEBNPAZ1ohx7XPbZky42fXWkeq8FIoHE5OgDMsggXfwEKBgJku608KWFRexr9vFhWSOeQJioruOymdXgCKMBcyKIrieGC6XH+pV2nQg+Unp7PUpzmClv9LKzrgNd15mc6+Ibb3wDi8GKp/V6cmfZ1BRYTcdsVH+bULT3zLs4k9GQlEk4qzCVjZVtpMWOfbvZiMVkSOq1GB8aEeewGPEGI7xfa2FqWwCjIci3XF/nHtddpAVqWLGplou9uyGtlPaIhVSDhrHLfnlCHjY0bki6zXxncpsKY5cPNeZkd05PHNAU0rGkai28oAKX7FutJqX38qHXgdA0jQnuCexq3dXZID8+EMLX1Ln97GmdmXS2VDVJ05UH7/wK5l0OWZOSb3jXSrWfJUfFNmRQ7wUq10DrPvImLwfvemo8NUxMm4g/GsCmAx/9qfM23EdoxqQY87445Yv7X8CWCsu+qX6efi7880vQug/O/LUakCbEKJFHnxBCjKJ4kC4QDlDrqe07020gNK3XAN2AGC3Y9Cjo4At5eLvibbY1b+MG3dL3ybqmwWk/gWdvUFkHXYN0ax9T38+K9fxwDmPvL4DPH1EBwNwu2Z1LroMFV47qpODKFjXd8/O9zazYVEtNqx+H1cjC0nSK0u2cPC2HVzfWUN3mSwTpHlu1l1Akyq++OJvv/2cDj64qx2gyYTJqsOBKDAaNrx07gZ+9uJmPdzXxzvY6Tp429GmDcV9cWMQ5c/PZWNnKO9vq+XxvCydPy2HZxMxBBeYGQtM0FpYe+FCPvgJ7KVYTJ00bgZLqwXBmq2OiSzaLpmmYNFOPIF0wEhyxfnSgMumy7EPIXo2Gk/vR9cNsUI/l+P284uhx7Krv4MOyRj4tb+a3r23j9jOnEUX1pLMkTn6iiaBcZpdy19GQZrfQ6gvx7SfWAvDwtTMBqO/owBzRyUu1xfrLRbGbbECw3yBddz86ewZ17YFEcPaBqxdjiP38l8sWJMqzu7JbjPiCEWr0DKaiphOXZDkZ557B7IomntjdxMXG7ZA5kXavhlHTVIZzzNamrUT0CClaCicVncT1867f7xRFk8HE7Utup6qjalD3bVTpusquHsKkdQA+/qv6XrxEZdR99nBiCMNwuOPoOxLDOoDOXnO+ZpUJ98K3YNrZkD5etZCIl6yPP14F6Rp3JgfpolF4/cfqZz2i+rJe8azKJP/8UVj/BI6jb8T93nep9qhsPX/Yj51uz6OH+aAlIYaFxQEX3queT9IkcC1GlwTphBBiFMVP1Gu9tfgj/qT+cQeVyYJd16BtH/5nv85rJTNZkreEE+rf2n/QK3em+uS/eXfnZdHOXmF46lXgwjFMwZ62Kljx3+pkZfnPkkt/RqnhdTSq88tXtuCymXlzSy066j0eqMyx7yyfit2iMlV8sSEH1a1+puWl0tAR4I0ttVx9zHhmFrgTmXbnzytAO65zcuOS8Rk8+fWjufv17WytaR/WIB2A1WRkYWnGkAJoRzyjCewZqty1CxMa4dZK+M81KpBcvAR/xD+0TLd+BCKBIZa7hgeXSRcL0gWjncGhwnQ7mgYvrlPBnm217YnBEeZY83qdaCIol+YwY9DU9OG6dj9vbanjzFn52C3GXoNXwy3VbqYtltUXMOzl3X0q+7W53UYOMDHbiS8UAaK4rHa8kWCP4Gt/nFYT47sMLnF2+bmv/ogOi4lAOEplOBWjQSMS1ZlT6AbrZCZUvkpldRUB8zZ+Uz6ddnMb84ya6hMaEw8KXeS4iHOnn7vfAF3cvJx5zMuZN6j7dtDpOrz3OzWwJSUHPrwHvva6CtQ9f7P6G1z49/3fxvM3Q/02uOgBtXz9Vjj5R1B6DOx5H97+BTTsgKzJsPl59Vo49cwD3mWbyUaeqctrfDxI521SvbFAZcU5MlSP1TiLE9xF0LgDOKPz8pp1nT+v/7cqjY0HwOdfDvMuA4OBXGcuNZ4aNtRvoDXQii1nBiy4DcreVNsdwWnKQhxW3Edgib84JEmQTgghRpHRYMRkMLG7VQW5Ri1IZ7SoT9eDXnZhYU/zTi6cfTWsW9H/yXrGBNXbJi5eugOqbMCePnzZbRueVAG6zElQeuzw3OYQBSNRzEYDr2+u5QvzCynOcOC0GDlqQmaPzC+7xUiaw0xNq5+ddR385e2dWE1GTp+p/u/XHDeeWYVulk3sGdS0mY18Z/nUgxKwEAcoJadHXyhTWxXhT/4OUSt8+gAULyEYCSamOI8Ef9g/tKEU+iDLXbtl0oEK/Oam2tha0w7A5qo2GjwBMq0a1sRtRxLlrmajAafVRJs/zD1v7mRtRQv/XLWXxeMy+PG5Mxhpbrs5EVxvtP+Tx7bGyk51IxcfbeOdqhf54pQvcsLULHyRdryeVkKRwWXSHQhHLMBf2RbGaTERjkY5YWo2tE8iI9rM0axjb6OHLanTSA83YzYZkjLp2gJtOM1O7FH7iD7mDrrdK2HLC+rn/Lnqe9VnquwzPqm0cg188EeYdg7MuTh5/Wi0c7mqtepvZjDCuOPAbFOT5z97SGVtn/ZTFRAElWE377KhZ+2B6kkHKljXEgvShbyq3LX7h06Zk6Bmo3p+ibePaCxTA0XsaerycV0y8TUtEXzLd+azct9K3qt8D4B52fNUDzrpQyeEEIckCdIJIcQom5I+hVU1q9DQyHOMVpDOihXQ0FmrhSHYwZywDtHQwIJ0ZW92Tp/z1Hdet/3V4et3E41A2dsw60JY+vX+J90dJDazkf93+lS+evQ4clP77zOWl2rjsVV7efyTvaQ7LVx9zLhEpp3VZOSEKX2XBkuA7hDXS5DOqEeIxB8SsQEqQx7s0I94z7sDNsiedPHm3MEuwSHoDDABKlhniRIId/Z004nS5lOBPbNRw2Uz0e4P4+lS8rp6TxMHQ7xPnI6euEzXIaoFeHzPr0ixGfnilC9iNOioZ8v+e9INh/hzQ02bn/rspcyaORvyUsE6CYMGV+rPs9o0nnZDKil6u+pl2TVIF2wj1ZIKgb62cIjqqFN9R119vCaWf9T5s1dlPbLn/eSJ3+UfqUyxTc+qIJ2ud2aNxYczADRsU1OZMyepAB2ogN3sL8H7f4C/n9C57JoHVVP5KcPQ+7RruWvzHvVzRy20VnQOQoqbeBK88RP450Uw9ysqK7dlr8r8OeW/VcCvj6nmxxYey8p9nZnZ2Y5hbj8hhBBiWMm7fSGEGGVfmvwlAE4oOiF5AtXBlJKDAQ0rGjvMRnJCQewvf29gJ+sZ41WpUHush1HXIIW3CSac0Pt6A+FphIcvgH99BVb+Rp3MTD27s1fPIULTNPLctgENAvjiwiJOmJLN10+YyH1fXcSZs/P7XUccJpw56iS7C5PZSSge+LGo7KxAJIB1BB/DgUhgaJl00fCgJiRrmobZYO5R/nn5UaVcvLiYC+YXxi7RcdksmI2x29Z02mMBOZPBgMtmpt0fIhzVOdgyYoMrdDrvQ1FKCTpBiP3/onqUqB5N/G0PSpAuNuRC16Fs3ndh8TXqCncJpBaSZjez+IJvsmxiJmHMKpDfpdy1PdiugnSHk7otKhj1ynf7XqZ6LYyLZVO37lPfy96GmvWdy+z7RH1vq4RV98I/TlYfJtVthbfvUte58lUQb8eK5AAfwOTTVTltd237DuRe9RQP0gXaoWKVah1hSYHKz5LLXUGVsl70oGpuv+5f8OzXVSluWrH6oKxgfp9lq3Oy5/Cdhd/BbrIDyRN8hRBCHHokSCeEEKNsZtZM7lt+H9+Y943R24lYHw6HrqGb7RTrXV4e+gvSpccGRjTF+tJ5G1R561E3qN/HDyFIZ3GozLnsaSorb/zxPafbHWaOmpDJbadP5czZ+UlTHcUYkJIbywDqDDKZNGNn2CeoSj+HPH21N94m2PAU6DqB8BB70kUGkEHbjdlgTupJB7B4XAY+x2vs0x7nwgW5fGVpEROyXJhiAUCdCB3xcldTZyadN5gc7IschKBdZiJIp+7DtIxpLMs/AV0LJYLvwUiQiB5J/G0PRpDOaen8P6TaunyIYzDAF/8Bp99F2rQTOHtOPiHNHMuk69yvtmAbLotrxPdzWO18Q31vrUw6lhI66lTZ6ZTTVb82gGO+BcEOeO2Hncs1l6vXDIC1/1SZeQ3b4fmbVFAMVFkrqGERU89K3o7FAVc+33P7dVsO/L515W/p/MCpuRyOvkGV1pYeA5NP67l8eikcfxuc83sVmKzbPOBM9SX5SxIT3oc0VEYIIcSIk3JXIYQ4BIz6SVQsg88GYM+gOHUa7NuqrsuZtv91HRmqNKd5N4w/TpXgOLNh7pdVgG0o2YFmOyz4qvp54VWJckEhDkkpOarU0N+q+kSh3miFQU1e9KsSu0AkgNPsHN5tt+yFD+9ho1EnrIeH9pwS8qljbxDMBnOvPdre3PsmAGcuPIXP68CgGTBq8Sw9nVBEBWHMRgOpNjN7m7zUtyfXZta2+SlIG9z+DFY8YK5r6j5cNOUi9jQ3ABBvLRmIBFQmnfEgZtJ1KRlOtXd7LrU4YdwxAMwpSuOR646Fh38Lkc6/X1uwjXGucSO+n8Oqaq3KKAt2wP3L1QCIjAmd18eHLGROgi/erzLmpp6tjrH6bTDri/CvS9QyJUerjLN2Nd2UsreSyoGZ/SWVndhXFrTRrAJjq/6uMt4A9q1W01PnX77/+xEOqg+Xpp6lBjpEoxD2dQYWm/eoQGPOTChZqvq3AhQu2P/tFi6EU+6AV78PmRP3v2wX+U6VtZ1jl0w6IYQ4lEmQTgghRIIOYLIwffE3IPNjddKQPm7/K2mayqZr2qXKU7e9ArNUCe+wDYwAlUUgxKEs3tDdU58cpEvJgaJTEo3qA5EAmbZhmngclz8XMsbz1MaHmFI4nyV5Sw78tsK+3sv89sNitPQatMqwZdDkb6I92E6UKBoaxkQpbeckaLPBQGGanbe2qnJ5k1EjGtWJ6qof20gH6eJ0TQVwbEYbBl09f2ndgnTxAQwHY3BE1yCdu3uQrrt49mSXcte2QBupmYdRuau/TQ0imnOJKuuMBGH3u7GBCbmqnLy9WmV6puSqsuwZ56t1J5/WmYE28wJVxpo9Fb78CPha4P27Yf0Tyduzuvufbjr9XBUE/MdJMPMLavk1D8KkUzt75kWjULdJZbbFjn3K3lQDJ/Z+rG5j87Pq5+tXqizBtiooPioRaB2UkqVw6b8HNTm9NLUUk2Yi1zm808GFEEIMLwnSCSGEUGaczy1bniZ0zM+ZnD4ZcuYNfN2MCSq7YMcKVZ407ysjtptCHLKcsSDdf65RJ9D2dEw6RDRNZZsGOstdh70nnaZB6TF0bH2AGe7xiWEOByToPaBMuu6DI7pqD7Wj63pSJp1OpHN9k0ZxRmdg8Py5BbT5w1xz3HgcloPzdtVqMiRKdq0mK4bYgAgNFcQJRAJE9MhB7UnnMBuxm434QhFyU/t5zMQfU7Hgoa7ranCEOZUIkd5LRw81LXvVfk44UQXpQE1F7qp4qQqO7a9v4rHfhiXXq5JVgJRsOOl2qF6vSl7XPKguH+gAIoMBvvqsCuqF/bDtVZWVN+9Sdf3qf8Dax1QW+dLr1YdblZ+p68o/UF9xvmbY+5Ha/6FMWE0Z3ACIednz+OPJfxz9zH0hhBD7JUE6IYQQyrHfZtxxtx7YugXzYNMzsPEp1dvHKicB4ggUL1cDeOxicGRisumEDUbVCD4epBtqz7i+WJwEouHB3XZLhSq/c2R0Xhbygm1wA03sJjv+iL/H5ZGoCsR1BDuI6tHkcldNj89kwGQwUJrZGaS76pjxg9r+cLCZjbQFVYDLbrKjoTLm4uWu8Z50B7Pc1WDQeOSaJZgNBgyGfjK+DEbQDIlyV3/ETygawmVx0RptwPivi2D6ObDk2hHf7wPWXqO+pxVD6TKVFVi5BnJnQe1GdV3FKlXG2h9Lt2xQq0tlrY07pjNINxjx49viUB9MNe0CT4Pax03Pql5y3gZ46+cq089ohtkXqaw+Xwus+ivUbFRTZz9/VPVrtQxz2ft+aJom/eiEEOIwIEE6IYQQygAmk/apcKH67mmApScOy+4IcdgxGODs38NLsWC3txGTxUHIaFZBurAfwkECkUCiZHJYGS0EugSRBuSJWF+trz7XWaYX8vUMcPTDYXbQEerocXlEV0G69mB7IkhniGUvdc2kMxk08lKHeZjGIF1+VAm/fVcFgqwGK5qu/kfxwRGBSABd1zEZTBgwHJQgHYDVNPBJu5isqhca0OJvASDNloY3sldlcH3+qAo2FS5Uk7kPNe3VKuvU4oQzfqmy6uI9Eht2qOmtH94z6EzPYZcxXk2T3fF652XH3qJK3uu3wdPXqSnJU89Ug5ncRXDuPapkduWvVX/V+HAlIYQQogsZKyeEEGLorC6YvFxlaUw8ZbT3RojRU7QwKTvG1FFPGA2sKeqCQPvITHcFMNkIEMW6bw101A9u3YfP71wn5B10Tzqn2Yk35O1xeSJIF2pPyqRLs5uZUaAybg0GLfF19THj+NUXZw9u34fJGbPyOX++KiE0ahbopSddRI9gNBixmqx0BHsGJUed0ZIYjNAUaAIg3ZqOOerrXObDe2DFj4Z/294m+Pyfg3/sgZpW+sk/VJDOVdB5uaapgLGmQfYUNRRi4VUw58tD29fSZQPLxutLxgQ12CIud1ZnT8rsqeo5wJmdPNjBYOgcfvSlBwZdriqEEOLIIJl0QgghhsfJPxztPRDi0ODIgKAHiA2O0DSwuQHQvU34w/4RKXfVjVYC6NjK3gZfEM7+rSqx3fSMasRv6pa9F40k/169DiafGgvSDS5TyWl2Uuet63F5vNy1PdhOujU9EaTLcllZUpTGzn1hotHOXmkXLiga1HaHW4QgYADd2GsmXSQawagZmeCewI6WHaO4p30wWhLlrs3+ZgDSrGmYIrEgnTNbDTaJhod/2+/frYY8lH8IF/x5cOu++n1Vep1aAFlT+l5O02DR1UPbT1BZekMRnzZ7zLdg9X0wqduHU195XJUed3fB39SkV9thNMxDCCHEQSWZdEIIIYQQw6nLxEUTmgrSpanpxKHGHUSJJoYPDKeQ0YAOqpNarP8de1fB6vvh6Wugam3yCj4VxGH5zyGtBGrWxW5o8NNdnWYnnpCnx+VRPYrZYKYj2IGOrqa7xnrSuWyDKOM8SKJ6EINuIRTViUbVZ9m2WEA1EA4kJtROy5jG9qbtRPXo/m7u4OtS7trsb8ZmtGE32THF+wWec7fqk+Zt7BmkHYxtr8Bnj6ipph11qj/b7ncha7IazBAd4N9F1+H5m1WADtTE09SC/a9zKMifCxc9CLMuhEsegxkXJF9vS+3Mnu0qJTu5d6UQQgjRjQTphBBCCCGGU1KQDsKgTthTC/HVbwbUYILh5o8Fv2xoqv8ddAbimsvhzZ+qya1x3kb1PSVHBR2q16nATTgw6CCdw+Tos9zVbXXTHmonokdUJl1sKmeq7dB7GxrVgmi6mVAkSiiiowGL8xZh1IwEIgGiehSjwcj0jOm0h9rZ07pntHc5mcEIjTsgGqXZ30yGTQ0EMUdj/xtXPpQerSbAtlX2f3shnypj9TWroQcte+Hxy+CdX6kMsn9fAf+8CN64U7U9WPRfqty27M3ElNn9qvxMPe7ifU0Bxh07+Pt9sGlaZ08/e9rAp8QKIYQQ/ZBXFCGEEEKI4RQP0rmLYuWuscuzJuPb/ByEgzhMgwuCDUQg9q7Oqmsq0AaqtNFdBJc+AYE22PqSyl7avkIFXOL7W7RYBfIev1RdNshy1xRLCp6QB13vLF2N6lF0dNKsaXiCns7BEbEyQIdtCMNqRkhED6JhIRSJEgxHKQ59k2/M/QZWozWp3HV65nSy7dm8uOvF0d7lZGYn7PsUtr5Ic6CZNFsagMqkM9tVqWV6LLjUuLP/23vr5/DIF+DhC+C5G+GFW9Tk0uU/V73hHBkqM6+tGiadCpmTO9db+Rv1WItl9vVq439U6ejZv1N94swOyJkxhD+AEEIIcXiTnnRCCCGEEMMpczKkjwNLCqYOjUT3r/w5+Ha/CR21I1Lu6o8Fv2zQmUnnqVd9yFx5ULwUdr4BOdPh7V+ozCdNU+V3RYvV8u016vtgy11NTqJE8Uf8iSzBeD+6TFsmO9lJS6CFHHsOJk29/dQ0vc/bGy1hPYCmWwiFdYLhKCmmDMxGcyJIFw80mgwmzp90PvdtuI8FuQs4tvAQyf46+Yfw4q2w7WWac/MSmXSmiK+z/NKRAWnFsG8NjD9BBW8jYfW966CDjjrY8776eeYXYPtr4GuCM38DWZNg/HFArD/cvEvBkgJGc+f6O1ZA3WaVsXf6XSoI11VbFez9EI67TT0OT/sZ6NGhTRoXQgghDnMSpBNCCCGEGE5Tlquvl76TnEk380J8DZtgz3PYR2C6axAV9LKiJSZ84qnrnJY5+TR4/Q5V9gqqb509XZVIWhxqYub6J9R1lkGWu8aCep6QpzNIF5vsmuvMBaDWU0uuIxdDrDTwkOvnBoT1IBpmQtEowUgUq0ntq8VoSQrSAZxaciqbGzfz8KaHWZK3BIvRsr+bPjjcRbD0enjzp1TZ/MzIVFlppqhfBWXjio+CDU/Cvk9UMC4ue6oqN42EYMfrKqB38SMqwDfuOGgpVwG67hwZnT8f9x2VHedthH2r1eTWj/4M1lTIm6VKrjtqYe1j6rJJp6r1jHJaIoQQQki5qxBCCCHESDDbMUJnJp2m4c+cCHoEm7d52DcXy53DqtOl3LVB9ZwDFWSxulSAJB6w6Zo5dfQNaoAEHNDgCCBpeEQ8CJfnzAPAG/YmprtCZxDvUOILd2DQrYQiUQKhKFZTrM+f0dbZky62/5qm8eWpX6Y92M7TO57ucVst/hb+uu6v+MK+g3ofyJ5GK1FafY2UpKr/pzniVZlucRNPVhOHMyfDyT+CuV9RQyfqt6lBI589rIJs5/2pMwOvaKEalNCfGeepYNyEE+D42+CiB9Sk0+duhOdvgkcvhCevUpl2868A8/AHrIUQQojDlXxkJYQQQggxEkx2Nd2VzrJOv0sFzOzNeyF31rBuLqB1yaSLhlU2lKcenFlqAYMRzv0jNOxQmXbv/Q5mX5x8I6481atusD3pzCqQ0zVIF9ZVeDLVkkqKOYWOUAcaWiITLRqN8v0zp9HsDdIaaMVtdR/I3T5gDb4GbnzzRn593K8Z5x5HVI+yz7Mbc3Qa4YhOMBLF0jWTLjbdNb7/oAKQF0+9mMe3PU6+M58iVxET01Tg86HND/Fh1YfMzpp9cMthXfnsNRkgEqTUpaYKm6J+9K6ZdLkz4MrnO3+ffJoqWQ20qZLo8o+gaBG4C4e+PxkT4Iv3qxJrX7MKBM/6kgoKHg5DIoQQQoiDSIJ0QgghhBAjwWTFDIS7DFPwahqaZsTqbRr2zflj27ERq6+tWKWmtWZ2KU/MnKi+ImE16bNoUfKNTD8PKj5RZYiD4LSoTLr2YHvismhUZdIZNAPZjmw6WjtUP7dYT7qwHub4SVk0+Bq47vXruHn+zRxTeMygtjsU1R3VAKzct5Jx7nFUdlTiC3uxRIoIhKMEQhEsxlifP5MtkREXz6SLO3P8mfx727/5y7q/APDXU//KjuYdfFz1MQBr69Ye3CCdwcBeeyqWqJdcZy6RcCTWk861//Vsqepr4VWw4Mrh7Q1nssBpPxm+2xNCCCHGKCl3FUIIIYQYCSZbj0w6X9iH1WDG4G8Z9s0FUEGxRGe0LS+qwExv0zKNJihe3DMQM/44uH5lZ4njALnMLmxGG7Xe2sRl8XJWo2Ykx56T+NloiJW7xgZLxNdZXbN6UNscKj32f6nqqAJUMM2oGTBHCwhHogS6ZdJ5w16ApEw6UAG81C5BzT99/ifuXX8vi/MWc8GkC1hds5paTy0H0y6rhRLdmNhXUzQAsUDqgMjwBiGEEGJUSJBOCCGEEGIkGM2YdAh1LXeN+LEbreBvHfbNBfQQJsAUz6Tb+xEULlRlriNM0zRynblJwaiuQbose1ZiOS22f/GedQ3eBgBaAi0jvp9dxTPjqjxVNPmbeGr7UxxXdAIGLDR6gmyqbCM31QqonnttwTagZyZd/HqAS6ZewqbGTYSiIa6edTXnTjiXVEsqD29+eL/7EtWj/P7T31PWUjYs9207IaYEE90QMUb86OZBBOmEEEIIMSqk3FUIIYQQYiRoBmxoBKKdwRJfyIfdZIURyKQLRoJY9ViAzmSDsB+ypw37dvqS58xLzqSLZcoZDUYy7Gr6p0EzoGkaRs2YCOLV+dR00b3te9F1He0gZXH5w2rURp23jkc3P0pUj3LZ9MtY8cF6/vHeLmwmI5ctVT3dnCZnopQ3Pp22q28v/DYb6jdwxvgzKEktoSiliHRbOqDKYf+59Z+8uudV1tev57uLv9tj/VpPLatqViX1tDtQrYFW6vQQkwN+NUlVMw8+k04IIYQQo0Iy6YQQQgghRoLBiA2IoBOKhgCVvWU32VUD/WHmD/vV0AjoLFfMGD/s2+lLniOPGk9N4veumXQZ1ozEPoLKHLt/4/20+FsSmXSekCdp8MRIqfHU8NKul/BFVCZdYUohH1R9wFEFR5EW69sWjuhcdlQJ6U5VPOwwO+gIdiTuT3fFrmLOmnAWBs3AwtyF5DpzE9ctzV9KJBrhgY0PsKZ2DQ2+hh7rl7WqDLp97fuGdN+2N2/nb+v+BkYLU6JGaN0H0QjGaFCCdEIIIcRhQIJ0QgghhBAjQTMmgmaBcABQ5a42sxN8LcO+uTpvHRnxIF1IBaBIP4hBOmceDb4GQhEVkEwK0sUy6VoDqsw33g/ulT2vUOerI8Omrj8YJa9/+vxPPLz5YdoCbaSYU/jvo/6bK2dcyUVTLsJg6MziWz4jL/Gz0+wkGA0CJMp1ByrTnslxRcclft/cuLnHMvEy130dQwvS/XXtX/ms7jO+OOWLZGFQk3pDqpeeBOmEEEKIQ58E6YQQQgghRoLBhC1WfuqPqAwyX9ingnT+Vugy9XU47OvYR1E0luVliQ1+SMkZ1m3sj8viQkdPDFiIB+kMBkOfQTin2Umjr5GJblXiGe/7NpLi+1XRXoHdZCfdls5ZE84ix9H5t0qxmhJDI+L7GWcyDL5bzHWzr+O7i79LqauUF3e9yAeVH3DP5/ewpXELALtad2HUjNR4ahJZlwciEAlwSskpXDTjCnBkQOteiGUAIj3phBBCiEOeBOmEEEIIIUZCrNwV9ESZZ6OvkQx7FkSCndluwyCqR6lsr6REj721O+9/4aQfHtQpnVajGrIQjKiMs2hUDYYwakbSrao/W/cgncVgwRPykJ+SD3Rm2o0ki1GVsJa3lWMz2Xpc/6Ozp/OXyxYkXdY1SNd9uutAmI1mFuYu5Jo519AWaON/P/9f3q98n7vX3I035GV3627mZs8lokeo89Yl1qtoq0j8XtFe0WupbFftwXYKUwpVX7+0EpVJF1QlxLpk0gkhhBCHPAnSCSGEEEKMhHi5q64TiATQdZ1aby15KQXqem/jsG2qzltHMBqk6PgfwJcfhcyJMGX5sN3+QMSDdPGswa7lrmajGYCOUEfSOr6wD2/IS5Y9C5PBRGtw5IN08XLVWm+t6g/YzdIJmYledHEOsyPx84EE6eKmpE/hihlXYMDAjfNuxBv28rd1fyMQCbAkbwkATb6mxPK3vXsbN711E96Ql9tW3sYP3vtB4jpf2Mebe99MZB8GIgGC0SAui+qrp4J0FVLuKoQQQhxGZLqrEEIIIcRImHoGtprPIbADf9hPS6CFQCRAbtYMdf2TV8H0c+HYW4a8qfjAhqKSY8CeOeTbOxDdM+m6BukAzp94PjMyZySt0xJoIUoUp9lJqiWVtsDIl7vGp7QC2Iw9M+l64zQNLZOuq2MKj2FW1izcVjcV7RU8X/Y8AAtyVfZeo18Fb7tmFf7yk1+qy4KtPLfzOc6deC5/+vxPfFr7Kc/vfJ67T7o7cb9SLalqJXcJbH8NLVHu2hloFEIIIcShSYJ0QgghhBAjwerCdvx34Y3r8Uf8iUBaXuYU1S/M2wQpuf3cyMDMy5nH/53+fzhMoxeIiQfpAhE1JCMSjQXpDCpId+n0S3us0+hTASm7yY7b6j4o5a5dt9FbJl1vumbS9TbddbDcVjcAF06+kLZgG1E9itvqxm1x0+RXmXRbm7YCMDtrNhsaNnD1rKv5uOpjHtv6GC2BFj6t/ZTzJp7H82XPs75+PWnWNABSzLF+hGklEA5A0271u2TSCSGEEIc8KXcVQgghhBghVlMscBUOUOutBSDXkQupsZLXKacP27acZqfqRTZK4r3e+sqk6+rGeTdiN9kTWWMOkyMRoHpu53OJ4N1wC0fDtIfaEz3mBhqkG2pPur7YTXa+Mfcb3DjvRgAy7BmJ+/5B5QcUphTyg6U/4I8n/ZEzxp3BHUffQWlqKS/vfplJaZO4dNqllLhKeGvvW4lMuqRyV8Cw5v/QNQPEgqhCCCGEOHRJkE4IIYQQYoTEs8t8ER87mneQ58hTwaxT7oDT71IZdWNEj0y6/QTpji86nukZ0xMBKYfZQbotnc/qPuOxrY/x049+ysaGjYQiBz7ptDfxLLp52fOS9rE/XYN5w5FJ15cMWwZN/ib2te9jVc0qzp1wLgbNQJ4zDwBN07hi+hWcUnIK31rwLTRN45SSU1hVs4qfr/o50CVIl5IL085W6+nRgzpERAghhBAH5ogI0u3Zs4evfe1rjB8/HrvdzsSJE7njjjsIBoNJy+3du5dzzz0Xp9NJVlYWN998c49lhBBCCCEGyqAZsBqteENePqn5hCX5ajgAKTkw7pjR3blh1j1IF9XVdFeDofe3m3aTPTEowmFysHycGnRhM9oI62F+9vHPeGjzQ8O6j56QB5PBxLyceQBUe6oHtJ5BM1CUUgR0lqqOhExbJnXeOj6q/gi7yc6xRcf2WGZ29myum3MdOY4cAI4tPDYxDAO6BBQNBjj+/43YvgohhBBi+B0RPem2bt1KNBrl73//O5MmTWLjxo1ce+21eDwefvvb3wIQiUQ4++yzyc7O5v3336exsZErr7wSXde55557RvkeCCGEEOJwZTPa2NK0hbZgG4vzFo/27owYk8GEAUOPcleT1vvbza593uwmO9mObG6efzPj3ONwW9zcv/F+3q54my9M+gKZwzQMoyS1hEfPfJSoHuXPa/+cyFAbiN+d+Dsi0Uiix95ImJ4xnRXlK3hq+1MsK1iG2WDud50USwr/OvtfXPLSJQDJJc+aRuS8v7DljadZNFI7LYQQQohhc0QE6c444wzOOOOMxO8TJkxg27Zt/PWvf00E6VasWMHmzZupqKigoED1ifnd737HVVddxS9+8QtSU1N7ve1AIEAgEEj83tamppKFQiFCoeEt0RiI+DZHY9tCjHVyfAkxcsby8WUxWNjdshtd18mz5Y3J+xhnNpjxBr2EQiECwQC6rhMJRwjR8z5bNAu6rqv1MBMKhViSsyRx/dXTr6bOU0d9Rz2ppt7fhw3Fb4/9LWnWtEH/P6KR6LDvS9zinMXcNPcmHt/2OMfmHzuofbtxzo2UtZb1WCeUNoE699wx/bgTYrSM5dcuIUbTWDu2BnM/ND3+7ugI86Mf/YhXX32VTz/9FIAf//jHPPfcc6xbty6xTHNzMxkZGbz11lucdNJJvd7OnXfeyU9+8pMelz/22GM4HDLqXgghhDjSPeF5gsZoI3bNztUpV4/27oyoBzoeYLZ5Nousi9gW2sab/je5LuW6XrPp1gTWsCq4CjNmrnVdOwp7K4QQQggx8rxeL5deeimtra19JoDFHRGZdN2VlZVxzz338Lvf/S5xWU1NDbm5uUnLpaenY7FYqKmp6fO2br/9dm699dbE721tbRQXF7N8+fJ+//gjIRQK8frrr3PaaadhNvdfIiGEGDg5voQYOWP5+Prk408It4SZ6J7IWUefNdq7M6JWrFzB1PypnDXlLJz7nHy68VPOOf2cXieiGsuNbN2ylQxrBmedNLb/LqNpLB9bQow2Ob6EGBlj7diKV1wOxGEdpOsri62r1atXs2hRZxeOqqoqzjjjDC666CKuueaapGW1XqZe6bre6+VxVqsVq7XnSHuz2TyqD6bR3r4QY5kcX0KMnLF4fDnMDjRNIy8lb8zdt+5sJhsRIup+GmKDMyw93ycBpNnT0DSN5mDzmP+7HArG4rElxKFCji8hRsZYObYGcx8O6yDdN7/5TS655JL9LjNu3LjEz1VVVZx00kkcffTR3HvvvUnL5eXlsWrVqqTLmpubCYVCPTLshBBCCCEGan7OfNY3rB/t3TgorEZrYrprRI9g1PoesrA4bzEmg4kSV8nB2j0hhBBCiEPaYR2ky8rKIisra0DLVlZWctJJJ7Fw4UIeeOABDIbksoujjz6aX/ziF1RXV5Ofnw+oYRJWq5WFCxcO+74LIYQQ4shwaumpvLrnVU4oOmG0d2XEWYwW/GE/AFE9ut9JqFajlQfPeJBwNHywdk8IIYQQ4pB2WAfpBqqqqooTTzyRkpISfvvb31JfX5+4Li8vD4Dly5czY8YMrrjiCv7nf/6HpqYmbrvtNq699tpR6S0nhBBCiLHBYrTwvyf/72jvxkFhNVrZ3bqbW96+hRJXSa+96LoyG8yYDYd/GYsQQgghxHA4IoJ0K1asYOfOnezcuZOioqKk6+LDbY1GIy+99BI33HADxxxzDHa7nUsvvZTf/va3o7HLQgghhBCHHavRSpWnCoBqTzUp5pRR3iMhhBBCiMPHERGku+qqq7jqqqv6Xa6kpIQXX3xx5HdICCGEEGIMKm8rB2Be9jzW1q+VUlYhhBBCiEHYfw2CEEIIIYQQA1SSqoZAnDfpPAD8Ef9o7o4QQgghxGHliMikE0IIIYQQI++m+TcRjATxhr2jvStCCCGEEIcdCdIJIYQQQohhYTFasBgt2Ey20d4VIYQQQojDjpS7CiGEEEKIYWUyyOfAQgghhBCDJUE6IYQQQgghhBBCCCFGmQTphBBCCCGEEEIIIYQYZVKLIIQQQgghht2VM66k2lM92rshhBBCCHHYkCCdEEIIIYQYdmdNOGu0d0EIIYQQ4rAi5a5CCCGEEEIIIYQQQowyCdIJIYQQQgghhBBCCDHKJEgnhBBCCCGEEEIIIcQokyCdEEIIIYQQQgghhBCjTIJ0QgghhBBCCCGEEEKMMpnuOsx0XQegra1tVLYfCoXwer20tbVhNptHZR+EGKvk+BJi5MjxJcTIkGNLiJEjx5cQI2OsHVvx+FA8XrQ/EqQbZu3t7QAUFxeP8p4IIYQQQgghhBBCiENBe3s7brd7v8to+kBCeWLAotEoVVVVuFwuNE076Ntva2ujuLiYiooKUlNTD/r2hRjL5PgSYuTI8SXEyJBjS4iRI8eXECNjrB1buq7T3t5OQUEBBsP+u85JJt0wMxgMFBUVjfZukJqaOiYezEIciuT4EmLkyPElxMiQY0uIkSPHlxAjYywdW/1l0MXJ4AghhBBCCCGEEEIIIUaZBOmEEEIIIYQQQgghhBhlEqQbY6xWK3fccQdWq3W0d0WIMUeOLyFGjhxfQowMObaEGDlyfAkxMo7kY0sGRwghhBBCCCGEEEIIMcokk04IIYQQQgghhBBCiFEmQTohhBBCCCGEEEIIIUaZBOmEEEIIIYQQQgghhBhlEqQTQgghhBBCCCGEEGKUSZBOCCGEEEIIIYQQQohRJkE6IYQQQgghhBBCCCFGmQTphBBCCCGEEEIIIYQYZRKkE0IIIYQQQgghhBBilEmQTgghhBBCCCGEEEKIUSZBOiGEEEIIIYQQQgghRpkE6YQQQgghhBBCCCGEGGUSpBNCCCGEEEIIIYQQYpRJkE4IIYQQQgghhBBCiFEmQTohhBBCCCGEEEIIIUaZBOmEEEIIIYQQQgghhBhlEqQTQgghhBBCCCGEEGKUSZBOCCGEEEIIIYQQQohRJkE6IYQQQgghhBBCCCFGmQTphBBCCCGEEEIIIYQYZRKkE0IIIYQQQgghhBBilEmQTgghhBBCCCGEEEKIUSZBOiGEEEIIIYQQQgghRpkE6YQQQgghhBBCCCGEGGUSpBNCCCGEEEIIIYQQYpRJkE4IIYQQQgghhBBCiFEmQTohhBBCCCGEEEIIIUaZBOmEEEIIIYQQQgghhBhlptHegbEmGo1SVVWFy+VC07TR3h0hhBBCCCGEEEIIMUp0Xae9vZ2CggIMhn5y5fQxorS0VAd6fN1www26rut6NBrV77jjDj0/P1+32Wz6CSecoG/cuDHpNvx+v/7Nb35Tz8zM1B0Oh37uuefqFRUVg9qPioqKXvdDvuRLvuRLvuRLvuRLvuRLvuRLvuRLvuRLvo7Mr4HElzRd13XGgPr6eiKRSOL3jRs3ctppp/H2229z4okn8utf/5pf/OIXPPjgg0yZMoWf//znvPvuu2zbtg2XywXAN77xDV544QUefPBBMjMz+c53vkNTUxNr1qzBaDQOaD9aW1tJS0ujoqKC1NTUEbmv+xMKhVixYgXLly/HbDYf9O0LMZbJ8SXEyJHjS4iRIceWECNHji8hRsZYO7ba2tooLi6mpaUFt9u932XHTLlrdnZ20u+/+tWvmDhxIieccAK6rvOHP/yBH/7wh1x44YUAPPTQQ+Tm5vLYY49x/fXX09rayv33388jjzzCqaeeCsCjjz5KcXExb7zxBqeffvqA9iNe4pqamjpqQTqHw0FqauqYeDALcSiR40uIkSPHlxAjQ44tIUaOHF9CjIyxemwNpCXamAnSdRUMBnn00Ue59dZb0TSNXbt2UVNTw/LlyxPLWK1WTjjhBD788EOuv/561qxZQygUSlqmoKCAWbNm8eGHH/YZpAsEAgQCgcTvbW1tgHpQhUKhEbqHfYtvczS2LcRYJ8eXECNHji8hRoYcW0KMHDm+hBgZY+3YGsz9GJNBumeffZaWlhauuuoqAGpqagDIzc1NWi43N5fy8vLEMhaLhfT09B7LxNfvzS9/+Ut+8pOf9Lh8xYoVOByOodyNIXn99ddHbdtCjHVyfAkxcuT4EmJkyLElxMiR40uIkTFWji2v1zvgZcdkkO7+++/nzDPPpKCgIOny7qmFuq73m27Y3zK33347t956a+L3eK3x8uXLR63c9fXXX+e0004bU2mhQhwK5PgSYuTI8SXEyJBjS4iRI8eXECNjrB1b8YrLgRhzQbry8nLeeOMNnn766cRleXl5gMqWy8/PT1xeV1eXyK7Ly8sjGAzS3NyclE1XV1fHsmXL+tye1WrFarX2uNxsNo/qg2m0ty/EWCbHlxAjR44vIUaGHFtCjBw5voQYGWPl2BrMfTCM4H6MigceeICcnBzOPvvsxGXjx48nLy8vKVUyGAyycuXKRABu4cKFmM3mpGWqq6vZuHHjfoN0QgghhBBCCCHGtj0NHl7eUD3auyGEGOPGVCZdNBrlgQce4Morr8Rk6rxrmqZxyy23cNdddzF58mQmT57MXXfdhcPh4NJLLwXA7Xbzta99je985ztkZmaSkZHBbbfdxuzZsxPTXoUQQgghhBBCHHlu+tfnAJw5K29AExqFEOJAjKkg3RtvvMHevXv5r//6rx7Xffe738Xn83HDDTfQ3NzM0qVLWbFiBS6XK7HM3Xffjclk4uKLL8bn83HKKafw4IMPYjQaD+bdEEIIIYQQQggxit7dXs/sQjfpTgueQDhxeUcgjMt2+JffCSEOTWMqSLd8+XJ0Xe/1Ok3TuPPOO7nzzjv7XN9ms3HPPfdwzz33jNAeCiGEEEIIIYQ4lIUjUf7ntW1MzHbyh0vms7WmPXFdY0dQgnRCiBEz5nrSCSGEEEIIIYQQB6rVFwKgrN4DQG2bP3Hdc2uraPWGRmW/hBBjnwTphBBCCCGEEEKMmvve28XvV2w76NvVdZ0L//IBb2+tS7q8uUsQLhyJUtPqJ9tlBeCNLbXc//6ug7qfQogjx5gqdxVCCCGEEEIIcXhZvacJk/Hg5480eYKEIjrPfF7JSdNyEpe3eIOJnz8tb6a2zU9hmp369gAAkT5aLHX3nzX7cNvNnDojd0DLv7W1llSbmZo2PyaDxhmz8gdxb4QQY4EE6YQQQgghhBBCjIp2f4iqFj9u+8Hv81bR7AMgxZZ8WhzPpJue7+LfqysIR3Wm5rmgQl0fjgwsSLen0cOW6jZOmpaD0bD/ibD+UIS7X9+RdJnbbuHoiZkD2pYQYmyQclchhBBCCCGEEKNie60aytDmDxGJquBXfXuAW59YS1l9x4hue2+TFwCrKfm0uLbNT6rdxKnTc9lR18HeJi+5qTZuOXUydosxkVHXnwvmF1LbFuDTPU39LvvpnubEz1+YX8jicRnc9fIWVu1qHMQ9EkIc7iRIJ4QQQgghhBBiVGyrUYE4XVdZdaAGN+yo62CAVaUHrCIWpIsPigB4cX0VT6yuwGU1U5zhACAS1SnNdHDK9FwumFdIfUffQTpd1/EFIwBMzE4h3WlhR13/wcatNW3ku2385bIFXLlsHD86ezrT8ly8sL5qKHdRCHGYkSCdEEIIIYQQQohRsb22nVS7KjeNl5l2BMIAuGwj252pskWVu3ad1jojPzVxXVG6PXH5pOwUALJdVlq8IYLhaK+3+YNnNvCP9zoHSxSl29kXK6vdnxZviMwUC8UZDowGDYNB44xZeayraE2aLiuEGNukJ50QQgghhBBCiIOq3R9iX7OPbTXtLBmfwVtb62IDG5x4YkE6p3VkT1fr2wOYjRrN3iC6rqNpGhOyU7hy2ThSbSZcts4+eelOC0Biymtli48it6XHbZZkOFlX0ZL4vTjdwcaq1n73pdUXIrVbX75jJmWR5rCQnWI9kLsnhDgMSSadEEIIIYQQQoiD6r73dvPdp9bTEQizLDYcoSWW0dbuD6Np4DAbR2z70ahOQ0eAKbkuQhEdT6xEFeBLC4tYPjMv8bvZ2Dn0YXq+i8wUC0+tqej1dmcUpFLZ4uOBD3YTjeoUpdupavEl+u31pdUX6jE8w2Y2srA0HUM/QyeEEGOHBOmEEEIIIYQQQhxUde0BFpSk8asvzmbJ+AzMRo173tpBmz+EJxDGYTHy0oZq/v1p78GwoWrzhwhHdCbnugBo9gR7Xe6Rry3hgauXJH63mox8aWER7+9oYHttOxFdBdiqW1VJa7xc9unPKqlo9lKc4SAc0fstWW31hUiz98zME0IcWSRIJ4QQQgghhBDioGrxBinOcDCzwI2maZw7t4BQRGft3hY6AmFSrCYaOwI8/dk+AuFI/zc4SPEJrTMLVFCtryBamsPSI8PthCnZRHX43tObeGaPgZ+8uIXrHl7Dv1dXkO2ycuNJE/nzpQsozXQyNdfFny6dT46r75JVXddj5a7SjUqII50E6YQQQgghhBBCHFTN3iDpjs7MsauPGU+G00J5oycRpDt9Vh6eQIQPdzYO+/bjQbrpeamYjRpVrQMfzuCymbl4URHHTcpkT7vG7gYvOS4rj64qZ1d9B2fMyqckU02GtVuMlGY6MRn7PvX2BCNEorpk0gkhZHCEEEIIIYQQQoiD44fPbODU6bl4AhHSnckZauMyHexp9GIxGUixmch32xmf5WRDZSsnTcsZ1v3Y0+jFZjaQajeR57ZR09r/BNaurjh6HKFQiHfWlwHwv1+Zz/p9rYzPcg56X1p9qhdf94w9IcSRRzLphBBCCCGEEEKMuOpWH+v3tfL717cDqpS0q9JMJ3saPHT4w4nJrhOzUyir7xjW/egIhHlhXRUnTs1B0zTy3XaqWgaeSdfVZZOi3HnudJxWE0dPzETTeh/yEIpE+dGzG/hgZ0OP61q9EqQ7kj23tpJ/r66gIzbVOO6jskZ8weEv9RaHNgnSCSGEEEIIIYQYcat2NQGdwaj0bkG6ybkp1LUH2NPoIcWignSTclIob/QSDEeHbT/q2vxkpFi4ZHExAPluW2Lww2C5zDC3yN3vcv5QBIfFxK9e2crz66qIxqa9ljd68ATDFGfYcTskSHek6QiEue+93TzycTm63jkBuLLFx10vb+GnL24a1se+OPRJkE4IIYQQQgghxIirjvV9i5d3pncLSi0oSQegxRsixRbLpMtxEonqw5pNNyE7hT99ZT6ZKdbY706yUqxJQZLh5rKZuf3MaZw3t4B/vLuLX76yBW8wzM9e3MzbW+v4y2ULJZPuCOSJZc/99PyZuGyd//+1e1sA2FjZxo2PfTYauyZGifSkE0IIIYQQQggx4r5x4kR0dF7ZUIPBoJFqSw5KOa0mFpams6a8mam5LgAm57jIcFp46MM9XLa0lNkDyFobiK5lqSdPy+XkabnDcrv9bfPa4ycwszCVX7+ylVseX0uzN8TlR5WO+LbFoSkepIuXdwOU1Xfw0Ed7mFmQynXHT6A5Vg4tjgySSSeEEEIIIZJsqmqlsuXASr+EEGJ/Mp2qxDU/1YbB0LN/27dPncLfr1jIsklZABgNGqdOz2FTVRuPfbL3oO7rSFk2MYtz5hRQ3ern8qNKKEizj/YuiVHijfWcc1iMicte2VCNLxjhvHkFTMhOYWFp+mjtnhgFkkknhBBCCCGSfP8/GwB44aZjR3lPhBBjjduugnR5blvv1zvMPXqzXbSomLnFaczITx3x/TtYLj+qlEk5KRw/JfuA1t9e2059e4BjYsFMcXjqDNJ1hmYaOoIsGZ/Bsonyvz0SSSadEEIIIYToVTSqs7FSsuqEEMMnLRaAS7UNPF/EZjYypygNk3HsnL7aLUZOmpaDsZdswoH4YGcDD364Z3h3Shx0nqAqd+2aSVffESDbZR2tXRKjbOw8ywkhhBBCiGG1p9HDH97YwVOf7hvtXRFCjBEpsd5bXXtwicHLdllp6AgkpsQealq8Qc695302V7WN9q4c0ryBCAaDhtXUGZppaA+QlSJBuiOVBOmEEEIIIUSS+MnCtpp26tv91LT5R3mPhBAHot0fovYQO37jwQfpszU02SlWwhGdZm8w6fIt1W28sbl2lPaqU117AIBXNlaP8p4c2jzBME6LMTHIxBeM4A1GyEqxjPKeidEiQTohhBBCCJEkPvRwbUULUR3qYif5f3hjOy+urxrFPRNCDMYvXtrCNQ99iq4fOtlWeW4b/77+aBaNyxjtXTms5aSqnn71HYGky7/71Hr++OYOQpHoftf/dE8TFU3eEds/f0j1WtvXLO0S9scbCHfrR6f+n5JJd+SSIJ0QQgghhEjQdZ1gWJ3cfb63BVAnDfXtAd7cUsffV+4i3M/JnxDi0BDvJ1lW7xnlPUlm79J/SxyYeM+yurZAr9d/sLNhv8HZv60s46UNI5fl1hFQvdZGMhA4FniCEZzW5H50gPSkO4JJkE4IIYQQQiSEozrxFke+WCZEVIcX1nVm0K2taBmFPRNCDFZxhgOAbz+xlh217aO8N2I4pVhN2C3GpHLmli6lr79bsZ3P9jb3uX6bL0y7PzRi++cJqNePQDiayKoTPfmCkaRMuhyXlUuWFJPhlHLXI5UE6YQQQgghREI8i64kdnIfP1F4dWMNswpTcViM7G44tLJyhBC98wUjiay1F9dLb7CxJt9t4+GPynl7Wx1bqtvYVqMCsf/v9KlA3xmUoUgUXyhCuz98QNv1BSP88uUtvL2tjk92N/W6jCfQedvbatolUNeHeE+6uKJ0B5ctLcU8hiYZi8GR/7wQQgghhEiI9zFKd5oBuHJZKU6rEV8owqxCN8UZDilfEuIw0eYLce6cfL6ypISPyhoTQXgxNnz/zGnYzAZ+v2I7f3prJ+v2tZDtsnLc5Cwm56ZQ2Uc/uHhwruMAg3Tv72zgw7JGfr9iO8983vv0744uQbofPbuRX768hbp2f6IEezhVtvgIhA/PIKA3EMEhk45FFxKkE0IIIYQQCYHYSfyZs/K55rjxnDglh+J0lVU3s8BNcbpDGoEfxtaUN7GxsnW0d+OIM1qDG9r9YVw2MwtL0/GFIpQ3ShbsWJLvticGcJw4NZu1FS3ML05D0zSK0uxU9REQi5e5tg2i3NUTCPPi+ira/CG2VrclLs/uY8CBJxBOmlD62d4W/vHuLu5+fXvScsORYff/nlzHqxtrhnw7o6GhI0C6wzzau3HAQpEo/3h3V1JQVgyNBOmEEEIIIURCPNMm3WHh/HmFGAwa1x0/gal5LqbluShKt7Ov2XdITYsUA3fn85u5/ekNlNV3jPauHBH8oQjXPvwp7+1oOOjbDoZVSaPLZqI004Gm0W+pel27X4K4h5llEzMBmFOURkWTj/kl6QAUxp6rexPPpOta7urpJ8gSikS5991drN7dxPouj5GsPgYceALhHsMPdtR1sKfBQ4s3yE9e2MTN//qci/720ZD6JfpjZbtd7+u+Zm9SH9VDlT8Uoa49kPgg7GD5zatbueGfa4bltvY1+3h+XVVS4FYMjQTphBBCCCFEQjyTzmLSEpdNznXx24vmYjMbmZSTgi8UYUedCvL4QxFafSPXfFwMH13XMRrU/3XXITbtc6yymY1Eozo76w5+UDSeLeWymbGZjeS7bf0G6R78YA+3P72Bp9b0XsIoDj3HTc7mieuPYmqei398dRELS1WQriDNTkeg9+EQbbHnbG8wQiSqU9Hk5ZJ7P+bTPaq/XFWLjz+/vZNotPPDmDSHham5Lj4sa6Suy7CKrL4y6YIRUqzJGWKNHUECYRXs21TZRk3sdtbvO/DAcPz1p769c8rtHc9t4t53dx3yHybFA4vxAS8Hy3s7GqhoGp6M+I5eAr5iaMZUkK6yspLLL7+czMxMHA4H8+bNY82azgixruvceeedFBQUYLfbOfHEE9m0aVPSbQQCAW666SaysrJwOp2cd9557NsnL1JCCCGEODLEe9JZjMZer59d6CYrxcLrm2sB+M6/13H5fato84f49+qKw7Yv0JEgfkIO0BGQwOrBMiknhZ2jkLkYP2lOtat+V+OzUtjTT7lrvPzxn6vKqWn173dZceiITwfNc9sSg0LiQ39avL0E6boE7l7ZWM0N//wMINEv7i/v7OTVjTU0d5kWC7B0Qiaf7G4iqoPLprbZZ5AuECbF2vvryHs7GphfmsajX1vKrMJUttcdeCZd/P51nXIbD9wd6iWYFc2qv2tRuv2gbXNvY2dPWV9w6K/XB1I6LfZvzATpmpubOeaYYzCbzbzyyits3ryZ3/3ud6SlpSWW+c1vfsPvf/97/vSnP7F69Wry8vI47bTTaG/vfFK45ZZbeOaZZ3j88cd5//336ejo4JxzziESkTecQgghhBj74pl0VnPvbxMNBo0Tp+bwwc4GOgJh9saGSLy5pZZHPi7nf9/c0edt17X7eWrNvkM+u2GsauzoPOE+0IbxYvAmZqdQVtcxLI97Xddp7SXo0pt4kM5lU9lM+W5bUrZRV799bRvPra2ksSPI6TNziUZ11u9rGfL+itGT7lBBuu6BNoC2Lsf/Ax/sSfzsCahzXm8seNPc7bE2Iz818fP02M9d+8511REI47SacMYCdZcfVQJAWqz/2vziNCwmA1NyXWyvaT+g42NrTRu/eXUrAHXtgcRtxD9sOtSzvHfXe8hwWnCO8OAIfyjCluo2qlt93PjYZ4nLq1uHnk3XHguEth3if+vDyZgZI/LrX/+a4uJiHnjggcRl48aNS/ys6zp/+MMf+OEPf8iFF14IwEMPPURubi6PPfYY119/Pa2trdx///088sgjnHrqqQA8+uijFBcX88Ybb3D66af32G4gECAQ6Hyxa2tTtdihUIhQ6OA/UOPbHI1tCzHWyfElxMiR4+vQ4fUH0XUdTY/0+f+YW+jiyU8reOKT8sRJ0cdljei6zqpdjQQCQQwGLWkdXdf52oOr0XU4cXIGbntyGdT7Oxtp9ARx200cPSETq2nMfJY8qroeWzWtHnRdx2k10uoNyvF2kIzPtOEJhNlV10bJEMraqlv9/Pj5zVhMBv78lXn9Lv/pngbMRo1Ui0YoFMJpMdDSx/+9ssWLQdOpb/eT58oiO8XCnoYOeYz041B+7Uoxa+i6TkObj7pWM2l2M5qmnpdbPAE0dKI6BEIRls/IYUt1O3VtPkKhEL5AGF3XqW/zUpremSlX5LYknvMnZztYtauRNJuh1/vf7gthM2n8+ZK5hKM6GU4L583OpaYtwIvrq1lSmkYoFGJ2gYv/rNnH5+WNzC50D+o+fu+p9Yns4EAoQkObj03VbYnLGtp85KYcmkMZwpEob2+tZcm49BF//Ly3vZ4/vlnGydOy0XWdb586ibvf2Ellk4fitN4zIQeq1aOCo82ewLDej0P52DoQg7kfmj5GPsqcMWMGp59+Ovv27WPlypUUFhZyww03cO211wKwa9cuJk6cyGeffcb8+fMT651//vmkpaXx0EMP8dZbb3HKKafQ1NREenp6Ypm5c+dywQUX8JOf/KTHdu+8885eL3/sscdwOA5ubbkQQgghxFBta9V4odzAN2dGsPVeqUQkCn/erK6MArHkOxwmHW9Y47JJEfK7vQ1qC8K9W9U6V02JkGVLvv6fOw1Ue9UJ5FE5UY7NGxNvUQ8pG5o0XttnoMCh47LAuSXR0d6lI0I4drwszYlyVM6BP663t2o8X27g7JIo09w6mtb3sqHYNhdmRTkudixtatZ4pcLALbMidI+BP7PHgC8MVV6Nc0qibG5WN37h+M7HSFQHw362KQ49f9xoZFZ6lHVNBs4qjjItTT0Wnt5joCMEdT71Dz2/NMrGZo2oDl8cH+VvWwx0hDROK4wyNzP5Mfvb9ep5/PrpEba0aCzO6vlYjETh7o1GlhdFmZOx/8e8rsPDOwykmNW2ByochT9sTH6R+srECP8q67zs3NIoU909t1/WBvkOcIxiylJ5Ozy528gVkyPkjnC1a0sA7tum/i4Ls6KcmK/zv5uMLMuNsjj7wJ6TmgJQ6dFoDsAn9QYmu3XOL5XXlL54vV4uvfRSWltbSU1N3e+yYyaTbteuXfz1r3/l1ltv5Qc/+AGffPIJN998M1arla9+9avU1KiRzLm5uUnr5ebmUl5eDkBNTQ0WiyUpQBdfJr5+d7fffju33npr4ve2tjaKi4tZvnx5v3/8kRAKhXj99dc57bTTMJsPzU8NhDhcyfElxMiR42v0RKM6ZQ0eJuek0OQJUrO2CndLDeecuQTLfrLZNhi3sXpPMwtK0tjd4KHZG+L8efk8t7aaF+vhnDl5/Ney0kTmxp5GD09UbwBg7pLpzC3qzJjwBSPcv3c17ti/3pvi4Kyz5ozcnT6CdD22POtrKQ7VMKMgFX8owllnTR/t3TtibDVvp749QLAgkwUlaQeUUWfZUsfKll3ccsnSxACQvlQ0e3FWrOfyM2Yws0Cdk+TtbeHDl7Zy9Anze0zdLF+5i7e21eM265x18kzSdzXxye4mzjqrM7nhtqc2sKAkjUuXFA9638eqQ/216/nmz6n0hnClRulIdSeO+aceWsO507JZtbuZimYfl5w9j2fXVrO1pp1Tl8/ivr2f4NYhZ0IeKyrbuOWUiYzLdAJw/96Pierw5fOP6nO7VS0+3BXrOPuk6QPKjnPGMr1mHjWH0gEeGzvrOnBXbEy6LHdKKe6G8sTv02aP48xZeUnLeINh/nH/p8x2pPLTs2YA8PKGGv69ppL7v7qg32NruLy2qZb05t189Qv9H89Dpes6T/5tFQBXnz2DGfmpfBTeRAg466yZB3Sbb2+r5z9vlXHcpEzcwUayC1wHfFu9OdSPrcGKV1wOxJgJ0kWjURYtWsRdd90FwPz589m0aRN//etf+epXv5pYTtN6ll50v6y7/S1jtVqxWnumiJrN5lF9MI329oUYy+T4EmLkyPF18D392T4e+GAPf7xkHt96fC2g3i85bJb9vkdaOC6DT8tbmJjjYk5xOg99uIcZBWk0esLUtPp4aUMt580roiBNpQgEIlri9tqD0aT/88bqDnQ0LCYNp9XE3iYfdZ4whWkHr5n2WGc2m6nrCJHntpPmsLCr3iPH2kF09KQs7n59B2UNXnLdDibmuukIhHnko3JmFqRy/JTsfm8jEFEDAmzW3nuAddXsi6JpGgXpzsT/OdNlQ9M0vGF6/O8zXTYiUXXs56Y5KM0K8tKGGiIYsJmN+EMR9jR6OXN2vjxuenGovnZlOK3UtQdJtZtZX9lGIKoRCEVo8YWZku/mCwtK+GhXI4UZKeSk2vl4dzN1njCgoWnw5tZ6/KEoH5Q1MzkvDYD/u3oJgXB0v/e3wduOpmkUZaQM6O9y0rQ8/rW6kufW1fCd5VMHdN/8keRze4fFyPY6T9Jl3V9rAHbXqGU2V7cnrvvnJ/vwhSKsq2xn6YTMAW1/qFr8ETJSrAM6nodD/O8yuygDg0Hj/PlF/PLlrextCTAxO2XQtzcu24WmaYm/eUdg/4+JA3WoHluDNZj7MGaafeTn5zNjxoyky6ZPn87evXsByMtTEfTuGXF1dXWJ7Lq8vDyCwSDNzc19LiOEEEIIMZbsqFNTJ9/aWpd0eX8fYs4vUZUH47OcfHFBIXd/eS7LJmby/TOn8fMvzEbTYHNVG40dAZ5YvRdPlyl7Ld0amVc0+zAbNf7w5fnc/eV5mIwaa8qT34+JodtV72F8lhOn1ZRo9n2k+nhXI02eng31R8rcojRADV5ZWKqOnc1Vbby8oZrfrdg2oNvwBMM4+piW2V19ewCD1jnhEyA11geyt2b68SEDJqNGptPKlFwXUR2217azuaqNi/72EVEdpuYd/EohceDi//9Ll5YQ1WFPg4ftteo5f1JOCm6HmTNm5aFpGhlOC62+EDtq1VDF6fku/CFVvri6y/NxVoq13w9QaloDGA1an5NfuzMZDVy4oJB3t9cnTWndn/iQi+tPmMCtp00hN9XG5mqVrXTflYuYkO3sMdm23R/iidUqPhDV1TCjjkA4MZV8xeZaPt7VyN9Wlg1oH4aioSMw4L/PcPjjJfO487wZiX6xC2Kv4V2nvQ5G/DFQFxtGI9Ndh8+YCdIdc8wxbNuW/AK3fft2SktLARg/fjx5eXm8/vrrieuDwSArV65k2bJlACxcuBCz2Zy0THV1NRs3bkwsI4QQQggxlsQDZm9sqR3UsIbCNDu/+dIcjpmUhaZpTMpxJQJ7KVYTpZlOXt5Qzc9f2sKjH++lskVNkctMsfQ4cWpoVycrJZkOslKszC5083/v72ZdRcvw3ElBKBJlb5OXCdkppFhNh9V015c3VLO7wTNstxeN6vzipS2JqZAHQ2aKlZIMB7MLUxOTHNtjJ7VRnQFNtvQEwjgtvRdChSPRxO0B1Lf7SXdaMBk7j+nU2JTX3qYwxiduZjotGA0apRkOUqwmNlS2smJzZ5LDQEsRxaEhN9VGntvG6TPzMBk1djd4WL2niYI0G9ndAkTTC1K5/oQJ7G7wkONSgVqAhaXp1LcFBhWEqWnzk5tq7TFAaH9OnZ6LyWhg5bZ6guGevc1eXF/Fs59XJn7vCITQNDhrVj4nTcshx2WlxRvCbNTIcVlJd1jYUdvOhzsbEsfXs2ur2FjZOcBlc1Ub22vbierw/TOn8c2TJtHQEeDVjTWEIyPbX62hI0BmH5NxR8KE7BQWlmYkfreZjdjNxl6n/w6E02pKBIHNRo02XygxsKM/7+9o4HtPrZdJ730YM0G6b3/723z88cfcdddd7Ny5k8cee4x7772XG2+8EVCfBt9yyy3cddddPPPMM2zcuJGrrroKh8PBpZdeCoDb7eZrX/sa3/nOd3jzzTf5/PPPufzyy5k9e3Zi2qsQQgghxFgRjeqU1anghycQYXLspGygpuen9tlLZ/G4dHbUdbAzlqlX0eTDaFAnT83dMpgaOgJkdemR9Y0TJ5KbauWhD/cMan9E3yqafESiOhOynbhsJjzBMNEBnlANt2hUH/DJWVWLj7++U8af3945bNuPBxsCvQQCRtL3zpjGN0+anPi9vUug1BuM9Lu+JxDBYemZSReKRLnm4U/55mOfJy6rbw+Q063vnM1sxGoy9BpsiWfSxb8bDBqzi9w8/kkFb25RWbanz8wdVNBFjL5Ll5bwP1+ag9looCTDwc66Dj7Z3cRREzJ7ZEsXptk5Z04B1a1+xmU5uWrZOB67dik/PHs6j16zNBHkHYhoVE/0sBsom9nI7EI3j3xczjcf+4zGjkDiumA4Slmdh5Xb6xOXdQQiOC2mxGMyN1VNI8pMsaJpGmfMyqOs3sMvX9lKWb16HdpV30G608Id582gIM3G1pp2qlp8mIwaR0/IJN1poTTDSSSqU906sIy+A9XYEewRKD3Y0p3mIWUUx4P70/NTE5mJA5FqN7G5uo1tte09MuvFGArSLV68mGeeeYZ//etfzJo1i5/97Gf84Q9/4LLLLkss893vfpdbbrmFG264gUWLFlFZWcmKFStwuTrfkN59991ccMEFXHzxxRxzzDE4HA5eeOEFjMaBpZYLIYQQQhxsW6rbuOlfn9PqHVy5SasvhC8UwW5W73OOnjh8vXiuOKqUW5dPSfy+t8lLitVEusNCS7dMnvr2AFldyvLy3XauPmY8O+o6EidXYmh21HVg0FR5sstmRtfh6S5ZKaACYr98eQv+UP8Bo6G49L6PueetgQXdXt5QDYDNPHynLQ0d6qQw1Tb09tyNHQH+trKM+vZAv8uWZDrIc9vY1+zl0z1NSZlvA8lS8gbDiSy8rlbtaqKxI0iTJ0golv1T3xHoMRwCwG0391ruGi+FjQc6AL56dCkLStIA+Nqx4/nmyZN7rCcObTazkbRY4HVidgpvba2j1RfixKk5fa5T2eJjXKYDk9GAy2bGbDTsd4hQb649fgK3H8BgmnPnFjA5J4V2f5iXYsd+TaufK+5fhS8UYW+TN/HhQoc/lHQ8jMtSQcH4BwBLx2fwhfmFADR51GN+d4OHU6fnkOOyMS0vlfX7Wthd76HAbU8E++JZdnubDqwMdCB0XT/o5a69yXBaDjiTDuDCBUWcN7eA64+fCKjXkN4yEH3BCO/vaEj872YVuMlwWrj/vd1c89CnfFTWeMD7MBaNmSAdwDnnnMOGDRvw+/1s2bKFa6+9Nul6TdO48847qa6uxu/3s3LlSmbNmpW0jM1m45577qGxsRGv18sLL7xAcbFMMBJCCCHEocto0NjT4KHR03+goKv4m/NbTp3MnefN5Ly5BVy5bBxLxmf0s2b/NE3jpKk53P3luRg0qGjy4rAYyXPb2NvkTcqkaugloLB4XAYXLigkpZeghBi8LTXtTMhOwWY2Mq84jRn5qTz+yd6kE6r3dzbwYVkj7+1oGLH96AiE8QQivL65tt9gYGWLjxfXqxP14egf1xEI8/sV2xKls2770JuRb6tt56X11fTTwjHJu9sb+OObO2jzhxOBgXZ/mJ11HTz7eSXVrT7+8e6uRMAtzhOM4Iz1pNtR285PXthEMBxla03n1MCaWPbPuEwnM/J7TtWcmJOCzdQz+SA/1caXFhZxzXHjE5cVpTv44dkzuHhRESftJ6gjDg+XLC5mYraTixcXMz6r7yy3v1++kIsWjc7578LSdH7/5XlMz09lV706Tl/eUI1B0zhpajbBcJTqWM86TzCCq0ug/ZRpOVxz3HiuPkY9hjVN46tHq9ZXrb4Qrb4QjR3BxH0/aVoONa1+VmyuJd/dGZx2O8ykOcyUH2CvtoFoD4Txh6K9BtIPpnSHJRHAPBAnTMnm2uMnUJRux2zU+PvKXXzhLx+yq8uHa8FwlK89tJpfv7qVz/aq3oYGg8bpM/OYmudi0bgM7n5je9KHFke6Qb/ref755we87HnnnTfYmxdCCCGEEIMU7wvT5Akyof8hkQnxIN3kXFfiZOFLC4uGdd8m5bjIcFpo6AhSaLUzs8DN059VUtPmJ99tp7LFR0NHsEdGgdGgJU62DqbvPbWefS1eFo/LYHyWk/PnFR70fRgJW2s6pxY6rSauOW48t/57HTvqOpier4YBxHsSvrKxmhOmZA86e2Ygdtd39pZbv691vwHhdRUt6LrOlcvG8diqcqJRfUjllh+XNfL2tnrWxE4U7X30dxuMsroO0hxmMp0D7y1VkGajxRuits1PUZqdvU1e2nwh9jZ5eeCDPdz//m5ABREm5XROXfQEOiceW01GPt3TzKflTWyvbWdWYSobK9uobPFRnOHg+hMm9rrtH/SR3WQwaFy5bFyPyy0mA1cc3fNycfjJSbXxh0vm97ucwaBhM4xuFdn4bCcrNtWwuaqNVzfVcMbMvESPvPJGD4VpdjoC4UTQGtR+d3++VtmAJpq9Qf71yV4MBo2peep25hWncd3xE/jz22U9guzjMp1Jwe/h8M62Olw2EwtLM6huUYHGrsHB0ZDhtAxLv0+DQU1vj5cIP7e2ipOm5TCvOA2LycC1x03g969vZ2ddB4vGqef8S5eWACqIV97owTWIcuqxbtCvTBdccEHS75qmJX0S2rW2PRIZ2VR5IYQQQggBaXYzmjb4bKPm2Cfow5FRtD9ZKVYaOoI4rUZmFKRi0FSAJtdl46bHPgMgd5RPVkD19opPB4z34RoLQbpABGrbAkk9Bydkp2A3G1mxqZapuS4MBo22WI+08kYvT6zeO6zBmVZfiP99cwf5bhtmozqh29fs3W+QzhuM4LCYKM10EIroNHqCQ8o82V6npla2+dT9jERVptq597zPtcdP4Ly5BYO+zbJ6DxOzU/qdhtxVQSzQtq2mnbnFaext8tLuD3PhgiKyUqxsrGrllQ01VLX4ugXpIjhjPelKMh1MzHayYlMtZfUerjiqlLJ6D/uafYO+D0IcaiZmqcms3/vPenJTrVy8uBinxYjbbmZ3g4dlE7Po8Pde/t1dmkP1XXtlQzWXLi0hx9X5WnPytFz+uWovp83IS1rnmElZ/PWdnb2WpIYjUUIRHXsv/SH3Z8XmWlJtZhaWZlAVG6SU797/lNyRlu6wsK/Zx7OfV3LB/KG91qU7LNS2+clNtfHW1jre2lrH8988RmXVT8vhza21vbavsJgMg+6HO9YN+uOxaDSa+FqxYgXz5s3jlVdeoaWlhdbWVl5++WUWLFjAq6++OhL7K4QQQgghujEZDbjtg28A3ewNkmI1jUjGVFcZsQl2TouJFKuJ6fmpvLmllm217YQiOlccVcq8orQR3YeBiGcWXnPceFKsphEPXh4snth8gixn58mm0aBx0aIi3thSy/s7VXlrhz/M+Cwnc4vSKKsfvmmqAA9+sIdPdjfxwvpqxmU6Kc1wUNG0/4CSLxjGbjEmglqVLT5+9OwGPtnddED7sKmyLWmaYjCiJ6YRvrCuqsfyb2+ro6Gj7xJyXdcpq+9ICqQNRDx7xhuMkOG0YDN3DnM4fko2N5w4CZfNlDiRj+vek+6MWfmsKW8mHNU5akImRWn2HusIcTiaWehmer6Lm06exN1fnkeK1RSbIp7CjloV6PEEwrgGEKRz2y3safAQ1VVfvq4sJgOPfG1pjw8LjpuchdGg8d6OerrbWtPOxX//iIpB9qwryXCwt0k9r1a3+klzmAcd6Btu+WnquWhrTfuQJ63edeEs/nLZAorSOwOPO+o6g3ITs1P4eFcTj3xcLlNd+zGkd2S33HILf/zjHzn99NNJTU3F5XJx+umn8/vf/56bb755uPZRCCGEEEL0I91hoXGQQbpWXyhRKjuSJsVOjMKxgMgX5heypbqdv7xThstm4ksLiw6JqZHxIOecIlUG1eoLDXiIgq7r/OCZDfzwmQ14AuH+VziIYoljPYKOFy0qpjDNnsgebPeHcNlMFKTZhi3YE4nqfL63mZXbVWZiNKqT7bJSlG5nX/P+T3K9QTXUJD/Vht1s5MV1VayraOWJ1RWD3o+GjgB7m7xcfcx4Ll6s+m2FI9FEHySLMfm0SNd1fr9iOz9/cXOP29J1nfJGDzvrOmjxhnqc+PfHZTMnei2m2syk2sy0dRvmUJhmp6LZm+gZqOs6nkBykG75jFxmFbq5YF4BeW4bd5w3k2+eNGlQ+yLEochtN/ObL81l+cy8pDLIqXku1pQ3c9uTqlR/IJl06Q5zYsp45gAHNTitJuYVp/f6gcC+Zi8GLXnIykCMy3RQ2ewjGI5S1eKjYJSz6ACOGp/J/Vct4vtnThtUNnBvclw2ijMcmI2dt/PQh3sSvTWPn5LNtDwX/15dwZNr9g1pW2PdkBoxlJWV4Xb3bEjqdrvZs2fPUG5aCCGEEEIMQobTQvMgg3RNniBpjpHPFjt9Vh4Pf1SOLxbwWjI+gy8vLubjXY1cd/yEQyJA98qGav7yThmg/pbeoIps1bUFKMl09Lt+daufDftaAZWVsLA0fdj3sc0fwhXLKBkMb1gt31tm4JTcFLbXqDLQdn+YFJuJwjQ7tW1+wpEoJuPQsizf2lrH/765AwCzUSMU0Ul3WshwWFi9pxld1/u8P75QBLvFiMGgMTHHyarYCfPEnL6b3vdlTXkzBg0WlKRxwpRsdtV3EAxHaY+V+HbPJg1FVEC5t8B3Wb2Hbz+xNvH7YDPpAIrS7WytaSfVbsJlMyVKjeMynBbe3d5Aqs3M9SdMpM0XJqqroF6cwaBx1xdmJf5+YyXzU4i+TMlVx9q22HOWYwCZaG67mUBYBYqyUgb+odSS8en89Z0yyhs9lGZ2PudUNPnIc9sGnYFekuEkqsNf3ynjw7KGHiW2o8Fg0JLKf4fDdcdPZHZRGuMznfzkhU1sqW5jTlEaE7NT+J+L5vL21jpmF/WMIYlOQ3rVXbx4MbfccgvV1dWJy2pqavjOd77DkiVLhrxzQgghhBBiYDKclgModw2R7hj5TLpUm5lfXjibW06dDKgexpcfVcqfLl3AiYfA1MiGjkAiQAeQajMlsiRqYpME+7Ottj3x853Pb+KXr2whGI7uZ43B8YciXPPgp7y1tW7Q63rDoGkkTUKMm5LnYleDJxawCpFqM1OQZieqQ2374KYF9yaeLXfNceMZF5uqmOG0UJSuGr/H+8P1xhfLpIuvE+cP7j+7sd0f4q2ttbR2yU5bV9HC5FxXIivHYjQQjuqJMtPumXTxgHJv/8Pabo+JwZz4x9108mTOmJXHwtJ0CtPtiUmWcSdPU8fFu7Fyu5316vHVPUA51OwXIQ4nc4rSuHLZOJ64/ijuPG8GZ83O73ed+Guc2agNalr4sZOzKc5wcPPja3lubWXi8opmL8Xp/X9w0138w55INMrFi4oTk2fHmmyXlfPmFjC7yM19Vy5iTrdWFidNy+nR508kG1KQ7v/+7/+oq6ujtLSUSZMmMWnSJEpKSqiurub+++8frn0UQgghhBD9yHFZqW71D6rXS2NH4KCUuwLMKnQP+yf2wyXe4yhO0zQyHBZMRo2fvbh5v33JOm+jnXy3LRGI+nBnI/94b9ew7ePOug58oQgrt/fskdQfX0QF6HrLWJya6yIS1dnd4KEjEMZlM1EY6ym0q5cm34NV2exjYWk6588rTJwsZzotFMVOciu6lLz+Z80+Pt3TxPs7VI88XyiSyJQ5b24hyyZmMq84DW8/QbpmT4i7X99BZZchCnXtgaReSSajRjASTQQJu2fFxMuc46VaXTV5gomSLoN2YIGykkwHN540iXy3ndmFbnbWtePrcr+WTsjk1tOm0OYLs62mnXvf3YXLZiJvkCV2QowlZqOBLy0swmFRU1IHMhF0RoGaXh2K9J2125sUq4n/+dJclk3M5OnPKvEFI9z+9AY+39uSeI4cjBSriR+cNZ2rjhnPJUtKBlSqe7hLOwgfAo5FQwrSTZo0ifXr1/Piiy9y8803c9NNN/HSSy+xYcMGJk2SfghCCCGEEAfL5FwXHYEwGypbiUb7D9RFozr1HQFyUo/sT7TL6jt4e1tdjwwLg0Hje2dMA+DTPX0PKohEdVZur2drdTtT81y0xIZPnDs3n1c31rCjS4ZdXx76cA//6adHz47YZNJ1+1oTfdQGyhsGdx8ns+OynJiMGttr22nzqyBdptPC9HwXz6+tGnKD76pWHwWx5uTpsdLqdKeFPLcNg9aZaafrOg9+uIefvLCZX7+6lWA4qjLpYkG6qXkubj9rOi6bKZHl1heHVa0TL1kGFZDO7BKQNhsNhMKdPelMxuST93ggMF722lWzN0i6w8JfL1/A369YNPA/Rh9mF6UR1WFzdWvS5dPy1cTD255cR1WLn3SnRTLnhBikGfmpB7yu3WLknDn5NHmCXHbfx5TVdVCQZmPxuL6nUu/P0RMzD9oHY+LwNeTwraZpLF++nOOPPx6r1SovHEIIIYQQoyDeq+eHz2zk2uMncN7cgv0u3+wNEo7oZB/BZSe+YIRbHl8LwLQ8F+OynBi7ZJsdNSGTaXkuPt7VxOkz83p9n/vBzgZ++9o2AE6clsNxk7N5eUM11xw7gU92N/H8uiq+s3wqayta+KiskW+cOBFQPZUsJgPjMh28saU2Ud7Y3dqKFqbmuthe2xEb6ODn0z3NnNTH8r3ez7BGeh/9ysxGA4Vpdu59V2X9uaxmNE3jvLmF/PrVrTR6ggdcmhSN6lS3+jlrtso6SeuSSWcxGchNtbEvlu3W2m1wgicQxhvqLHeNc1pN1LTuvwTZaVGnOJ5YoC0a1WnyhsjoMt3WbDQQinT2pOueMefbT7ZekydIepdswKEqcNs4fkoWFmPyfc1LtZHntlHT6ifHZeWmkyUJQojBMhg0bjt9atJAg8GYnpfKzIJUNlW18a1TJ3HClOxh3kMhkg0pky4ajfKzn/2MwsJCUlJS2L17NwD//d//LeWuQgghhBAHUdeyn/1lfj3ycTlvbqmlLtZvLOcIKp+rafXzm1e3JspXX97Q2Vc5GIly40mT+PoJE5PWmV+SzpryZu55a2fS5esqWvj5i5t5qksG3NRcF0vGZ3DneTMxGDS+ML+Id7bV89Safby1pZaXN1Qnsrtue3IdN//rcyqafLR4Q6RYTdz+9IakLDl/KMKPn9vIve/uYmNlayJo+P7OhkHdb08Y3Pa+P5tfOl5lheSm2piQrcp148MQ9jbtfwJrXxo6AvzfB7sJR3TGxZqux8td02OZJMUZjkSQrnvvv45AGH8w0qMxvN1sxBPc//Rcm9mAQQNvbMpumz9ENKonZbBYjAZCkc6edIFQtyBdqO9tNHuCiazA4aBpGv/v9Gk9mqlrmsasAnXZN0+exLS8A88IEuJIdsKUbJZNzDqgddWAltn89fIFEqATB8WQgnQ///nPefDBB/nNb36DxdL5ojd79mzuu+++Ie+cEEIIIYQYuLu/PI/lM3LZVNVGINwzEyga1WnqCPKHN3bwwroqQPWyO1LYzAbe29HAluo2nltbyYMf7mHZxEw0Dc6Y2fukvQsXFDI5J4VNVcmliM+trWLV7iZ2N3Q2/B+fldzU/6zZeXxpYREPfbiHt7epXnK3PbkuqdfbU2sqMBk15hansbGylfLGzqBYoyeIrsMbW2pp8YaYX5LOKdNz+WR3E6t2NbKrvoO3ttb2e7/bQ+x3QMilS0v5zzeWcd+Vi5iQrYJzOS4rFpOBikEG6aJRnefWVvLb17bx3NoqTp2ey8xYT6gl4zP4ypISXLHS4qwUa2J6avfsuI5AGG8wgq1bJp3dYuy3J52maYnlvnLvxzz6cXlse51/A5NRI9SlJ12g24AIf5eg3Yvrq5Kua/KGEoHGkXblslIumF/IrEKZhijEaDEYtGHLnBWiP0Mqd3344Ye59957OeWUU/j617+euHzOnDls3bp1yDsnhBBCCCEGblJOChcuLGLF5lpW727m2MnJmQMGg8a3Tp1MWX0H7+1owGk1HhHNq+PSHBZyU61srmrjxfUqi+6U6bncftb0PtexmY2cPiuPv7y9k0A4gtVkJByJsrGqlS/ML+S4yVm4HWYqmrw9hg9omsaVy8axu8HDmvJmACqafDz8UXlimbe31XPd8ROYECu13dPoSQRkmjqCsf024wmEmZ7vYk6hm8/2NnPXK1sTvQePmpCJw9L7/9EfitAc0Bif2fcJptGgJZX5gnqsFKbZue+93eSl2lg6IbPP9bv6vKKZ+95T1TVfWVLCpUtLEtdlu6xJv6faTbTFyly7T0ztiJe7dsukc1iMiaEO++O0mNjX7KMjEOa1TSqQ2TWwZjEZ1OCIWCZd99vsGgj8+8pdnDUrPzF4o9kTJOMgNURPc1j42rHjD8q2hBBCjL4hZdJVVlb2OiAiGo0SCg2uoa0QQgghhBi6wjQ7k3NTeHtbXZ/LzC9JA2BKrusg7dWhY2qei492NQJw+VElLB6X3u864zKdRHUSpZk76jrwBSMcOzmLybkuclw2Fpb23Uh8+czcpN/LGzuz706ams25cwswGQ0UpduTMukaPKos94dnT+emUyZjNRkxGDS+e/pUxnUJun26p7nPbe+J3V73LL+BsJnVqcLPX9pCRyDM9/+znsc/2bvfdd7c0vm4O21G7n6WBLfdTJs/hK7r1LYlT9B9YnUF0ajeo9zVYTHhD0X7HY7isJpYv68l8bumJWcTmg0GwhGd+ljZtz/cvdw1OWjX4guxo7adP721g1ZfiIK0wU93FEIIIfozpCDdzJkzee+993pc/uSTTzJ//vyh3LQQQgghhDhAp03PxaDRZyBj+cw8Fpamc/Mpkw/yno2+qXmpNMYy1I6ZlDWgoWclGSogtqteBdfK6jswGrQBB76WTczi0WuW8uDVizl5Wg4Nse3/71fmc8upUxLLjct0JpXPNnUEcViMTMtL5aSpnYMiTEYDt585nbNm51OUbmf1fnoQ7qr3YNCgKH3wQaWvnzCRa4+fgNGg8fsV29lU1cazayv3m8m2obKVixYVcc9X5pPdTyl1qs1MOKLjC0VoipW9xm2rUdNsu5e7xoN23n6y6ZwWY6LvIsDE7JSkbEGzSSMYiVLb5sdtNxPodnv+YAS33cz3z1QTfv/fk+u49d/rEll582KBbiGEEGI4DSlId8cdd/DNb36TX//610SjUZ5++mmuvfZa7rrrLn784x8P1z4KIYQQQohBOHN2Pj88e0aiPK+7wjQ7d54384Cndh7Opud1Zg/muAY2NMNuMTK32M2Tn1YQDEcpq/MwLtOB2Tjwt9Juu5nMFCtzi1Upq8GgMS7TkfQ/mlucxraadr731Hpe31zLs2sr+/wf5bltfOPEiSwal8E72+r5rwdX9wh01bX5+dfqCoqceo9S3IGYkJ3CeXMLmFPkZvWeJgrSbHgCET7Z3YQvGOGXL2+hqsXHhn2t1Lb58QUjtHhDFKc7GDeAAGZqbOJsmy9MizfY6/RFkyF5v+NBu1+9sgVd7zubrnv579S85KxRs9GALxjBG4xQnOFIyqTzBSNsrm7DZjYwJzbMoWvAD1SAUQghhBhuQwrSnXvuuTzxxBO8/PLLaJrGj3/8Y7Zs2cILL7zAaaedNlz7KIQQQgghxLAYl+XEbNTIcFoGFbj6r2PGU93qZ0NlC2X1HUyMDVgYrLlFacwpcvP9M6b1yOI7dXoOly0tYW+Tl/99cwct3lBiEm1fZsWGMtS3B3h9c03SdZuq2ugIRDinJNrbqgN2xiw1VON7Z0yjIM3Gpqo2Vmyu4cOyRh5btZcfPLOBn7ywiepWVQ6cnzaw4GeqTQXSPtjZQKMn2KMx+xVHlbKwNLkcOZ5Jt66ilY5A3xNYnVa13ElTs5mck8IX5hcmXd81wFqa6SAa1QlF1N/pnrd2sKa8GaNBI6Vbz8ZvnDiRP1+6YED3TwghhBisIXcKPv300zn99NOHY1+EEEIIIYQYUWajgYnZKQygyjXJ+CwnaQ4zGyvbqGj29ttvrS+ZKVZ+8YXZvV6naRqXLCnhrDn5vLqxhkc+KueYSVm9Lhs3IxakA3h3ewNfXtw5mKGhI0CK1YhjiO/4l03M4j/fWIbFZGBWgZuPdjUSTwBcuV1Nra1o8vHM55UA5KcOrLQ2nkn34Id7AJhd6E4q971gfmGPgRbOLhlyNa1+XH1ktMWDcDMK3Ny6fGqP6y1dg3SxcuZAOIrZaEj0Baxq8ScFUv9+xULpRSeEEGJEDSmTDqClpYX77ruPH/zgBzQ1qX4Yn332GZWVlUPeOSGEEEIIIYbbfx07nq8ePW5Q62iaxoyCVD4qayQc0Ue0VDjVZubiRcU8c8Mybjq555C2rlw2M3+/YiFXHzOOunZ/UglooydIpnN49jOedTi/JJ1mT5BmT5Dbz5pGcYY9EbB7Z5sK2KXaBxYV7F4yWpyRnEnXW6ZjcYadb5+meinWdJsI21VrbGpscUbvQTVTl9LaeO+83762DW+wZ3ae224mzWGWAJ0QQogRN6TP1davX8+pp56K2+1mz549XHPNNWRkZPDMM89QXl7Oww8/3Od6gzVjxgxMpiEn/gkhhBBCiCPc9PzU/hfqbb28VD7cqSbDZqZY+ll66EwD7HlXkGYnK8WKPxTFF4ok+rE1dgTIGOb9PGZSJneeNwOHxcT0/FSWTcyissXH1x9ZA4BBY0DDOKBnEG5mQSqnTM+hvNFLY7f+enGapnHytFzufXcXNa19B+ni/fm6B/4S2479bTNTLIk+d2vKm/nbO2Xsa/FRkGbjwgVFANx35aIB3R8hhBBiqIYU9br11lu56qqr+M1vfoPL1dmM9cwzz+TSSy/tc7158+ahadp+m712ZTAY2L59OxMmTBjK7gohhBBCCHHACrtMSM1wjnyQbjDi+9PYEcSRYUr8XJJhB+/wbUfTNBaWZiRdVphm55cXzqY4w5Ho6zZQOS5rYihDjsuWmHbb33lCXqqN2v1k0n3jxIk8t7ayzwEP8QBodooVZ5e+c5/saSIa1bnp5MnMKlRDI7pPmBVCCCFGypCCdKtXr+bvf/97j8sLCwupqanpZY1Oq1atIjs7u99t6LrOrFmzDngfhRBCCCGEGA5dyx3THYdmkK7ZG0xkj9V3BJhf7B7WIF1f4gGtwbr/qsX87MXNfLK7iTRHZ0Ctv2y8XLft/7d339FR1ekfx993JsmkTXonIQSS0EJRUKoQpLM0G66oi8qqu1awLei64q5i2RXr2n6isrosdrEiqCSAiIso0kML1YRQQnomk5n7+yPLaAwlkIQh8fM6J+dkvvd7733ukOdkePItx53umh5r587hHY55/MhIupgQGylRQbz4ux4sWJfPu9/VLNkTG1K/zS9EREQaU4OKdP7+/hQXF9dpz8nJOW4BbuDAgaSmphIWFlav+wwYMICAAK0BISIiIiLeE2v/aX23X25o4G2ekXRlVby+YicLN+yjqMJJZJAfzv1eDu4EpgxJ4/tdh09qxNoVvZKxNODfoNpdM+Ivxl5TjIsPDfAUXg0DwgOPPgJPRESkKTVo44hx48bx17/+FaezZmFWwzDYtWsX06ZN46KLLjrmeYsXL653gQ7gk08+IT4+viGhioiIiIg0SH3XiPMGf18rAX5WDpVW8cbK3RSWVWGa0DnBfuKTvczu78uA9BPPsPm5pIhAWjVgI4cj6/ZltPppfcLQ/xXmQgN8z+h/axERabka9NvnH//4B/v37ycmJoaKigrPCDm73c6DDz54Std0uVysXr2awsLChoQmIiIicsZxu03+/P5aPvzhR2+HIqfIx2oQbDszNzOLDPJj+4FSz+uzW4dpR9JjaB9n56VJPWutr3dkJF1T7twrIiJyPA36hBESEsKyZcv48ssv+e6773C73Zx99tkMGTKk3teYMmUKXbp0YfLkybhcLgYOHMjy5csJDAzko48+IjMzsyEhioiIiJwxNuQV88PuIn7YXURGq1BSooK8HZKcpH//vhcGZ9ZU1yNiQ/xZvq1m99mHL+rSoJFmvwa/XHcuLKBmJN2ZtimIiIj8ejTKnwHPP/98zj///FM69+233+aKK64A4MMPPyQ3N5dNmzbxr3/9i3vuuYevvvqqMUIUERER8boV2w8SEuCD02Xy9baDKtI1Q0emSZ6J2kYHsWpnIdF2G50TajZyOLIsjZzYkY0rVKQTERFvafBiC1988QWjR4+mXbt2pKamMnr0aD7//PN6n3/gwAHi4uKAmrXnLrnkEtLT05k8eTJr165taHgiIiIiTaqq2o3bbR7z+JZ9JbzyVS6Xv7SC+at/5PwOsfRKieCrrQcwzWOfJ3KyjhR9U2OCvRxJ8xTi74vFgKhgFelERMQ7GlSke+aZZxgxYgR2u51bb72VW265hZCQEEaNGsUzzzxTr2vExsayYcMGXC4XCxYs8EyVLS8vx2qt/w5PIiIiIqfTobIqXluxkytmf8OlL37Nn99fy0drfiQrp4Dfvvg1ZY5qAJ7L2sa73+0lMshGZLAfE3omMrxzHLsOlZOVc4ZvuynNiqdIF60i3amwWAz+mNmOgekx3g5FRER+pRo0Xv+hhx7i8ccf56abbvK03XLLLfTr148HH3ywVvuxXH311UyYMIH4+HgMw2Do0KEAfPPNN3To0KEh4YmIiIg0Cbfb5NEFm1j/YzGDOsQQbbfx5srdFJY5iQv1p8zh4vUVO7m6XwrbD5Txh4Ht+E3XeJwuN75WCxmtQunbLpK1e4sY1EEFAWkcCaEBjMiIo19alLdDabZGZMR7OwQREfkVa9BIuuLiYkaMGFGnfdiwYRQXF9frGjNmzOCll17iuuuu46uvvsJmq9lNyWq1Mm3atHrHMmPGDAzDqPV1ZBotgGmazJgxg4SEBAICAsjMzGT9+vW1ruFwOLj55puJiooiKCiIsWPHsmfPnnrHICIiIr8O2w+Usv7HYv4yphO3DU3nyt7JXD+wLXsPV1BcUbMG2NItB9hSUILLbdI+rmZkk6/1p49etw9rzy2D07wSv7RMFovBjYNStWGEiIhIM9WgIt3YsWN577336rTPnz+fMWPGHPfciRMn8uabb1JcXMzFF1/M1KlTSUxM9ByfNGkS48aNO6l4OnfuTF5enufr52vaPfroo8yaNYtnnnmGlStXEhcXx9ChQykpKfH0mTJlCu+99x7z5s1j2bJllJaWMnr0aFwu10nFISIiIi1bQbEDgPRYu6etTWQQLrfJpvwSuieFUVTh5K1v9+DnY6FNZN0NIvx8Grw0sIiIiIi0IA2a7tqxY0cefPBBsrKy6NOnDwArVqzgq6++4vbbb+epp57y9L3llltqndu+fXseeeQRfve73zFgwADGjRvH2LFjSUpKOuV4fHx8ao2eO8I0TZ544gnuueceLrzwQgDmzJlDbGwsc+fO5frrr6eoqIjZs2fz2muvedbFe/3110lKSuLzzz9n+PDhpxyXiIiItCz7Sx34Wg1C/H/6KPXznVrP7xDD7sJyVu0sZHDHGHysKsiJiIiIyPE1qEg3e/ZswsPD2bBhAxs2bPC0h4WFMXv2bM9rwzDqFOnuu+8+7rvvPvbs2cMHH3zA/Pnzuf322+nUqRNjx45l3LhxnHXWWScVz5YtW0hISMBms9GrVy9mzpxJ27Ztyc3NJT8/n2HDhnn62mw2Bg4cyPLly7n++utZtWoVTqezVp+EhAQyMjJYvnz5MYt0DocDh8PheX1kmq/T6fTKlvdH7umNe4u0dMovkabT3PJrX1EFkUF+VFdXe9r8LNCvXQTLth6kTYQ/Uwe345nF2xnfLa7ZPJe0PM0tt0SaE+WXSNNoabl1Ms9hmKZpNmEsJ6WkpIRPP/2U+fPn8+mnn2K32xkzZgx//OMf6dy583HP/fTTTykvLyc9PZ19+/bxwAMPsGnTJtavX09OTg79+vVj7969JCQkeM657rrr2LlzJ5999hlz587l6quvrlVwg5r19VJSUnjhhReOet8ZM2Zw//3312mfO3cugYGBp/AuiIiIyJlsQ6HBJ7stJAWbXNrWXeuYaUKFCwIb9GdQEREREWkpysvLmThxIkVFRYSEhBy3b6N+hHS5XKxdu5bk5GTCw8NP+ny73c6ECROYMGECLpeLrKwsPvjgA77++usTFulGjhzp+b5Lly706dOHdu3aMWfOHHr37g3UjOj7OdM067T90on6TJ8+ndtuu83zuri4mKSkJIYNG3bCN78pOJ1OFi1axNChQ/H19T3t9xdpyZRfIk2nOeXX/z23gtBQ6JYayaih2vhBzmzNKbdEmhvll0jTaGm5Vd+NVaGBRbopU6bQpUsXJk+ejMvlYsCAAXz99dcEBgby0UcfkZmZecrXtlqtDB48mMGDB5/S+UFBQXTp0oUtW7Ywfvx4APLz84mP/2lb9YKCAmJjYwGIi4ujqqqKwsLCWgXGgoIC+vbte8z72Gw2z460P+fr6+vVHyZv31+kJVN+iTSd5pBfdn9fSh3VHK6sPuNjFTmiOeSWSHOl/BJpGi0lt07mGRq0ivHbb79Nt27dAPjwww/ZsWMHmzZtYsqUKdxzzz31usbBgwe58cYb6dSpE1FRUURERNT6OlUOh4ONGzcSHx9PSkoKcXFxLFq0yHO8qqqK7OxsTwGuR48e+Pr61uqTl5fHunXrjlukExERkV+XxPAAAH7Xp413AxERERGRFqVBI+kOHDjg2U31k08+4ZJLLiE9PZ3JkyfX2tn1eK644gq2bdvG5MmTiY2NPeH002O54447GDNmDK1bt6agoIAHHniA4uJiJk2ahGEYTJkyhZkzZ5KWlkZaWhozZ84kMDCQiRMnAhAaGsrkyZO5/fbbiYyMJCIigjvuuIMuXbp4dnsVERERqXK5Gdkljo7xp39ZCxERERFpuRpUpIuNjWXDhg3Ex8ezYMECnn32WaBmUTyr1Vqvayxbtoxly5Z5RuSdqj179nDZZZdx4MABoqOj6d27NytWrCA5ORmAu+66i4qKCm644QYKCwvp1asXCxcuxG63e67x+OOP4+Pjw4QJE6ioqGDw4MG8+uqr9X4WERERafmcLjd+1gZNRhARERERqaNBRbqrr76aCRMmEB8fj2EYDB06FIBvvvmGDh061OsaHTp0oKKioiFhADBv3rzjHjcMgxkzZjBjxoxj9vH39+fpp5/m6aefbnA8IiIi0jJVVbvx81GRTkREREQaV4OKdDNmzCAjI4Pdu3dzySWXeDZQsFqtTJs2rV7XePbZZ5k2bRp/+ctfyMjIqLOgnjd2SBURERE5liqXia9G0omIiIhII2tQkQ7g4osvrtM2adKkWq+7dOnCJ598QlJSUp2+YWFhFBUVcf7559dqN00TwzBwuVwNDVFERESk0TirNd1VRERERBpfg4t09bFjxw6cTudRj11++eX4+fkxd+7cBm0cISIiInI6OKpdmu4qIiIiIo3utBTpjmfdunV8//33tG/f3tuhiIiIiByXaZo4Nd1VRERERJqA1z9h9uzZk927d3s7DBEREZETcrpMAGwaSSciIiIijczrI+luvvlmbr31Vu688066dOlSZ+OIrl27eikyERERkdqcLjeARtKJiIiISKPzepHu0ksvBeCaa67xtBmGoY0jRERE5IzzU5FOa+iKiIiISOPyepEuNzfX2yGIiIiI1EtVdU2RThtHiIiIiEhja1CRrry8nMDAwBP2e+GFF4iNjT3qsdDQUMLCwo56bOvWrQ0JT0RERKRRVWm6q4iIiIg0kQZ9wgwLC6Nv377cfffdfPbZZ5SVlR2138SJEwkKCjrqsVGjRlFZWVmnPScnh8zMzIaEJyIiItKojoyk08YRIiIiItLYGvQJMzs7m7Fjx/Ldd99xySWXEB4eTu/evZk2bRqffvppva4RHh7O+PHjqa6u9rRt3LiRzMxMLrroooaEJyIiItKojoyk03RXEREREWlsDfqE2adPH6ZNm8aCBQsoLCxkyZIldOjQgccee4zRo0fX6xrvvPMOZWVlTJw4EdM0WbduHZmZmVx22WU8+eSTDQlPREREpFE5q01A011FREREpPE1eOOITZs2kZWVRXZ2NllZWTidTsaMGcPAgQPrdb6/vz8fffQRmZmZXHLJJSxdupTf/e53/P3vf29oaCIiIiKNqup/u85rJJ2IiIiINLYGFeni4uJwOp2cf/75ZGZmcvfdd9OlS5cTnldcXFzrtWEYvPHGGwwZMoSLLrqIe++919MnJCSkISGKiIiINJoqjaQTERERkSbS4CLdxo0b2bVrF7t27WLPnj2kpKQQHBx83PPCwsIwDKNOu2maPP/887zwwguYpolhGLj+9xdrEREREW9zHlmTTkU6EREREWlkDSrSrV69msOHD7NkyRKys7O59957Wb9+PV27dmXQoEE8/PDDRz1v8eLFDbmtiIiIiFc4qrVxhIiIiIg0jQavSRcWFsbYsWPp378//fr1Y/78+cydO5dvv/32mEW68PBwMjIysFjq9wF3/fr1tG/fHh+fBocrIiIix1BU4WT17sN0SwwlLNDP2+GckZwuNxYDrJa6MwJERERERBqiQVWv9957j6ysLLKysli/fj2RkZGcd955PP744wwaNOiY55111lnk5+cTHR1dr/v06dOH1atX07Zt24aEKyIiIkexfX8pS7cc4LP1+ZRUVuPnY8FqMeieFMbk/inEhvh7O8QzRlW1W6PoRERERKRJNKhId/311zNgwACuvfZaMjMzycjIqNd5pmly7733EhgYWK/+VVVVDQlTREREjuGDH37kpaXbCQ3wpUdyOBeenci3Ow7hNk0+WpPHH15fxcRzWzO4YywRQRpdV+F04e9r9XYYIiIiItICNahIV1BQcErnDRgwgJycnHr379OnDwEBAad0LxEREanhqHbx5cYChnSKxddqocxRzb+W72BYp1j+mJnqmcKZEhUEwLjurXj5q1xe/2YXb63aw/DOcVzVt82veqpnRZWLABXpRERERKQJNHiRN5fLxfvvv8/GjRsxDIOOHTsybtw4rNZjf4DNyspq6G1FRETkJK3bW8Tz2dt4bcVOhneOo6CkEqfLzW/PbX3Uwpu/r5UbMlO5sncyb327h/mr9xIR5MsFZyUCNSPjgaPu2F5fJZVOKp1uwvybxxTSCqeLAD8V6URERESk8TWoSLd161ZGjRrF3r17ad++PaZpsnnzZpKSkvj4449p165dY8UpIiIiDdQjOYKnLzub91fv5e1VewjwtTL5vLZEBduOe57d35dr+qfgqHbzn//uJsDXhzJHNR/88CPdEkOZOjT9lAt1f5m/nq0Fpbxx7TnH7FNV7eZQWRUllU7Cg/zqxOtymxwqqyLafvznaAyVTheBKtKJiIiISBNoUJHulltuoV27dqxYsYKIiAgADh48yBVXXMEtt9zCxx9/3ChBioiISONoHRnIzeen0j0pjE4JIScs0P3cxT0S+WRtHv9cvBWAHsnhLM7ZT3iQH1f3SznpWCqdLrYWlALw5rd7CHbD9PfWk9khhtFdEzz9/rl4K19uqlliw9dq8PTEsylzVJMaHYzFYvDJ2jxeXLKdF67sQUJY7eUx3G4Tw2jYaL+fK6/SmnQiIiIi0jQaVKTLzs6uVaADiIyM5OGHH6Zfv34NDk5EREQan2EYDEiv3w7rPxdtt3FDZjtCA3w5q3U4AX5W3v1uD698tYN+qVG0iQyq986npmny6vIdAJyXFsXb3/1IgNNChW8JOftK6RQfQmSwDR+LwdIt++nbLpJx3Vvx0Kcb+cNrqwDolhTKsE5x7DpUDsDTX25h2oiOhAb6UlTu5OZ532OaJumxdv78m45UOt0Nnqpa4XQRFuDboGuIiIiIiBxNgxaAsdlslJSU1GkvLS3Fz087wImIiLQ0I7vE0zc1ylPsGte9Fb5Wg9vf/IGLn1/OrfO+p6jcecLrrNh+iI/X5PH781K4c3h7Qvx9yC83SAjzB+DWeau5+721fLw2D5fb5NoBbemUEML0kR09G1v8sLuIv3+Ww4+HK/D3tZB7oIz/rNyFaZpsKSihsKyKw+VO/pt7iEcW5HD5SytYnHNqm14dUamNI0RERESkiTSoSDd69Giuu+46vvnmG0zTxDRNVqxYwR/+8AfGjh3bWDGKiIjIGcpqMbi8VzLpsXZuyGxHQbGDBz7ewG1vrmb17sNHPcc0Teat3EXXxFDGdW+FYRgkRwYCMKRDDE/+tjs3DmrHroPlvPb1TsZ2b+WZltspIYSnLjuL1yafy7BOsQCs2VPE6K4JDEyPqSn8zfnWc+9x3WumzX619QCdE0KZtXAzMz5Yz+/nrGTLvrp/aDwRbRwhIiIiIk2lQUW6p556inbt2tGnTx/8/f3x9/enX79+pKam8uSTTzZWjCIiInIGu6hHIo9N6MaIjHjuGJ6Oo9rNln2lPPLpJg6XV9Xpvym/hO37y7jgrFaetjb/K9K1iw6ibXQwwzrFkRDmT4c4O1f2Tq5zjbBAP246P5WwwJqpp0kRAfRIDgegoMTB/NU/khYTzCU9kzzn/HVcZy7ukciqnYXsK3bw9JdbPce27y+lzFF9wmdVkU5EREREmkqD1qQLCwtj/vz5bNmyhU2bNmGaJp06dSI1NbWx4hMRETmjud0m932wnryiCtpFB/OnER2wWBpnk4JfWre3iPAgP1r9YnOEM0mP5Ah6JEdQVOHkD6+t4uWvdjB1SBqGYWCaJm+s3M2/v9lFZLAfZ7cO95yXFhOM1cAzldViMXj6srPxtRrH3PTBMAxmXtCF11fspHtSOME2Hy48uxURQX68tDQXgNAAX9JighnYPhrDMLiydzI9ksM5VFbF3z/LYfehct5atYfFmwqIDbFx6TmtKa+qZvGmAv48ulOdjTXKNd1VRERERJpIg4p0R6SlpZGWltYYlxIREWlWLBaDVuEBhAX6kpWznxW5B+nbLqrR77O/xMEjCzbRKT6E6aM6Nvr1G1togC+T+6fw5BdbOFDqoKSymsggP1btLOTCs1sxuENsrWJmv3aRXJ3uwu7/00eT+mxCkRQRWOv9uLpfCm63yab8EjL/tznGrEu7e45bLAYZrUKpdLrwtRrM+GA9B8uquHZAW+Z+s5Onvtji6bt2TxGDOsQAUFThxDRNHE4XgRpJJyIiIiJN4KSLdLfddlu9+86aNetkL98oHnroIe6++25uvfVWnnjiCaBm/Zv777+fF198kcLCQnr16sU///lPOnfu7DnP4XBwxx138J///IeKigoGDx7Ms88+S2JioleeQ0REmoc/DGwHwIFSBy8v20HbqGDiQv0b7frvfb+Hl5ftwNdqcE3/lEa7blMb0ikWE1iwLp/oYBuHy6u4bVg6g9rH1OlrsRiE2epe41RYLAZ/GtHhuH38fa38pmsC73+/lwvOasXYbgmUVlbz7nd78LEalDlc5BVVevr/fs5KKp1uAGwaSSciIiIiTeCki3SvvPIKGRkZ+Pj4eKauHM2xpqY0tZUrV/Liiy/StWvXWu2PPvoos2bN4tVXXyU9PZ0HHniAoUOHkpOTg91uB2DKlCl8+OGHzJs3j8jISG6//XZGjx7NqlWrsFr1gVxERI5vypB0pr2zhj+8vooBaVEMbB9Nj+SIWn2qXW5eX7ETgN7tIgkP9CM2xB/TNHlxyXZy8kuICPLj7lEdsVgMcg+U8fKyHQzrFMuFPRKJDWm84t/pMLRTLEP/t8HDmWbiua0J9LMyums8AJedm8SoLnEYGDzw8Qb2FJZ7+h4p0AEEqkgnIiIiIk3gpIt0RUVFvPPOO8TExNC2bVtWrlxJZGRkU8R20kpLS7n88sv5v//7Px544AFPu2maPPHEE9xzzz1ceOGFAMyZM4fY2Fjmzp3L9ddfT1FREbNnz+a1115jyJAhALz++uskJSXx+eefM3z4cK88k4iINB+xIf48d0UPns3axuJNBXy9/SCvXH0uwbafft2+tmIn7363Fx+rwTvf7aVtdBBP/vYscg+U8dGaPHokh/NN7iGyN+9nQ14xK3ccIjbEnz9mtsPH2qD9nuQXAvysXHZua89rwzAIC/QDoE1UEDn5Nbu/fr+rsM55IiIiIiKN7aSLdOHh4eTm5hITE8OOHTtwu90nPuk0ufHGG/nNb37DkCFDahXpcnNzyc/PZ9iwYZ42m83GwIEDWb58Oddffz2rVq3C6XTW6pOQkEBGRgbLly8/ZpHO4XDgcDg8r4uLiwFwOp04nc7GfsQTOnJPb9xbpKVTfkl9WIGbBrbhkrPjmfLGGh77bBMd4oLZX1JFanQQn67NY3z3eIZ0iOaJL7exZV8phaUVLN60jyA/C38alsqMjzby+Oc5WAyDoR1jGN4pFtPtwul2efvxmsyZll+JoTYWrs9nwdq9PLN4e61jdj/LGROnyImcabkl0pIov0SaRkvLrZN5jpMu0l100UUMGDCAhIQEDMOgZ8+ex5wKun379qO2N4V58+bx3XffsXLlyjrH8vPzAYiNrT3dJjY2lp07d3r6+Pn5ER4eXqfPkfOP5qGHHuL++++v075w4UICAwNP+jkay6JFi7x2b5GWTvkl9XVOkMEnPxSyeA2E2UzeqKxZCsK9dz+rD8FZFvi2yMr9ry3ih0MWukW4WfjZAhIqYXmhlY5hJoklB1n/zUbWe/lZTpczJb8qXVBWbOHB9w8DYLPC79u7cLhgzdeLWePd8ERO2pmSWyItkfJLpGm0lNwqLy8/caf/Oeki3YsvvsiFF17I1q1bueWWW7j22ms9a7p5y+7du7n11ltZuHAh/v7HXqvnl+vkmaZ5wrXzTtRn+vTptTbTKC4uJikpiWHDhhESElLPJ2g8TqeTRYsWMXToUHx9fU/7/UVaMuWXnKxRwHWVTiyGQZDNh6zN+1mzp4hJg9p5frcc+HIbX+bsJyMlkL+N74y/rxXTNIlatZd+qZG0Cgvw7kOcJmdifsV2OsjrK3Zx6TmJnJcahdXinfV2RRriTMwtkZZC+SXSNFpabh2ZcVkfJ12kAxgxYgQAq1at4tZbb/V6kW7VqlUUFBTQo0cPT5vL5WLJkiU888wz5OTkADWj5eLj4z19CgoKPKPr4uLiqKqqorCwsNZouoKCAvr27XvMe9tsNmy2utvR+fr6evWHydv3F2nJlF9yMiJ+9rMytHMCQzsn1Do+dVh7ftsrmbgQfyw/KwJd3qf57OLamM6k/MrsEEdmhzhvhyHSKM6k3BJpaZRfIk2jpeTWyTxDg1agfuWVV7xeoAMYPHgwa9euZfXq1Z6vnj17cvnll7N69Wratm1LXFxcraGSVVVVZGdnewpwPXr0wNfXt1afvLw81q1bd9winYiISEMYhkFCWECtAp2IiIiIiPz6nNJIujON3W4nIyOjVltQUBCRkZGe9ilTpjBz5kzS0tJIS0tj5syZBAYGMnHiRABCQ0OZPHkyt99+O5GRkURERHDHHXfQpUsXz26vIiIiIiIiIiIiTaFFFOnq46677qKiooIbbriBwsJCevXqxcKFC2uNBHz88cfx8fFhwoQJVFRUMHjwYF599dVjbowhIiJNq6razeZ9JeQVVeKodpHZPoZg26/mV5eIiIiIiPyKtNj/6WRlZdV6bRgGM2bMYMaMGcc8x9/fn6effpqnn366aYMTEZF6KXVUM/3dtRgGWAyD7Jz9/CGzHbEh/gTbfKiqduPn06CVG0RERERERM4ILbZIJyIizV9YgC/PX9mDEH8ffjxcyd3vrWXKvNUE+FpJjgxkU34JSREBXDegHeWOag6VV9E/NQofq4Vql5uwQD9vP4KIiIiIiEi9qEgnIiJnLIvFoFVYAADt43x59epz2La/jHe/20Ol08V1A9ry1dYD3Dd/HW4T2kQF8fKyXJwuE7u/D3OuORdfq0baiYiIiIjImU9FOhERaTbs/r50Twqje1KYpy2zfTT/tzSX/qlRnN06jI/X5vHhD3nsK67khextjMiIIzXG+zuRi4iIiIiIHI+GF4iISJPbtr+Uape7Sa5t9/fltqHpnJsSgY/VwrjurXhpUk+u7JPMZ+v3MfWNH6h0uprk3iIiIiIiIo1FRToREanF7TZZnFPAZ+vzG3Sdg6UODpQ62FpQypR5q3k2a1sjRVg/E3omcduwdADyiipP671FREREREROlqa7ioiIh2maPPHFFhZvKgDA39fKwPTo456Tk19CcmQg/r5WT9sXG/fx1BdbcJs/9Vu0YR+T+6cQZDt9v3p6JIcD8OPhClKigk7bfUVERERERE6WRtKJiIjH8m0HWbypgNuGpjOofTT7io8+Aq3a5Wbd3iLyiiq4460fuGnudziqa6aUOl1u/m/pdnq3jWT6yA70bRfJb7rGAxzzek0lxN+XYJsPWwtK2VpQymMLcyh1VJ/WGEREREREROpDI+lERMTjjZW76ZEczqAOMWS2j8blNtl1sJzWkYG1+r26fAfzV/9IZvuaUXb7ih3MWriZmwensTGvmDKHi4m9WpMcGUTf1CgOlVXx8Zo89pc4aBsdfFqfyWKBt1ft4e1Ve2gdEYi/j/4+JSIiIiIiZx79T0VERADYX+Ig90AZ53eIAcAwDL7dWciNc79j+rtrcLtNHNUuNvxYzKfratary8rZT8824Uwb2YHvdx3mj6+v4vmsbaREBZEc+dP00rAAX6wWg/2ljtP+XL1TIgGIttv4Y2Y7fKz61SciIiIiImcejaQTEREAVu44hMWAs/+3jhvUrOk2fWQH9pVUYrEYvLJ0Bx+vyQPgvLQovtp6gN/1aUNKVBAxdhvT311LdISNaSM71Lq2xWIQFWxjf8npL9LdOCiV6we2w08j6ERERERE5AymIp2IiOBym8xfvZeebSII/tnGDr5WC31Tozyvx3RL8BTp7hjWnqlD0/H938i0tFg7c6/tfcxiWLTdO0U6i8XAz2Kc9vuKiIiIiIicDBXpRER+xUzTZMX2Q3y2Pp+8okruGtHhuP1bhQXw+/NSiAvxx2IxsFC7+HW80WrRdht5hysaJW4REREREZGWRkU6EZFmzO02sZzCKLEyRzUvZG8je8sB3G6T2BAbU4em064emzqM697qVELlrKQwooL9TulcERERERGRlk5FOhGRZupAqYOpb6wmOtjGgPRogmw+DO4Qg2HUbPpQUeUiwM961HMf/GQj2/eXcnmv1rSJDOKcNuEYRtNOCR30vw0pREREREREpC4V6UREmoG9hyt4+ostlFe5iA/151BZFZvySzzHZy/LBeDbnYc4VFpFUYWT/OJKhneOo0+7SArLqli7t4heKZEUlFSydk8Rd4/qSJ92kd56JBEREREREfkZFelERM5AC9fnU1hexYHSKvysFlbuOESF00XvtpHY/X0ornTy+/NS6JwQQligHzsPluNwunjo000AWAwYmB7NN7mHWLAu33PdLzYWANAx3k6vlAivPJuIiIiIiIjUpSKdiMgZwu02WbO3iNAAX978djfhgX5UudxUu0wSwgKY3D+FpIjAo54bFWwD4J8TzyavqIJebWtGyJmmye5DFewrqaRLq1AqnS4C/XzwtRpNPr1VRERERERE6k9FOmlUZY5qqqrdGAas3VtEt6QwbD4WiiuqibbbvB2eyBntxaXb+XhNnuf1LYPT6JoYdlLXaB0ZSOvInwp5hmHUavP3PfoadSIiIiIiIuJdKtLJcZmmybNZ2+jdNoKzW4dTXFGNxQLBNh++21XIvP/upk1UEP1So/h2R820Oke123N+bIgNR7Wbw+VORmTEceOg1OPez+lyszL3EHlFlQzpFEtogG9TP6LIGcE0Tb7aeoAx3eIBWLe3mIyEUC9HJSIiIiIiIqeLinRyXKWOarbvL2PBunxi7DYOlDpwmxAZ7EdhWRVtooJYtuUAC9blE2SzMv6sVoQE+PL5hn1c0TuZl5fl0iU5jJ5twk9YcLv/w/Ws3n2YapeJj9Xg7VV7SIsNxuWumep3SY9EAvysrP+xmLNbh+PnYzlN74JI01i9+zBfbzvIZecmUeF0cbjcyVmtwzmnTQSmaWo6qoiIiIiIyK+IinRyXHZ/X/5xSVd+2FPEtzsOER8aQGiAL9/kHiTGbuPyXslUVrs4VFZFXIg/PtaawtnYbgkAnHsSC9Of3TqcHsnhtI+1E2238d73e1m7p4jC8ipy8ktYuD6fQD8fSh3V/PbcJC7vldwkzyyNr6LKxcIN+fRKiSQu1N/b4Xid223yxOebyd5yAEyTxTkFVFS5AOgQZwdQgU5ERERERORXRkU6OSHDMOieFEb3pDBPW/+0KM/3gX4+BPo1/EdpzP8Ke0dc3S8F0zQxTahwunjz293kF1XiYzWY//2PjO6SQGigpsN6m9PlxgBPgfaXtu8v5UBpFa98tQOrxWB014Sj9mvJCkoq2ZxfSv+0KPYVV/Kvr3ewZPMBJvVtQ2b7aN7/fi82HwuBfj7Y/fUzLSIiIiIi8mukIp2c0QzDwDAgyObD1f1SACiudJIeW0CAnxbA94YjhVOLxWB/iYPJc1YytGMsNw9OO2r/RRv2sWZPEWkxwaz/sbhFF+m27y9lyeb9/K5PGywWg8U5BWwrKGXh+n1UOF2s3BHD19sOUuF00bddJBf3SATg9+e19XLkIiIiIiIi4m0q0kmzE+Lvy7jurZrs+pVOF/uKK0mODDphX9M02X2ogqSIgBYzPdE0TeDY0y1fW7GTj9bkERfiz57CckwTFm7Yx5BOsXSMD6nTf3+Jg2i7jTaRgbzz3V4m9CwjJerE721zUzOFdQu5B8pICAugdWQgz2dto7zKRauwAPYeruDLTQUM6xTLNf1TCFSRWURERERERH5GRTqRX/hiYwHPZ2+jc0II7aKDibL7sXrXYfYUVjBjbGeSIgI9fd/8djevr9jFLYPTGNop1otRN56Zn2zkhz1F/GV0JzJa/bS7aLXLzb3z17FubzHBNh/ax9kZ1CGalKhg7n1/HXe9vYZZE7qRFmuvdb39pQ7SY+30bBPBO9/t5bY3V/PUb8+q9T42dyWVTjb8WEzugTLSYoN5+sutnmNH3pMDpQ4qnS4Sw1vOc4uIiIiIiEjjUZFO5BeGd47Fz8fCqp2FfLvzEAdLa3axLShxkJVTwKXntMYw4OVluXy0Jg+Af3+zk8PlVbSNDubd7/ZQWF5Fv9QoSiqrGd+9FWv3FhEV7Ifd35fUmGAvP+GxVVW7+Sb3EKYJLy3dzuOXdscwDKqq3SzZvJ91e4vJaBXCfWM64+9bMxLMNE2u7JPMa1/v5JO1+Vxl9+ft7/ZwZe9k/Hws7C9x0K9dFBmtQvnPdb2Z+sZqXl+xk+mjOnr5aRvONE2+3n6Qhz7ZBEB4kB8PX9iVN1buwuZjpbjS6fn3jgq2eTNUEREREREROcOpSCfyCz5WC0M7xdYZGTdr0Wbe/HYP3+06jGHA9v1l/DGzHT2Tw3ng44386+udAIQF1hTi5v13N0E2K5+uy8ftrplCarEYzJ7U84wr2JimiWEYbCkowTThqr5teHX5DjbmldA2Ooh731/HpvwSbD4WZl7QpdZUWMMwmNAzCcyaqbBLtuwn0M/K6K7xhAb4UlJZTbS95nmDbT6MzIjjla92sG5vERmtQjlcXsWOg+UE+FpJjgykvMpFVbWb+z9cT++2kVzZOxmLpfbU2+JKJ35Wi6dQ6A2mafKH11fx4+FKT1v72GD8fCxc2aeN1+ISERERERGR5klFOpF6GtUljgOlNaPClm7Zz98v7uqZ2vnUZWfhqHaxfOtBerYJx+7vS1W1m/Kqah76ZBPdksJIigjgxSXbue5f39I2OpiO8SEkhgewbX8pv+/fFrdpUlheRXxoAAdKHXUKeXsPV5BfVInNx0Kn+BBP4aqiysU73+3h4h6Jp1S0Wrg+n+XbDnLfmE78N/cQAX5WxnVPYP4PP/LS0u30ahvBrkPlDEiPomti2DHXqrukZyKdEkLIyilgVJd4YkP82X2oHMBTpAMYkB7NK1/tYPq7a3nit93ZV1zJQ59sIjkykInntuahTzd5+r69ag8BvlYu6pGI1WKwr7gSu78Pc77aweaCUp76bXevrQW493CFp0B346BUYkJspNRjHUMRERERERGRo1GRTqSeOsSFMPOCLgD8pmt8neM2HyuDOsR4Xvv5WPDz8eORi7t62romhvHlpn3k7i9jwbo8Kp1uAL7edhCH042j2kVGq1DW7S3i75d0o9plUuGsptLp5tHPcjwj8hLC/Ll7VEeSI4PI3lzAGyt3e4pZizcVsGzrAaaP7ICP1VInzjJHNWWOakzA4XQTZbexamchT36xhezN+7ngrFb4WC2clxrFBz/8SEJYAC9N6ond3/e4749hGGS0Cq21jt3+UgdQu0gXFWzj5avO4bY3V/Pmyt1MHZrOS5N6YrUY2Hws3DG8PQXFlZyXFs3Ha/N4bcVOyqqqiQy2MXvpdkICfDlc7mRy/5RGKdCVOqoJ8rPiqHbjdLk9BdZP1+UREuBLZnp0nftsKShl1ufbALh2QFvO7xCDn0/d91pERERERESkvlSkEzmNQgN8ueCsRKBms4GdB2tGmn2/qxCAbfvLOFRWxTX9U3hj5W7+m3vIc27ryEDuGdWRQ2VV/GNhDh+tyWNy/xS+3VFz7r+/2ckXm/ax+1AFABc8u5x+qVG4TZPQAF+sFoN20cG8uGSbpzjYp10kd4/qyPDOsXy+sYBeKRE1U1eBK/skM6xzLEnhgXWmm9ZXXIg/V/ZOJiLIr1Z7tN3GNf1S2La/FD+rhdgQf8+xgenRnu8n90+h2uXm07X5VFa7GNYploISB27TZERG3CnFBPD4os0UlDhYt7cIgPZxdkwTqlxuooNtfLvzEAbgNmtGKgbZfEiJDGLVjgO8ttmCc9c6wCAlKoix3RJOOQ4RERERERGRI1pMke65557jueeeY8eOHQB07tyZv/zlL4wcORKoWT/q/vvv58UXX6SwsJBevXrxz3/+k86dO3uu4XA4uOOOO/jPf/5DRUUFgwcP5tlnnyUxMdEbjyQtnN3f1zPq7Oejz46IDw3gN13jaR0RSLnDRVyoP34+FhLCAuifGsX81T+yYF0+ABec1YrQAF8Oljk4Ly2aAF8rOw+WsyGviMhgG5vyS6iqdvHxmjx6JIczMiOO8ioXfdpFAnDT+WncOCi11ogxf18ryQ2cvpkQFsCEc5KOemxQh5haIw+PZUB6NB/9L+4bMlOPWjD8fMM+rBaDFdsPctP5qccd9ed2m3y19QCDOsSQ2T4ai2Hw/vd7uezc1ry4dDtut8nvz2tLt8RQ3v/+R57L2uY51+ZjcKDSYPrwtvRoE4n1FIuXIiIiIiIiIr/UYop0iYmJPPzww6SmpgIwZ84cxo0bx/fff0/nzp159NFHmTVrFq+++irp6ek88MADDB06lJycHOz2mnXFpkyZwocffsi8efOIjIzk9ttvZ/To0axatQqr1XsL1Muv07kpET+9CK57bP7qHxnVJZ5z2oTTJTEUm8/xf0YrqlzsL3GQFBFw1Gmi3lrb7UQ6xNmZPrID3ZLCjlqge2fVHl5dvsPz+lBZFXcOb0/Mz0bn/dzBsioc1W7OTYngnDY17/HgDjFYLAa92kbgYzE878U1/dvw5aZ9/G+WMZVON2OS3QzpGIOv7/Gn/4qIiIiIiIicjBaziNKYMWMYNWoU6enppKen8+CDDxIcHMyKFSswTZMnnniCe+65hwsvvJCMjAzmzJlDeXk5c+fOBaCoqIjZs2fz2GOPMWTIEM466yxef/111q5dy+eff+7lpxOprWtiGM9f2YM/DGxLzzYRJyzQAQT4WWkdGXjGFuOOxTAM+qZGEWQ7+t8UYkP8SYmqGfHXs004+0sd3P7WDyzfeoBKpwvTNGv133u4Zjpwq7AAT9uR4p+v1VLr/bH7+/L673vxr2vOpUdyOACtg2pfT0RERERERKQxtJiRdD/ncrl46623KCsro0+fPuTm5pKfn8+wYcM8fWw2GwMHDmT58uVcf/31rFq1CqfTWatPQkICGRkZLF++nOHDhx/1Xg6HA4fD4XldXFwMgNPpxOl0NtETHtuRe3rj3nJ6xQT5UF1d7e0wvK5Xm1DOaR3CJ+vyGdQ+mp2Hyrnn/Q3M/GQjAGkxQbQKCyAy2A/DMHh71V4AIgKs9coTfytgNbhtcDs250exd90K5ZdIE9DvL5GmodwSaTrKL5Gm0dJy62Seo0UV6dauXUufPn2orKwkODiY9957j06dOrF8+XIAYmNja/WPjY1l586dAOTn5+Pn50d4eHidPvn5+ce850MPPcT9999fp33hwoUEBgY29JFO2aJFi7x2bxFvsADZe2q+vzQe3sq1UOgw+LaoiG+P0v+zBZ+e8r2UXyJNR/kl0jSUWyJNR/kl0jRaSm6Vl5fXu2+LKtK1b9+e1atXc/jwYd555x0mTZpEdna25/gvp/mZpnnCqX8n6jN9+nRuu+02z+vi4mKSkpIYNmwYISEhp/gkp87pdLJo0SKGDh2qNbPkV+28wxXsPVzBog0FjO4aT2SQH6t2HSY0wAeD2rvI1pfyS6TpKL9EmoZyS6TpKL9EmkZLy60jMy7ro0UV6fz8/DwbR/Ts2ZOVK1fy5JNP8qc//QmoGS0XHx/v6V9QUOAZXRcXF0dVVRWFhYW1RtMVFBTQt2/fY97TZrNhs9nqtPv6+nr1h8nb9xfxtjbRvrSJDqFf2k8jaFNiGqdwrvwSaTrKL5GmodwSaTrKL5Gm0VJy62SeocVsHHE0pmnicDhISUkhLi6u1lDJqqoqsrOzPQW4Hj164OvrW6tPXl4e69atO26RTkREREREREREpKFazEi6u+++m5EjR5KUlERJSQnz5s0jKyuLBQsWYBgGU6ZMYebMmaSlpZGWlsbMmTMJDAxk4sSJAISGhjJ58mRuv/12IiMjiYiI4I477qBLly4MGTLEy08nIiIiIiIiIiItWYsp0u3bt48rr7ySvLw8QkND6dq1KwsWLGDo0KEA3HXXXVRUVHDDDTdQWFhIr169WLhwIXa73XONxx9/HB8fHyZMmEBFRQWDBw/m1VdfxWq1euuxRERERERERETkV6DFFOlmz5593OOGYTBjxgxmzJhxzD7+/v48/fTTPP30040cnYiIiIiIiIiIyLG16DXpREREREREREREmoMWM5LuTGGaJnByW+w2JqfTSXl5OcXFxS1iFxSRM4nyS6TpKL9EmoZyS6TpKL9EmkZLy60j9aEj9aLjUZGukZWUlACQlJTk5UhERERERERERORMUFJSQmho6HH7GGZ9SnlSb263mx9//BG73Y5hGKf9/sXFxSQlJbF7925CQkJO+/1FWjLll0jTUX6JNA3llkjTUX6JNI2WllumaVJSUkJCQgIWy/FXndNIukZmsVhITEz0dhiEhIS0iB9mkTOR8kuk6Si/RJqGckuk6Si/RJpGS8qtE42gO0IbR4iIiIiIiIiIiHiZinQiIiIiIiIiIiJepiJdC2Oz2bjvvvuw2WzeDkWkxVF+iTQd5ZdI01BuiTQd5ZdI0/g155Y2jhAREREREREREfEyjaQTERERERERERHxMhXpREREREREREREvExFOhERERERERERES9TkU5ERERERERERMTLVKQTERERERERERHxMhXpmqklS5YwZswYEhISMAyD999/v9bxq666CsMwan317t3bO8GKNDMnyi+AjRs3MnbsWEJDQ7Hb7fTu3Ztdu3ad/mBFmpET5dYvf28d+fr73//unYBFmpET5VdpaSk33XQTiYmJBAQE0LFjR5577jnvBCvSjJwot/bt28dVV11FQkICgYGBjBgxgi1btngnWJFm5KGHHuKcc87BbrcTExPD+PHjycnJqdXHNE1mzJhBQkICAQEBZGZmsn79ei9FfHqoSNdMlZWV0a1bN5555plj9hkxYgR5eXmer08++eQ0RijSfJ0ov7Zt20b//v3p0KEDWVlZ/PDDD9x77734+/uf5khFmpcT5dbPf2fl5eXx8ssvYxgGF1100WmOVKT5OVF+TZ06lQULFvD666+zceNGpk6dys0338z8+fNPc6Qizcvxcss0TcaPH8/27duZP38+33//PcnJyQwZMoSysjIvRCvSfGRnZ3PjjTeyYsUKFi1aRHV1NcOGDauVO48++iizZs3imWeeYeXKlcTFxTF06FBKSkq8GHnTMkzTNL0dhDSMYRi89957jB8/3tN21VVXcfjw4aOOABKR+jtafv32t7/F19eX1157zXuBiTRzR8utXxo/fjwlJSV88cUXpy8wkRbgaPmVkZHBpZdeyr333utp69GjB6NGjeJvf/ubF6IUaX5+mVubN2+mffv2rFu3js6dOwPgcrmIiYnhkUce4fe//70XoxVpXvbv309MTAzZ2dkMGDAA0zRJSEhgypQp/OlPfwLA4XAQGxvLI488wvXXX+/liJuGRtK1YFlZWcTExJCens61115LQUGBt0MSafbcbjcff/wx6enpDB8+nJiYGHr16qWCuEgj27dvHx9//DGTJ0/2digiLUL//v354IMP2Lt3L6ZpsnjxYjZv3szw4cO9HZpIs+VwOABqzaawWq34+fmxbNkyb4Ul0iwVFRUBEBERAUBubi75+fkMGzbM08dmszFw4ECWL1/ulRhPBxXpWqiRI0fy73//my+//JLHHnuMlStXcv7553t+kYjIqSkoKKC0tJSHH36YESNGsHDhQi644AIuvPBCsrOzvR2eSIsxZ84c7HY7F154obdDEWkRnnrqKTp16kRiYiJ+fn6MGDGCZ599lv79+3s7NJFmq0OHDiQnJzN9+nQKCwupqqri4YcfJj8/n7y8PG+HJ9JsmKbJbbfdRv/+/cnIyAAgPz8fgNjY2Fp9Y2NjPcdaIh9vByBN49JLL/V8n5GRQc+ePUlOTubjjz/Wf3hEGsDtdgMwbtw4pk6dCkD37t1Zvnw5zz//PAMHDvRmeCItxssvv8zll1+utR5FGslTTz3FihUr+OCDD0hOTmbJkiXccMMNxMfHM2TIEG+HJ9Is+fr68s477zB58mQiIiKwWq0MGTKEkSNHejs0kWblpptuYs2aNUcdgWoYRq3XpmnWaWtJVKT7lYiPjyc5OVk7DYk0UFRUFD4+PnTq1KlWe8eOHTWtQaSRLF26lJycHN544w1vhyLSIlRUVHD33Xfz3nvv8Zvf/AaArl27snr1av7xj3+oSCfSAD169GD16tUUFRVRVVVFdHQ0vXr1omfPnt4OTaRZuPnmm/nggw9YsmQJiYmJnva4uDigZkRdfHy8p72goKDO6LqWRNNdfyUOHjzI7t27a/1wi8jJ8/Pz45xzzqmzPfjmzZtJTk72UlQiLcvs2bPp0aMH3bp183YoIi2C0+nE6XRisdT+6G+1Wj0jxEWkYUJDQ4mOjmbLli18++23jBs3ztshiZzRTNPkpptu4t133+XLL78kJSWl1vGUlBTi4uJYtGiRp62qqors7Gz69u17usM9bTSSrpkqLS1l69atnte5ubmsXr2aiIgIIiIimDFjBhdddBHx8fHs2LGDu+++m6ioKC644AIvRi3SPBwvv1q3bs2dd97JpZdeyoABAxg0aBALFizgww8/JCsry3tBizQDJ8otgOLiYt566y0ee+wxb4Up0iydKL8GDhzInXfeSUBAAMnJyWRnZ/Ovf/2LWbNmeTFqkTPfiXLrrbfeIjo6mtatW7N27VpuvfVWxo8fX2uxexGp68Ybb2Tu3LnMnz8fu93uWWcuNDSUgIAADMNgypQpzJw5k7S0NNLS0pg5cyaBgYFMnDjRy9E3IVOapcWLF5tAna9JkyaZ5eXl5rBhw8zo6GjT19fXbN26tTlp0iRz165d3g5bpFk4Xn4dMXv2bDM1NdX09/c3u3XrZr7//vveC1ikmahPbr3wwgtmQECAefjwYe8FKtIMnSi/8vLyzKuuuspMSEgw/f39zfbt25uPPfaY6Xa7vRu4yBnuRLn15JNPmomJiZ7/d/35z382HQ6Hd4MWaQaOlleA+corr3j6uN1u87777jPj4uJMm81mDhgwwFy7dq33gj4NDNM0zdNQCxQREREREREREZFj0Jp0IiIiIiIiIiIiXqYinYiIiIiIiIiIiJepSCciIiIiIiIiIuJlKtKJiIiIiIiIiIh4mYp0IiIiIiIiIiIiXqYinYiIiIiIiIiIiJepSCciIiIiIiIiIuJlKtKJiIiIiIiIiEiTeOihhzjnnHOw2+3ExMQwfvx4cnJyavUxTZMZM2aQkJBAQEAAmZmZrF+/vlafF198kczMTEJCQjAMg8OHD9e5V5s2bTAMo9bXtGnTjhtfVlYWhmEQHh5OZWVlrWP//e9/Pdc5HVSkExERERERERGRJpGdnc2NN97IihUrWLRoEdXV1QwbNoyysjJPn0cffZRZs2bxzDPPsHLlSuLi4hg6dCglJSWePuXl5YwYMYK77777uPf761//Sl5enufrz3/+c73itNvtvPfee7XaXn75ZVq3bn0ST3t0VVVV9eqnIp2IiIiIiIiIiDSJBQsWcNVVV9G5c2e6devGK6+8wq5du1i1ahVQM4ruiSee4J577uHCCy8kIyODOXPmUF5ezty5cz3XmTJlCtOmTaN3797HvZ/dbicuLs7zFRwcXK84J02axMsvv+x5XVFRwbx585g0aVKtfgcPHuSyyy4jMTGRwMBAunTpwn/+859afTIzM7npppu47bbbiIqKYujQofWKQUU6ERERERERERE5LYqKigCIiIgAIDc3l/z8fIYNG+bpY7PZGDhwIMuXLz/p6z/yyCNERkbSvXt3HnzwwXqPYrvyyitZunQpu3btAuCdd96hTZs2nH322bX6VVZW0qNHDz766CPWrVvHddddx5VXXsk333xTq9+cOXPw8fHhq6++4oUXXqhXDD716iUiIiIiIiIiItIApmly22230b9/fzIyMgDIz88HIDY2tlbf2NhYdu7ceVLXv/XWWzn77LMJDw/nv//9L9OnTyc3N5eXXnrphOfGxMQwcuRIXn31Vf7yl7/w8ssvc80119Tp16pVK+644w7P65tvvpkFCxbw1ltv0atXL097amoqjz766EnFryKdiIiIiIiIiIg0uZtuuok1a9awbNmyOsd+uTmDaZonvWHD1KlTPd937dqV8PBwLr74Ys/ous6dO3sKf+eddx6ffvpprfOvueYabr31Vq644gq+/vpr3nrrLZYuXVqrj8vl4uGHH+aNN95g7969OBwOHA4HQUFBtfr17NnzpGIHFelERERERERERKSJ3XzzzXzwwQcsWbKExMRET3tcXBxQM6IuPj7e015QUFBndN3JOrJ+3datW4mMjOSTTz7B6XQCEBAQUKf/qFGjuP7665k8eTJjxowhMjKyTp/HHnuMxx9/nCeeeIIuXboQFBTElClT6kyr/WXRrj60Jp2IiIiIiIiIiDQJ0zS56aabePfdd/nyyy9JSUmpdTwlJYW4uDgWLVrkaauqqiI7O5u+ffs26N7ff/89gKf4l5ycTGpqKqmpqbRq1apOf6vVypVXXklWVtZRp7oCLF26lHHjxnHFFVfQrVs32rZty5YtWxoU5xEaSSciIiIiIiIiIk3ixhtvZO7cucyfPx+73e5Zgy40NJSAgAAMw2DKlCnMnDmTtLQ00tLSmDlzJoGBgUycONFznfz8fPLz89m6dSsAa9euxW6307p1ayIiIvj6669ZsWIFgwYNIjQ0lJUrVzJ16lTGjh1L69at6x3v3/72N+68886jjqKDmrXm3nnnHZYvX054eDizZs0iPz+fjh07NuBdqqEinYiIiIiIiIiINInnnnsOgMzMzFrtr7zyCldddRUAd911FxUVFdxwww0UFhbSq1cvFi5ciN1u9/R//vnnuf/++z2vBwwYUOs6NpuNN954g/vvvx+Hw0FycjLXXnstd91110nF6+fnR1RU1DGP33vvveTm5jJ8+HACAwO57rrrGD9+vGfX2oYwTNM0G3wVEREREREREREROWVak05ERERERERERMTLVKQTERERERERERHxMhXpREREREREREREvExFOhERERERERERES9TkU5ERERERERERMTLVKQTERERERERERHxMhXpREREREREREREvExFOhERERERERERES9TkU5ERERERERERMTLVKQTERERERERERHxMhXpREREREREREREvOz/Aa5vMOa3BOKhAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1500x500 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def plot_solar_wind(ds_sw):\n",
    "    fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(15, 5))\n",
    "    for IMF_var in [\"BX_GSE\", \"BY_GSM\", \"BZ_GSM\"]:\n",
    "        ds_sw[IMF_var].plot.line(\n",
    "            x=\"Timestamp\", linewidth=1, alpha=0.8, ax=axes[0], label=IMF_var\n",
    "        )\n",
    "    axes[0].legend()\n",
    "    axes[0].set_ylabel(\"IMF\\n[nT]\")\n",
    "    axes[0].set_xlabel(\"\")\n",
    "    ds_sw[\"flow_speed\"].plot.line(\n",
    "        x=\"Timestamp\", linewidth=1, alpha=0.8, ax=axes[1]\n",
    "    )\n",
    "    axes[1].set_ylabel(\"flow_speed\\n[km/s]\")\n",
    "    axes[1].set_xlabel(\"\")\n",
    "    axes[0].grid()\n",
    "    axes[1].grid()\n",
    "    fig.suptitle(\"Interplanetary Magnetic Field and Solar Wind flow\")\n",
    "    return fig, axes\n",
    "\n",
    "fig_sw, axes_sw = plot_solar_wind(ds_sw)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a068c320",
   "metadata": {},
   "source": [
    "## Auroral electrojets as measured by Swarm\n",
    "\n",
    "Since spacecraft move, it is difficult to extract a simple time series that can be easily tracked. From the complex Swarm product portfolio, we will pick a particular derived parameter: the peak auroral electrojet intensities derived from each pass over the current system. This signal tracks reasonably well from one orbit to the next (when separated into four orbital segments - accounting for two passes over the auroral oval in different local time sectors, and over the northern and southern hemispheres).\n",
    "\n",
    "To keep things a bit simpler, we will retrieve data only from Swarm Alpha over the Northern Hemisphere. The auroral electrojet peaks and boundaries for Swarm Alpha are contained within the product named `SW_OPER_AEJAPBL_2F`. Here is how we can access these data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "22367455",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:34.337141Z",
     "iopub.status.busy": "2025-06-21T21:48:34.336929Z",
     "iopub.status.idle": "2025-06-21T21:48:36.044744Z",
     "shell.execute_reply": "2025-06-21T21:48:36.044093Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body[data-theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block !important;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-index-preview {\n",
       "  grid-column: 2 / 5;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data,\n",
       ".xr-index-data-in:checked ~ .xr-index-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-index-name div,\n",
       ".xr-index-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2,\n",
       ".xr-no-icon {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:           (Timestamp: 293)\n",
       "Coordinates:\n",
       "  * Timestamp         (Timestamp) datetime64[ns] 2015-03-15T00:00:20.90063283...\n",
       "Data variables:\n",
       "    Spacecraft        (Timestamp) object &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; ... &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27;\n",
       "    Latitude          (Timestamp) float64 75.7 58.47 64.46 ... 67.83 83.38 70.72\n",
       "    PointType         (Timestamp) uint8 0 1 0 1 0 1 0 1 0 ... 0 1 0 1 0 1 0 1 0\n",
       "    QDOrbitDirection  (Timestamp) int8 -1 1 1 -1 -1 1 1 -1 ... 1 -1 -1 1 1 -1 -1\n",
       "    J_QD              (Timestamp) float64 -127.7 95.71 -55.46 ... 73.46 -97.24\n",
       "    Longitude         (Timestamp) float64 107.4 -78.38 -77.54 ... 106.9 122.0\n",
       "    MLT               (Timestamp) float64 6.939 20.26 20.41 ... 5.531 6.677\n",
       "Attributes:\n",
       "    Sources:         [&#x27;SW_OPER_AEJAPBL_2F_20150101T000000_20151231T235959_020...\n",
       "    MagneticModels:  []\n",
       "    AppliedFilters:  [&#x27;Latitude &lt;= 90&#x27;, &#x27;Latitude &gt;= 0&#x27;, &#x27;PointType &lt;= 1&#x27;, &#x27;P...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-518d79ed-d4d8-4eb1-a6a1-ed1dfe5a29d6' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-518d79ed-d4d8-4eb1-a6a1-ed1dfe5a29d6' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>Timestamp</span>: 293</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-8a5e3300-5d36-44de-9849-9a1338c933da' class='xr-section-summary-in' type='checkbox'  checked><label for='section-8a5e3300-5d36-44de-9849-9a1338c933da' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>Timestamp</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2015-03-15T00:00:20.900632832 .....</div><input id='attrs-264b891d-feb2-45ac-8270-5ca2c56317b3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-264b891d-feb2-45ac-8270-5ca2c56317b3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0ff7e898-8b8c-479f-a24c-8be93b16101c' class='xr-var-data-in' type='checkbox'><label for='data-0ff7e898-8b8c-479f-a24c-8be93b16101c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>description :</span></dt><dd>Time of observation, UTC</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;2015-03-15T00:00:20.900632832&#x27;, &#x27;2015-03-15T01:22:16.958820352&#x27;,\n",
       "       &#x27;2015-03-15T01:23:50.767007744&#x27;, ..., &#x27;2015-03-19T22:35:54.402062336&#x27;,\n",
       "       &#x27;2015-03-19T22:43:12.163632896&#x27;, &#x27;2015-03-19T22:46:35.435913984&#x27;],\n",
       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-8fd4fdbe-0de0-4e98-8a10-19e73de898fd' class='xr-section-summary-in' type='checkbox'  checked><label for='section-8fd4fdbe-0de0-4e98-8a10-19e73de898fd' class='xr-section-summary' >Data variables: <span>(7)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>Spacecraft</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>&#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; ... &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27;</div><input id='attrs-c1b932cd-f795-4a83-90d7-0aac3794c03f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c1b932cd-f795-4a83-90d7-0aac3794c03f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ba0ebfb8-20e0-4302-a3c9-fac554c83cda' class='xr-var-data-in' type='checkbox'><label for='data-ba0ebfb8-20e0-4302-a3c9-fac554c83cda' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>-</dd><dt><span>description :</span></dt><dd>Spacecraft identifier (values: &#x27;A&#x27;, &#x27;B&#x27;, &#x27;C&#x27; or &#x27;-&#x27; if not available).</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Latitude</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>75.7 58.47 64.46 ... 83.38 70.72</div><input id='attrs-82a9128f-5ff7-432b-9da4-1a4dd5ad1366' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-82a9128f-5ff7-432b-9da4-1a4dd5ad1366' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-489657e7-6173-45ae-bdc4-86d294454907' class='xr-var-data-in' type='checkbox'><label for='data-489657e7-6173-45ae-bdc4-86d294454907' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>deg</dd><dt><span>description :</span></dt><dd>Geocentric latitude in ITRF</dd></dl></div><div class='xr-var-data'><pre>array([75.69651746, 58.47445127, 64.46266691, 83.72825832, 77.02399941,\n",
       "       58.97555635, 65.95949544, 82.33702423, 77.5124046 , 63.13563209,\n",
       "       71.10013983, 80.26926521, 75.38156297, 65.61932982, 84.17508695,\n",
       "       74.89764042, 69.94272695, 68.96964989, 74.91862663, 73.54890911,\n",
       "       54.61456094, 72.24933075, 79.13901709, 72.25914624, 66.29412294,\n",
       "       72.48502121, 87.33489116, 68.0483087 , 61.06977844, 72.20966243,\n",
       "       78.12533119, 71.30487343, 63.34187617, 72.01456701, 86.17978103,\n",
       "       71.4997637 , 64.53499241, 70.90761541, 85.06904643, 81.41324068,\n",
       "       65.64738701, 63.50666124, 69.48392975, 76.98222419, 70.05981494,\n",
       "       72.54210123, 79.42548641, 78.86058221, 71.96615847, 53.99921388,\n",
       "       69.96243346, 81.36992986, 76.51068912, 67.31446002, 72.28335191,\n",
       "       78.13995477, 73.21575013, 65.40266278, 77.29682149, 79.03602843,\n",
       "       74.12472085, 61.74748612, 75.65980138, 80.64641748, 75.76725961,\n",
       "       65.53835663, 77.42963859, 79.87317871, 75.96286378, 60.40040568,\n",
       "       79.23566525, 80.01877797, 75.12565558, 66.87594011, 78.74293535,\n",
       "       76.61052284, 70.67667198, 67.30462113, 85.61749574, 71.24241616,\n",
       "       54.28717598, 72.57573826, 83.26471737, 75.88741713, 71.93262229,\n",
       "       74.79281547, 87.34769268, 70.70066171, 48.74378029, 72.79544746,\n",
       "       87.14571162, 75.66691424, 69.72502943, 73.30136568, 86.30742022,\n",
       "       75.16275499, 60.24617315, 77.57278281, 84.23173124, 78.76051034,\n",
       "...\n",
       "       81.81075838, 71.03686164, 67.75711411, 72.72506542, 78.67885419,\n",
       "       69.79602691, 69.29084724, 75.23815703, 77.17006461, 62.28270085,\n",
       "       68.91499939, 86.09173648, 79.49061215, 62.65949168, 65.69662269,\n",
       "       79.53837482, 80.68166734, 62.8913376 , 69.32355532, 79.19076856,\n",
       "       82.91677362, 70.21973124, 68.42012993, 85.7125958 , 86.25202414,\n",
       "       71.12233001, 63.84931387, 70.81821796, 78.60488966, 71.70571347,\n",
       "       59.1437006 , 71.10155478, 86.46025009, 73.40469648, 73.17540828,\n",
       "       83.81638126, 81.14083925, 74.30234257, 53.6503501 , 58.6467584 ,\n",
       "       85.32316194, 73.89647901, 57.65196079, 64.63876617, 85.31905437,\n",
       "       78.80690022, 60.57331567, 66.55753638, 81.76962572, 75.94027683,\n",
       "       62.13877945, 68.1194534 , 79.2998089 , 75.38042689, 66.50454133,\n",
       "       72.46889624, 78.93199834, 72.0390007 , 68.81015541, 75.74692875,\n",
       "       77.64666412, 68.74509588, 68.06583052, 74.02184907, 76.41687623,\n",
       "       69.48816797, 66.99847744, 71.97002506, 67.56858784, 58.59178232,\n",
       "       68.26001999, 75.20257429, 72.27084473, 63.31598614, 67.4825127 ,\n",
       "       79.33715767, 80.88030843, 65.09250304, 71.97351353, 85.37098876,\n",
       "       85.82143052, 70.54911764, 70.94850279, 87.33995026, 86.55918374,\n",
       "       73.55693047, 66.32434392, 71.29749312, 85.57221788, 73.20924632,\n",
       "       63.68601213, 69.66180322, 86.74036683, 74.83735961, 61.85046841,\n",
       "       67.83156256, 83.37990198, 70.71595298])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PointType</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>uint8</div><div class='xr-var-preview xr-preview'>0 1 0 1 0 1 0 1 ... 1 0 1 0 1 0 1 0</div><input id='attrs-8ab74a45-e12f-4867-8def-aeb96cca8d5f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8ab74a45-e12f-4867-8def-aeb96cca8d5f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-af9e09e1-82f3-470f-b010-00e343bbb843' class='xr-var-data-in' type='checkbox'><label for='data-af9e09e1-82f3-470f-b010-00e343bbb843' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd> </dd><dt><span>description :</span></dt><dd>Point type (bit flags): 0 - WEJ peak minimum, 1 - EEJ peak maximum, 2 - WEJ equatorial boundary (pair start), 3 - EEJ equatorial boundary (pair start), 6 - WEJ polar boundary (pair start), 7 - EEJ polar boundary (pair start), 10 - WEJ equatorial boundary (pair end), 11 - EEJ equatorial boundary (pair end), 14 - WEJ polar boundary (pair end), 15 - EEJ polar boundary (pair end). Bits meaning: bit0 - WEJ|EEJ, bit1 - peak|boundary, bit2 - equatorial|polar, bit3 - pair-start|pair-end.</dd></dl></div><div class='xr-var-data'><pre>array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1,\n",
       "       0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1,\n",
       "       0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,\n",
       "       0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0,\n",
       "       1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1,\n",
       "       0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,\n",
       "       0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,\n",
       "       0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,\n",
       "       0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1,\n",
       "       0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,\n",
       "       0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1,\n",
       "       0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,\n",
       "       0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,\n",
       "       0, 1, 0, 1, 0, 1, 0], dtype=uint8)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>QDOrbitDirection</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>int8</div><div class='xr-var-preview xr-preview'>-1 1 1 -1 -1 1 ... -1 -1 1 1 -1 -1</div><input id='attrs-cb645af1-82fe-4284-b1fb-b59a04ae42bd' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-cb645af1-82fe-4284-b1fb-b59a04ae42bd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-731de31d-57b0-4748-8f8e-b398a89e4670' class='xr-var-data-in' type='checkbox'><label for='data-731de31d-57b0-4748-8f8e-b398a89e4670' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>-</dd><dt><span>description :</span></dt><dd>Orbit direction in magnetic (QD) coordinates (values: 1 - ascending, -1 - descending, 0 - undefined)</dd></dl></div><div class='xr-var-data'><pre>array([-1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,\n",
       "        1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1,\n",
       "       -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1,\n",
       "       -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,\n",
       "        1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1,\n",
       "       -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1,\n",
       "       -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1,  1,  1, -1, -1,  1, -1, -1,  1, -1, -1,  1, -1, -1,\n",
       "        1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1,\n",
       "       -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1,\n",
       "       -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,\n",
       "        1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1,\n",
       "       -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1,\n",
       "       -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1], dtype=int8)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>J_QD</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-127.7 95.71 ... 73.46 -97.24</div><input id='attrs-a11d387b-ee7d-431f-932a-04d62ee9f582' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a11d387b-ee7d-431f-932a-04d62ee9f582' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5df17eee-1617-45ec-857e-3e319a981958' class='xr-var-data-in' type='checkbox'><label for='data-5df17eee-1617-45ec-857e-3e319a981958' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>A/km</dd><dt><span>description :</span></dt><dd>Peak eastward sheet current intensity in QD frame</dd></dl></div><div class='xr-var-data'><pre>array([ -127.67753867,    95.70520576,   -55.46377924,    46.80191068,\n",
       "         -99.26501036,   162.79682103,   -38.72727149,    92.57667106,\n",
       "        -137.32970846,   159.17510196,   -32.07679003,   112.08602907,\n",
       "        -132.29651049,   170.01281916,   -24.24777915,   -33.37450507,\n",
       "          46.93142897,   273.04743515,  -102.56014933,   -39.45033217,\n",
       "          53.86275036,   325.03666582,  -113.10162531,  -103.77437347,\n",
       "          73.53697765,   223.1333249 ,   -46.18224612,  -137.92119447,\n",
       "          50.5656628 ,   269.53651731,   -61.47365327,   138.36290653,\n",
       "        -164.38802594,   145.0185299 ,   -24.53945033,    83.69254923,\n",
       "         -82.5581494 ,    95.24146355,   -35.20212342,    52.03586337,\n",
       "         -52.9366203 ,   -54.739048  ,   140.94731975,    80.827055  ,\n",
       "         -87.60073172,  -165.21976724,    50.20432003,   106.23888765,\n",
       "        -182.81203739,   -13.90286191,    14.37603238,    36.55453246,\n",
       "         -12.14543916,    13.3264737 ,   -12.16600428,    -5.18988579,\n",
       "          22.2460259 ,    22.59303311,   -15.97031743,    -6.19897948,\n",
       "          28.87927894,    13.57337118,   -19.17636756,   -24.37902125,\n",
       "          37.29193985,    18.09244398,    -3.95249061,   -15.54479931,\n",
       "          24.31441853,   107.01682831,   -15.6494537 ,    87.53543499,\n",
       "         -61.13061408,    97.27590734,   -55.97805997,  -253.67501813,\n",
       "          75.17746059,   192.95535677,   -74.15376512,   -57.48004404,\n",
       "...\n",
       "        -547.84960718,   107.53916623,  -143.95819742,   148.61693556,\n",
       "        -361.72447901,    21.25916814,  -413.7355179 ,    74.87141723,\n",
       "        -482.97963054,    17.76624736,  -161.11537854,    94.81341787,\n",
       "        -480.99446499,  -592.90880611,   122.64410066,   167.46737417,\n",
       "        -656.06475986,   138.31132752,  -348.26321487,   213.83785737,\n",
       "        -661.7073117 ,  -384.68801667,    91.91660631,    89.87641923,\n",
       "        -351.16574257,    99.96959111,   -79.5384834 ,   101.0529089 ,\n",
       "        -321.23116683,   180.81891702,  -219.59228163,    75.61952211,\n",
       "        -133.95420934,   274.99853743,  -127.83662951,   102.70761532,\n",
       "        -219.17090468,   236.00029969,  -136.09203462,   119.05720519,\n",
       "        -282.55437328,   403.53613764,  -464.91467351,   343.64086348,\n",
       "        -569.88973883,   486.98579477,  -441.53113604,   126.70040187,\n",
       "        -469.95065733,   348.8599599 ,  -244.55843571,   220.43427392,\n",
       "        -574.62467985,    97.33356911,  -420.5274806 ,    33.36866452,\n",
       "        -279.91675239,   114.1896217 ,   -86.70197123,    61.12884146,\n",
       "        -169.84837007,    39.33664114,   -72.70439959,    75.4426499 ,\n",
       "        -156.06787228,   110.83560806,   -64.97230688,    74.72565123,\n",
       "         -88.37481853,   108.90099831,   -95.45958018,    68.42579682,\n",
       "        -142.09154526,    90.24256563,  -344.40018296,    73.45902915,\n",
       "         -97.23636545])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Longitude</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>107.4 -78.38 -77.54 ... 106.9 122.0</div><input id='attrs-ad59d01e-e957-46b2-97ef-61da516fc5e3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ad59d01e-e957-46b2-97ef-61da516fc5e3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4f5ee10a-02c7-4201-a479-760b6da7e4cb' class='xr-var-data-in' type='checkbox'><label for='data-4f5ee10a-02c7-4201-a479-760b6da7e4cb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>deg</dd><dt><span>description :</span></dt><dd>Geocentric longitude in ITRF</dd></dl></div><div class='xr-var-data'><pre>array([ 107.37190378,  -78.3809096 ,  -77.53896354,   69.90497379,\n",
       "         82.79576019, -101.85074266, -100.76296324,   51.07407577,\n",
       "         58.82396743, -124.82090951, -122.81302276,   31.88989429,\n",
       "         37.00900644, -147.89376483, -127.99470821,   13.8044698 ,\n",
       "         16.07239783, -170.58990785, -168.00509234,   -8.94845051,\n",
       "         -4.90709501,  167.06598201,  172.25531205,  -31.85698106,\n",
       "        -29.98140485,  143.64941616, -141.64322854,  -53.93836416,\n",
       "        -52.60417203,  120.00922093,  124.04644336,  -78.52483662,\n",
       "        -76.4721016 ,   96.40229631,  131.19961578, -102.13160872,\n",
       "       -100.21086459,   72.4328117 , -149.26934708, -134.90781284,\n",
       "       -123.95394629,   47.03105461,   48.4174989 , -152.41410449,\n",
       "       -148.64845459,   26.04612001,   31.48363069, -177.85480459,\n",
       "       -172.88752871,   -1.07624507,    1.51705345,  154.63202929,\n",
       "        160.93818746,  -22.76714682,  -21.11985234,  135.91204716,\n",
       "        139.49204988,  -46.71985363,  -41.45362693,  111.34918973,\n",
       "        115.48213755,  -70.86329873,  -66.2800905 ,   85.42182654,\n",
       "         90.91020588,  -93.7334213 ,  -88.36477585,   63.14116312,\n",
       "         67.23928899, -118.09170537, -109.90034533,   39.40183835,\n",
       "         44.29639833, -140.49483348, -134.04801514,   19.69966287,\n",
       "         22.93798795, -163.91988617, -134.34247861,   -0.79607647,\n",
       "...\n",
       "       -150.85949695,   22.42404524,   52.69148224,  149.11551629,\n",
       "       -174.70539951,   -2.11320909,   -0.33259978,  156.7675566 ,\n",
       "        161.54257619,  -26.29541103,  -23.75011511,   98.60345095,\n",
       "        137.24139208,  -46.37321089,  -30.58277327,  105.87704073,\n",
       "        113.22578557,  -73.81796947,  -73.39261795,   65.40996542,\n",
       "         89.92172947,  -97.01560743,  -96.05692074,   41.90508837,\n",
       "         62.40816144, -120.21617526, -119.18449155,   33.94327134,\n",
       "         41.58156066, -143.52993522, -142.3251967 ,   14.75536658,\n",
       "         18.45790791, -166.25404001, -164.33070356,   -8.29598794,\n",
       "         -3.27001504,  170.81365433,  173.99983279,  -30.41601317,\n",
       "        -25.63362461,  147.08277386,  149.39557092,  -52.86828116,\n",
       "        -49.38429318,  123.29313717,  124.88533837,  -72.37126597,\n",
       "        -70.86521328,  100.09515765,  103.07144078,  -97.48178238,\n",
       "        -95.02231682,   76.36346552,   83.41743002, -128.88450163,\n",
       "       -118.86761889,   54.31103572,   80.14334683, -174.6513824 ,\n",
       "       -143.84476225,   30.37532566,  115.41117357,  150.8592143 ,\n",
       "       -168.66045716,    5.50913083,    6.98290055,  140.92276564,\n",
       "        167.99469853,  -18.53106959,  -17.11848998,   99.80606402,\n",
       "        143.56604372,  -42.34204381,  -41.17182249,  106.92220618,\n",
       "        122.00066182])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>MLT</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>6.939 20.26 20.41 ... 5.531 6.677</div><input id='attrs-5b0858d1-3a9c-44a9-8566-365ba5b65f76' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5b0858d1-3a9c-44a9-8566-365ba5b65f76' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-36a89f45-dc7c-4ac1-a81f-cdd480151a2f' class='xr-var-data-in' type='checkbox'><label for='data-36a89f45-dc7c-4ac1-a81f-cdd480151a2f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>hour</dd><dt><span>description :</span></dt><dd>Magnetic local time (QD)</dd></dl></div><div class='xr-var-data'><pre>array([ 6.93896215, 20.26115063, 20.40822715,  6.8357561 ,  7.16034513,\n",
       "       19.44988505, 19.42232997,  7.51584425,  7.49072412, 18.9464413 ,\n",
       "       18.68667073,  8.0272472 ,  7.8283094 , 18.90431021, 16.45693402,\n",
       "        8.20742548,  8.00931364, 19.11720904, 18.87862052,  8.51899837,\n",
       "        7.98237526, 19.4409    , 19.15233355,  8.69306143,  8.45175718,\n",
       "       19.82673266, 18.99753893,  8.41492295,  8.31365358, 20.11083082,\n",
       "       20.16655018,  7.55954022,  7.72578347, 20.29546911, 21.33216448,\n",
       "        6.160243  ,  6.70144079, 20.41244857,  1.0491143 ,  3.06792935,\n",
       "        6.06548881, 20.257505  , 20.52678137,  4.84826679,  5.73274838,\n",
       "       21.01546885, 21.9016079 ,  5.03291216,  5.91471715, 20.34135134,\n",
       "       21.11575868,  5.15380735,  5.92396201, 21.18063339, 21.62346077,\n",
       "        6.19974093,  6.63831417, 21.1053701 , 22.59857831,  6.51729697,\n",
       "        6.86988581, 20.49645176, 21.65728599,  6.80324236,  7.03741659,\n",
       "       19.6293806 , 19.92907963,  7.27762968,  7.30797564, 18.99305268,\n",
       "       17.89238632,  7.76651168,  7.62569476, 18.73185067, 17.89239963,\n",
       "        8.08108821,  7.84423954, 18.9647432 , 16.4680411 ,  8.20896681,\n",
       "        7.80855076, 19.21083946, 18.42600443,  8.81467661,  8.53729776,\n",
       "       19.58392394, 18.28222096,  8.49855125,  8.16636229, 19.9505235 ,\n",
       "       20.02125438,  7.81827378,  7.86389501, 20.18774039, 22.19509346,\n",
       "        5.91908784,  7.047617  , 20.64512393, 21.42137954,  3.97189542,\n",
       "...\n",
       "        9.89007229,  8.37388366, 19.63376222, 19.59143839,  8.73041271,\n",
       "        8.15041377, 19.84259006, 19.8998473 ,  6.65767884,  7.39285743,\n",
       "       19.96079255, 21.13496496,  3.67019763,  6.45132111, 19.96356017,\n",
       "       20.79748841,  3.17080231,  5.95306084, 20.28109241, 21.18270212,\n",
       "        3.01995447,  5.48546457, 20.48103489, 23.63297974,  2.39690017,\n",
       "        5.77421195, 20.50142421, 20.97427546,  5.45405311,  6.16090285,\n",
       "       20.53472632, 21.27847181,  4.16585105,  6.41740402, 21.55630213,\n",
       "        1.38928432,  6.10220961,  6.64490135, 20.01134833, 20.10663724,\n",
       "        6.19211445,  6.87762904, 19.27282814, 19.28795013,  7.02614858,\n",
       "        7.07584175, 18.70764995, 18.57934244,  7.6462296 ,  7.42215349,\n",
       "       18.60845936, 18.44122422,  8.04408447,  7.79527757, 18.75355937,\n",
       "       18.55634449,  8.53081822,  8.01264268, 19.08403882, 18.86846162,\n",
       "        8.76181655,  8.14677253, 19.4565633 , 19.37324098,  8.5639609 ,\n",
       "        8.16903924, 19.694468  , 19.70900371,  7.52477584,  7.5819716 ,\n",
       "       19.82805232, 20.00003471,  5.97506545,  6.59908195, 19.90261038,\n",
       "       20.56551973,  2.85610576,  5.81955286, 20.2855967 , 22.28914695,\n",
       "        1.17590144,  5.3002712 , 20.48434622,  0.83770309,  1.79073717,\n",
       "        5.33475679, 20.47063115, 20.83554029,  3.35015359,  5.82977377,\n",
       "       20.59600518, 20.99653543,  3.64325766,  6.1183971 , 20.63006943,\n",
       "       20.9716559 ,  5.53061603,  6.67672118])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-7a06187d-ab7a-4f09-993a-cae62c0415f9' class='xr-section-summary-in' type='checkbox'  ><label for='section-7a06187d-ab7a-4f09-993a-cae62c0415f9' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>Timestamp</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-41ca3c4b-ae9c-445d-ad18-a0f1778ac5f4' class='xr-index-data-in' type='checkbox'/><label for='index-41ca3c4b-ae9c-445d-ad18-a0f1778ac5f4' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2015-03-15 00:00:20.900632832&#x27;,\n",
       "               &#x27;2015-03-15 01:22:16.958820352&#x27;,\n",
       "               &#x27;2015-03-15 01:23:50.767007744&#x27;,\n",
       "               &#x27;2015-03-15 01:31:55.441343744&#x27;,\n",
       "               &#x27;2015-03-15 01:33:44.900906240&#x27;,\n",
       "               &#x27;2015-03-15 02:56:09.967015680&#x27;,\n",
       "               &#x27;2015-03-15 02:57:59.407304704&#x27;,\n",
       "               &#x27;2015-03-15 03:06:04.072875008&#x27;,\n",
       "               &#x27;2015-03-15 03:07:22.256414208&#x27;,\n",
       "               &#x27;2015-03-15 04:31:00.228546816&#x27;,\n",
       "               ...\n",
       "               &#x27;2015-03-19 19:35:03.353890560&#x27;,\n",
       "               &#x27;2015-03-19 19:38:26.607687424&#x27;,\n",
       "               &#x27;2015-03-19 21:01:04.598609408&#x27;,\n",
       "               &#x27;2015-03-19 21:02:38.407070464&#x27;,\n",
       "               &#x27;2015-03-19 21:08:22.352640512&#x27;,\n",
       "               &#x27;2015-03-19 21:11:45.604687360&#x27;,\n",
       "               &#x27;2015-03-19 22:34:20.592789248&#x27;,\n",
       "               &#x27;2015-03-19 22:35:54.402062336&#x27;,\n",
       "               &#x27;2015-03-19 22:43:12.163632896&#x27;,\n",
       "               &#x27;2015-03-19 22:46:35.435913984&#x27;],\n",
       "              dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;Timestamp&#x27;, length=293, freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-8d98f09e-cbc0-43e6-b47b-2ac088a08203' class='xr-section-summary-in' type='checkbox'  checked><label for='section-8d98f09e-cbc0-43e6-b47b-2ac088a08203' class='xr-section-summary' >Attributes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>Sources :</span></dt><dd>[&#x27;SW_OPER_AEJAPBL_2F_20150101T000000_20151231T235959_0201&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150315T000000_20150315T235959_0502&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150316T000000_20150316T235959_0502&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150317T000000_20150317T235959_0502&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150318T000000_20150318T235959_0502&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150319T000000_20150319T235959_0502&#x27;]</dd><dt><span>MagneticModels :</span></dt><dd>[]</dd><dt><span>AppliedFilters :</span></dt><dd>[&#x27;Latitude &lt;= 90&#x27;, &#x27;Latitude &gt;= 0&#x27;, &#x27;PointType &lt;= 1&#x27;, &#x27;PointType &gt;= 0&#x27;]</dd></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:           (Timestamp: 293)\n",
       "Coordinates:\n",
       "  * Timestamp         (Timestamp) datetime64[ns] 2015-03-15T00:00:20.90063283...\n",
       "Data variables:\n",
       "    Spacecraft        (Timestamp) object 'A' 'A' 'A' 'A' 'A' ... 'A' 'A' 'A' 'A'\n",
       "    Latitude          (Timestamp) float64 75.7 58.47 64.46 ... 67.83 83.38 70.72\n",
       "    PointType         (Timestamp) uint8 0 1 0 1 0 1 0 1 0 ... 0 1 0 1 0 1 0 1 0\n",
       "    QDOrbitDirection  (Timestamp) int8 -1 1 1 -1 -1 1 1 -1 ... 1 -1 -1 1 1 -1 -1\n",
       "    J_QD              (Timestamp) float64 -127.7 95.71 -55.46 ... 73.46 -97.24\n",
       "    Longitude         (Timestamp) float64 107.4 -78.38 -77.54 ... 106.9 122.0\n",
       "    MLT               (Timestamp) float64 6.939 20.26 20.41 ... 5.531 6.677\n",
       "Attributes:\n",
       "    Sources:         ['SW_OPER_AEJAPBL_2F_20150101T000000_20151231T235959_020...\n",
       "    MagneticModels:  []\n",
       "    AppliedFilters:  ['Latitude <= 90', 'Latitude >= 0', 'PointType <= 1', 'P..."
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def fetch_Swarm_AEJ(start_time, end_time):\n",
    "    request = SwarmRequest()\n",
    "    # Meaning of AEJAPBL: (AEJ) Auroral electrojets\n",
    "    #                     (A)   Swarm Alpha\n",
    "    #                     (PBL) Peaks and boundaries from LC method\n",
    "    # J_QD is the current intensity along QD-latitude contours\n",
    "    # QDOrbitDirection is a flag (1, -1) marking the direction of the \n",
    "    #   satellite (ascending, descending) relative to the QD pole\n",
    "    # MLT is magnetic local time, evaluated according to the\n",
    "    #   quasi-dipole magnetic longitude and the sub-solar point\n",
    "    #   (see doi.org/10.1007/s11214-016-0275-y)\n",
    "    request.set_collection(\"SW_OPER_AEJAPBL_2F\")\n",
    "    request.set_products(\n",
    "        measurements=[\"J_QD\", \"PointType\"],\n",
    "        auxiliaries=[\"QDOrbitDirection\", \"MLT\"]\n",
    "    )\n",
    "    # PointType of 0 refers to WEJ (westward electrojet) peaks\n",
    "    # PointType of 1 refers to EEJ (eastward electrojet) peaks\n",
    "    # See https://nbviewer.jupyter.org/github/pacesm/jupyter_notebooks/blob/master/AEBS/AEBS_00_data_access.ipynb#AEJxPBL-product\n",
    "    request.set_range_filter(\"Latitude\", 0, 90)  # Northern hemisphere\n",
    "    request.set_range_filter(\"PointType\", 0, 1)  # Extract only peaks\n",
    "    data = request.get_between(START_TIME, END_TIME, asynchronous=False, show_progress=False)\n",
    "    ds_AEJ_peaks = data.as_xarray()\n",
    "    return ds_AEJ_peaks\n",
    "\n",
    "ds_AEJ_peaks = fetch_Swarm_AEJ(START_TIME, END_TIME)\n",
    "ds_AEJ_peaks"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "07a80b2f-ea57-4733-bcca-45fc85e547e5",
   "metadata": {},
   "source": [
    ":::{tip}\n",
    "Switch `asynchronous=False` to `asynchronous=True` if making longer requests\n",
    ":::"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ea66d928",
   "metadata": {},
   "source": [
    "Now we need some complex logic to plot the eastward and westward electrojet intensities, separated for each local time sector:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "64dba78c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:36.046789Z",
     "iopub.status.busy": "2025-06-21T21:48:36.046597Z",
     "iopub.status.idle": "2025-06-21T21:48:36.415633Z",
     "shell.execute_reply": "2025-06-21T21:48:36.415025Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABPsAAAHwCAYAAADQG2pTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hU1dbA4d+U9EYKSUild0JVmkiTIkVRQQULYu+fYrmWa8GG7dqxIE0UEAuiIiodpffea0JCEtJ7MmV/f+xkSEiABBJSWO/zzDMzZ86c2VPOlDVrr2VQSimEEEIIIYQQQgghhBC1nrG6ByCEEEIIIYQQQgghhKgcEuwTQgghhBBCCCGEEKKOkGCfEEIIIYQQQgghhBB1hAT7hBBCCCGEEEIIIYSoIyTYJ4QQQgghhBBCCCFEHSHBPiGEEEIIIYQQQggh6ggJ9gkhhBBCCCGEEEIIUUdIsE8IIYQQQgghhBBCiDpCgn1CCCGEEEIIIYQQQtQREuwTQghRZ33yyScYDAbatm1b3UOpNH369KFPnz6Vtr1XX30Vg8FQads705o1a3j11VdJS0ur9G0fO3YMg8HAjBkzKnzduLg4Xn31VbZt21bp46ouM2bMwGAwcOzYseoeiqgC5d33DQYDjz76aJWPJyYmhocffpjmzZvj5uaGn58f7dq147777iMmJqbKb78mGD9+PAaDgWHDhpV5+cW8RwE0bNjwrNsWQgghzkWCfUIIIeqsadOmAbB7927Wr19fzaO5PK1Zs4YJEyZUSbCvQYMGrF27lqFDh1b4unFxcUyYMKFOBfuEuFROnDhBp06dWLx4MePHj2fhwoVMmzaN0aNHs3HjRo4cOVLdQ6xyFouF7777DoC//vqL2NjYah6REEIIcZoE+4QQQtRJmzZtYvv27Y5A0NSpUyv9NnJyci7q+kopcnNzK2k0dUNFHg8XFxe6detG/fr1q3BEQlyci32fqIm+/vprkpKSWLRoEQ8++CB9+/ZlxIgRvPDCC2zbto1evXpV6/guxWP+66+/curUKYYOHYrNZuObb76p8tsUQgghykuCfUIIIeqkouDe22+/TY8ePfj+++9L/QBcsWIFBoOBFStWlFhe1tSru+66C09PT3bu3MnAgQPx8vKif//+AKSkpPDwww8TGhqKs7MzjRs35sUXXyQ/P7/Edoum13355Ze0atUKFxcXxw/ECRMm0LVrV/z8/PD29qZTp05MnToVpdQFPwZz586le/fueHh44OnpyaBBg9i6dWulXnf9+vUMHz4cf39/XF1dadKkCU888QSgpwg/88wzADRq1AiDwVDi8S6aojZv3jw6duyIq6srEyZMAGDXrl1cf/31+Pr64urqSocOHUr9mD7bFLmDBw8yZswYAgMDcXFxoVWrVkyaNMlx+YoVK7jiiisAGDdunGNcr7766jkfk/j4eB544AHCwsJwdnamUaNGTJgwAavVWmpM77//Ph988AGNGjXC09OT7t27s27dOsd6H330EQaDgUOHDpW6nf/85z84OzuTlJTkWLZkyRL69++Pt7c37u7u9OzZk6VLl55zvEWmTZtG+/btcXV1xc/PjxtuuIG9e/eWWKfo9b1792769++Ph4cH9evX59FHHy213yil+Pzzz+nQoQNubm74+voycuTIcmVzFU0b37FjB6NGjcLHxwc/Pz/Gjx+P1Wpl//79DB48GC8vLxo2bMi7775bahsZGRk8/fTTNGrUCGdnZ0JDQ3niiSfIzs4usd6kSZO4+uqrCQwMxMPDg3bt2vHuu+9isVhKrLd161aGDRvmeL2EhIQwdOhQTpw4AZx7KuaZr5ui+7dlyxZGjhyJr68vTZo0qdDjppTi3XffJTIyEldXVzp16sSff/553sf2TF999RXNmzfHxcWF1q1b8/333zsuO3bsGGazmYkTJ5a63j///IPBYODHH38867aTk5MxGo0EBgaWebnRqH9i/PHHHxgMBjZu3Oi47Oeff8ZgMJTKyI2KiuKmm25ynC/v89enTx/atm3LP//8Q48ePXB3d+fuu+92PG/vvfce77zzDg0bNsTNzY0+ffpw4MABLBYLzz33HCEhIfj4+HDDDTeQmJh4jke0pKlTp+Ls7Mz06dMJDw9n+vTp5Xq/LnqNbN26lRtvvBFvb298fHy4/fbbOXXqVJnX+euvv+jUqRNubm60bNnSkbVe5NSpUzz88MO0bt0aT09PAgMD6devH//++2+5748QQog6RgkhhBB1TE5OjvLx8VFXXHGFUkqpKVOmKEDNmDGjxHrLly9XgFq+fHmJ5UePHlWAmj59umPZ2LFjlZOTk2rYsKGaOHGiWrp0qfr7779Vbm6uioqKUh4eHur9999XixYtUi+99JIym81qyJAhJbYLqNDQUBUVFaVmz56tli1bpnbt2qWUUuquu+5SU6dOVYsXL1aLFy9Wr7/+unJzc1MTJkwosY3evXur3r17n/cxePPNN5XBYFB33323WrBggZo3b57q3r278vDwULt373as98orr6gzvw6U97p//fWXcnJyUlFRUWrGjBlq2bJlatq0aerWW29VSikVExOjHnvsMQWoefPmqbVr16q1a9eq9PR0pZRSkZGRqkGDBqpx48Zq2rRpavny5WrDhg1q3759ysvLSzVp0kTNnDlT/fHHH2r06NEKUO+88845n6fdu3crHx8f1a5dOzVz5ky1aNEi9dRTTymj0aheffVVpZRS6enpavr06QpQ//3vfx3jiomJOevjefLkSRUeHq4iIyPVV199pZYsWaJef/115eLiou66665SY2rYsKEaPHiwmj9/vpo/f75q166d8vX1VWlpaUoppU6dOqWcnZ3Viy++WOJ2rFarCgkJUTfeeKNj2bfffqsMBoMaMWKEmjdvnvr999/VsGHDlMlkUkuWLHGsV3Sfjh496lj21ltvKUCNHj1a/fHHH2rmzJmqcePGysfHRx04cMCx3tixY5Wzs7OKiIhQb775plq0aJF69dVXldlsVsOGDSsxxvvuu085OTmpp556Sv31119q9uzZqmXLliooKEjFx8ef9TFU6vTrrUWLFur1119XixcvVs8++6wC1KOPPqpatmypPvnkE7V48WI1btw4Baiff/7Zcf3s7GzVoUMHFRAQoD744AO1ZMkS9fHHHysfHx/Vr18/ZbfbHes++eST6osvvlB//fWXWrZsmfrwww9VQECAGjdunGOdrKws5e/vr7p06aJ++OEHtXLlSjV37lz14IMPqj179pR4Tou/zooA6pVXXil1/yIjI9V//vMftXjxYjV//vwKPW5F27jnnnvUn3/+qSZPnqxCQ0NVcHBwufZ9QIWHh6vWrVurOXPmqN9++00NHjxYAerHH390rHfDDTeoiIgIZbVaS1x/1KhRKiQkRFkslrPexnfffacANXDgQPXXX3859ukzZWZmKicnJ/XWW285lj344IPKzc1NeXh4qIKCAqWUUgkJCcpgMKjPP//csV55nj+l9Huin5+fCg8PV59++qlavny5WrlypeN5i4yMVMOHD1cLFixQ3333nQoKClLNmzdXd9xxh7r77rvVn3/+qb788kvl6emphg8fft7HVyn93mY0GtWoUaOUUkr997//VYBasWJFifXKeu0Uf40888wz6u+//1YffPCB8vDwUB07dnQ8Jkrp98iwsDDVunVrNXPmTPX333+rUaNGKUCtXLnSsd6+ffvUQw89pL7//nu1YsUKtWDBAnXPPfcoo9FY6vNNCCHE5UGCfUIIIeqcmTNnKkB9+eWXSin9g9PT01P16tWrxHoVDfYBatq0aSXW/fLLLxWgfvjhhxLL33nnHQWoRYsWOZYBysfHR6WkpJxz/DabTVksFvXaa68pf3//EgGM8gT7oqOjldlsVo899liJ5ZmZmSo4OFjdfPPNjmVnBvsqct0mTZqoJk2aqNzc3LOO5b333isVgCoSGRmpTCaT2r9/f4nlt956q3JxcVHR0dElll977bXK3d3dETAr63kaNGiQCgsLKxV8ePTRR5Wrq6vjsd+4ceNZAzhleeCBB5Snp6c6fvx4ieXvv/++AhxB0KIxtWvXrkQQZcOGDQpQc+bMcSy78cYbVVhYmLLZbI5lCxcuVID6/ffflVI6uOXn51cqCGGz2VT79u3VlVde6Vh2ZrAvNTVVubm5lQo6R0dHKxcXFzVmzBjHsqLX98cff1xi3TfffFMBatWqVUoppdauXasA9b///a/EejExMcrNzU09++yz53gUT7/ezrx+hw4dHEHhIhaLRdWvX79E4HPixInKaDSqjRs3lrj+Tz/9pAC1cOHCMm+3aJ+aOXOmMplMjtfBpk2bFOAIyJXlQoJ9L7/8con1yvu4paamKldXV3XDDTeUWG/16tUKKHewz83NrUQA0Wq1qpYtW6qmTZs6lhW9//3yyy+OZbGxscpsNpf6k+FMdrtdPfDAA8poNCpAGQwG1apVK/Xkk0+W2tevuuoq1a9fP8f5pk2bqmeeeUYZjUZHwGrWrFkKKBGALu5sz59S+j0RUEuXLi1xnaLnrX379iX2sY8++kgB6rrrriux/hNPPKGAswYui3vttdcUoP766y+llFJHjhxRBoNB3XHHHWWOoaxg35NPPlli3aLH4LvvvnMsi4yMVK6uriXed3Jzc5Wfn5964IEHzjo+q9WqLBaL6t+/f6nXkhBCiMuDTOMVQghR50ydOhU3NzduvfVWADw9PRk1ahT//vsvBw8evKhtF59mBrBs2TI8PDwYOXJkieV33XUXQKmplv369cPX17fUdpctW8Y111yDj48PJpMJJycnXn75ZZKTkys0tQzg77//xmq1cuedd2K1Wh0HV1dXevfuXWra8oVc98CBAxw+fJh77rkHV1fXCo2vuKioKJo3b15i2bJly+jfvz/h4eEllt91113k5OSwdu3aMreVl5fH0qVLueGGG3B3dy8x/iFDhpCXl1diKm1FLFiwgL59+xISElJiu9deey0AK1euLLH+0KFDMZlMJe4nwPHjxx3Lxo0bx4kTJ1iyZIlj2fTp0wkODnZsd82aNaSkpDB27NgSt2u32xk8eDAbN24sNX21yNq1a8nNzXW8FouEh4fTr1+/MqcB33bbbSXOjxkzBoDly5c7HgeDwcDtt99eYjzBwcG0b9/+nK+t4s7sMNqqVSsMBoPjfgOYzWaaNm1a4jFbsGABbdu2pUOHDiVuf9CgQaWm5G/dupXrrrsOf39/xz515513YrPZOHDgAABNmzbF19eX//znP3z55Zfs2bOnXOM/nzPfJ8r7uK1du5a8vLxSz0OPHj2IjIws9+3379+foKAgx3mTycQtt9zCoUOHHNOT+/TpQ/v27UtMcf/yyy8xGAzcf//959y+wWDgyy+/5MiRI3z++eeMGzcOi8XChx9+SJs2bUrsD/3792f16tXk5uZy/PhxDh06xK233kqHDh1YvHgxoKepR0RE0KxZM8f1yvP8FfH19aVfv35ljnXIkCGOacWgX2tAqWnERcujo6PPed+VUo6puwMGDAB0mYI+ffrw888/k5GRcc7rFznzOb755psxm82Ofa1Ihw4diIiIcJx3dXWlefPmJfYL0M9dp06dcHV1xWw24+TkxNKlS0tN2RdCCHF5kGCfEEKIOuXQoUP8888/DB06FKUUaWlppKWlOYJxZ9Y6qgh3d3e8vb1LLEtOTiY4OBiDwVBieWBgIGazmeTk5BLLGzRoUGq7GzZsYODAgYAufL969Wo2btzIiy++CFSsaQVAQkICAFdccQVOTk4lDnPnzi1RC+5Cr1tUWyosLKxCYztTWY9HcnJymctDQkIcl5clOTkZq9XKp59+WmrsQ4YMATjnfT+XhIQEfv/991LbbdOmTZnb9ff3L3HexcUFKPlcXnvttTRo0IDp06cDkJqaym+//cadd97pCBQWPR8jR44sddvvvPMOSilSUlLO+nhA2Y9xSEhIqcfRbDaXGndwcHCJbSUkJKCUIigoqNR41q1bV+7H18/Pr8R5Z2dn3N3dSwWOnZ2dycvLc5xPSEhgx44dpW7by8sLpZTj9qOjo+nVqxexsbF8/PHH/Pvvv2zcuNER2Cp6Hnx8fFi5ciUdOnTghRdeoE2bNoSEhPDKK6+Uqg1XEWc+5uV93Ioe56LHvbiylp3Nua5f/Hl//PHHWbp0Kfv378disfD1118zcuTIct9WZGQkDz30EFOnTuXgwYPMnTuXvLw8R61OgGuuuYb8/HxWrVrF4sWLCQgIoGPHjlxzzTWOQPfSpUu55pprHNcp7/NXpKzXeJGyXmvnWl789VaWZcuWcfToUUaNGkVGRobjM+bmm28mJyeHOXPmnPP6Rc58jIv2vzP3yzP3SdDvJ8Ufgw8++ICHHnqIrl278vPPP7Nu3To2btzI4MGDpQmUEEJcpszVPQAhhBCiMk2bNg2lFD/99BM//fRTqcu/+eYb3njjDUwmkyOwcGYjjbMFLM4M6IH+IbZ+/XqUUiUuT0xMxGq1EhAQcN5tfP/99zg5ObFgwYISwY758+ef/Y6eQ9Ft/vTTTxXKBqrIdYs64BZlCV2osz2mJ0+eLLU8Li6uxBjP5Ovri8lk4o477uCRRx4pc51GjRpd0DgDAgKIiorizTffLPPyokBkRRSN9ZNPPiEtLY3Zs2eTn5/PuHHjStwuwKeffkq3bt3K3E7xDK7iioIEZ3ssz3wcrVYrycnJJYIL8fHxJbYVEBCAwWDg33//dQQwiytrWWUKCAjAzc3trEH7ovs0f/58srOzmTdvXonX8bZt20pdp127dnz//fcopdixYwczZszgtddew83Njeeee+6s7xNnCzpD6dd1eR+3ose56HEvLj4+noYNG571Ns9c92zLij+/Y8aM4T//+Q+TJk2iW7duxMfHn3XfKY+bb76ZiRMnsmvXLseyrl274unpyZIlSzh27Bj9+/fHYDDQv39//ve//7Fx40aio6NLBPsq8vxB2e8jVaWo+dMHH3zABx98UOblDzzwwHm3Ex8fT2hoqON8WftfeX333Xf06dOHL774osTyzMzMCm9LCCFE3SDBPiGEEHWGzWbjm2++oUmTJkyZMqXU5QsWLOB///sff/75J8OGDXP8cN6xYweDBg1yrPfbb7+V+zb79+/PDz/8wPz587nhhhscy2fOnOm4/HwMBgNms7nEtM/c3Fy+/fbbco+juEGDBmE2mzl8+HCp6YSVdd3mzZvTpEkTpk2bxvjx488a5Ckro+18+vfvzy+//EJcXFyJINrMmTNxd3c/a9DL3d2dvn37snXrVqKiohyZOpUxrmHDhrFw4UKaNGlS5jTsCzVu3Djeffdd5syZw4wZM+jevTstW7Z0XN6zZ0/q1avHnj17ePTRRyu07e7du+Pm5sZ3333HqFGjHMtPnDjBsmXLSk09B5g1axaPP/644/zs2bMBPeUT9OPw9ttvExsby80331yh8VSGYcOG8dZbb+Hv73/OwG1R8Kf461Ipxddff33O67Rv354PP/yQGTNmsGXLFkAHU11dXdmxY0eJ9X/99dcKjbs8j1u3bt1wdXVl1qxZJfa/NWvWcPz48XIH+5YuXUpCQoIjEGyz2Zg7dy5NmjQpkY3r6urK/fffz2effcaaNWvo0KEDPXv2PO/2T548WWY2XVZWFjExMSX2WycnJ66++moWL15MTEwMb7/9NgC9evXCbDbz3//+1xH8K3Ihz9+lkJqayi+//ELPnj154403Sl0+ZcoUZs2axa5du2jbtu05tzVr1iw6d+7sOP/DDz9gtVod+1pFGAyGUu/BO3bsYO3ataXKIQghhLg8SLBPCCFEnfHnn38SFxfHO++8U+YPprZt2/LZZ58xdepUhg0bRnBwMNdccw0TJ07E19eXyMhIli5dyrx588p9m3feeSeTJk1i7NixHDt2jHbt2rFq1SreeusthgwZUiJb5WyGDh3KBx98wJgxY7j//vtJTk7m/fffv+AsqYYNG/Laa6/x4osvcuTIEQYPHoyvry8JCQls2LABDw8PJkyYcNHXnTRpEsOHD6dbt248+eSTREREEB0dzd9//82sWbMAnTUF8PHHHzN27FicnJxo0aIFXl5eZx3/K6+84qiR9/LLL+Pn58esWbP4448/ePfdd/Hx8TnrdT/++GOuuuoqevXqxUMPPUTDhg3JzMzk0KFD/P777yxbtgyAJk2a4ObmxqxZs2jVqhWenp6EhIScNUPvtddeY/HixfTo0YPHH3+cFi1akJeXx7Fjx1i4cCFffvnlBU1pbtmyJd27d2fixInExMQwefLkEpd7enry6aefMnbsWFJSUhg5ciSBgYGcOnWK7du3c+rUqVLZPEXq1avHSy+9xAsvvMCdd97J6NGjSU5OZsKECbi6uvLKK6+UWN/Z2Zn//e9/ZGVlccUVV7BmzRreeOMNrr32Wq666ipABx/vv/9+xo0bx6ZNm7j66qvx8PDg5MmTrFq1inbt2vHQQw9V+HEoryeeeIKff/6Zq6++mieffJKoqCjsdjvR0dEsWrSIp556iq5duzJgwACcnZ0ZPXo0zz77LHl5eXzxxRekpqaW2N6CBQv4/PPPGTFiBI0bN0Ypxbx580hLS3PUYyuqtTdt2jSaNGlC+/bt2bBhgyMQWh7lfdx8fX15+umneeONN7j33nsZNWoUMTExvPrqqxWaxhsQEEC/fv146aWX8PDw4PPPP2ffvn18//33pdZ9+OGHeffdd9m8eXOZf5KU5c0332T16tXccsstdOjQATc3N44ePcpnn31GcnIy7733Xon1+/fvz1NPPQXgeE90c3OjR48eLFq0iKioKAIDAx3rl/f5u9RmzZpFXl4ejz/+eJmfMf7+/syaNYupU6fy4YcfnnNb8+bNw2w2M2DAAHbv3s1LL71E+/btLyiIPmzYMF5//XVeeeUVevfuzf79+3nttddo1KgRVqu1wtsTQghRB1RPXxAhhBCi8o0YMUI5OzurxMTEs65z6623KrPZ7OhUefLkSTVy5Ejl5+enfHx81O233+7o0HlmN14PD48yt5mcnKwefPBB1aBBA2U2m1VkZKR6/vnnVV5eXon1APXII4+UuY1p06apFi1aKBcXF9W4cWM1ceJENXXq1FKdbMvTjbfI/PnzVd++fZW3t7dycXFRkZGRauTIkWrJkiWOdc7sxluR6yqlu4xee+21ysfHR7m4uKgmTZqU6jL5/PPPq5CQEEfnzqLux5GRkWro0KFljn3nzp1q+PDhysfHRzk7O6v27duX6oZa1OlyxowZpZbffffdKjQ0VDk5Oan69eurHj16qDfeeKPEenPmzFEtW7ZUTk5OpbqqluXUqVPq8ccfV40aNVJOTk7Kz89Pde7cWb344osqKyurxJjee++9Utc/221MnjzZ0UH1bJ1AV65cqYYOHar8/PyUk5OTCg0NVUOHDlU//vijY50zu/EWmTJlioqKilLOzs7Kx8dHXX/99Y7uwUWKXt87duxQffr0UW5ubsrPz0899NBDjvtW3LRp01TXrl2Vh4eHcnNzU02aNFF33nmn2rRp0zkfw6LX26lTp8q8/TP17t1btWnTpsSyrKws9d///le1aNHCcZ/atWunnnzyyRIdaH///XfVvn175erqqkJDQ9Uzzzyj/vzzzxKvwX379qnRo0erJk2aKDc3N+Xj46OuvPLKUq+p9PR0de+996qgoCDl4eGhhg8fro4dO3bWbrxn3r+KPG52u11NnDhRhYeHK2dnZxUVFaV+//33cu/7Re8zn3/+uWrSpIlycnJSLVu2VLNmzTrrdfr06aP8/PxUTk7OebevlFLr1q1TjzzyiGrfvr3y8/NTJpNJ1a9fXw0ePLjMjsjbt29XgGrWrFmJ5UXdnsePH1/qOuV5/pQq+zWi1Nn3xaIuxMX3HaVO7z9ndnourkOHDiowMFDl5+efdZ1u3bqpgIAAlZ+ff85uvJs3b1bDhw9Xnp6eysvLS40ePVolJCSU2NbZ3iPPfC3k5+erp59+WoWGhipXV1fVqVMnNX/+fDV27FgVGRl51rEKIYSouwxKKXXpQotCCCGEEJVj+/btdOjQgd9//71Ud1dRMXfddRc//fQTWVlZ1T0UcYklJiYSGRnJY489xrvvvlvdw6nzXn31VSZMmMCpU6fOWn9UCCGEuFgyjVcIIYQQtc7y5cuZMmUKzs7OdOrUqbqHI0Stc+LECY4cOcJ7772H0Wjk//7v/6p7SEIIIYSoJMbqHoAQQgghREUNGDCADRs2MH369AvqhCvE5W7KlCn06dOH3bt3M2vWrBKdYYUQQghRu8k0XiGEEEIIIYQQQggh6gjJ7BNCCCGEEEIIIYQQoo6QYJ8QQgghhBBCCCGEEHWEBPuEEEIIIYQQQgghhKgjJNgnhBBCCCGEEEIIIUQdIcE+IYQQQgghhBBCCCHqCAn2CSGEEEIIIYQQQghRR0iwTwghhBBCCCGEEEKIOkKCfUIIIYQQQgghhBBC1BES7BNCCCGEEEIIIYQQoo6QYJ8QQgghhBBCCCGEEHWEBPuEEEIIIYQQQgghhKgjJNgnhBBCCCGEEEIIIUQdIcE+IYQQQgghhBBCCCHqCAn2CSGEEEIIIYQQQghRR0iwTwghhBBCCCGEEEKIOkKCfUIIIYQQQgghhBBC1BES7BNCCCGEEEIIIYQQoo6QYJ8QQgghhBBCCCGEEHWEBPuEEEIIIYQQQgghhKgjJNgnhBBCCCGEEEIIIUQdIcE+IYQQQgghhBBCCCHqCAn2CSGEEEIIIYQQQghRR0iwTwghhBBCCCGEEEKIOkKCfUIIIYQQQgghhBBC1BES7BNCCCGEEEIIIYQQoo6QYJ8QQgghhBBCCCGEEHWEBPuEEEIIIYQQQgghhKgjJNgnhBBCCCGEEEIIIUQdIcE+IYQQQgghhBBCCCHqCAn2CSGEEEIIIYQQQghRR0iwTwghhBBCCCGEEEKIOkKCfUIIIYQQQgghhBBC1BHm6h6AKJvdbicuLg4vLy8MBkN1D0cIIYQQQgghhBBCVBOlFJmZmYSEhGA0njt3T4J9NVRcXBzh4eHVPQwhhBBCCCGEEEIIUUPExMQQFhZ2znUk2FdDeXl5AfpJ9Pb2rubRVA6LxcKiRYsYOHAgTk5O1T0cIWo92aeEqHyyXwlRuWSfEqLyyX4lROWqLftURkYG4eHhjnjRuUiwr4Yqmrrr7e1dp4J97u7ueHt71+gdSIjaQvYpISqf7FdCVC7Zp4SofLJfCVG5ats+VZ5Sb9KgQwghhBBCCCGEEEKIOkKCfUIIIYQQQgghhBBC1BES7BNCCCGEEEIIIYQQoo6QYJ8QQgghhBBCCCGEEHWEBPuEEEIIIYQQQgghhKgjJNgnhBBCCCGEEEIIIUQdYa7uAQghhBBCCCEuXwVWOwcSMtl7MoNGAR50aehX3UMSQgghajUJ9gkhhBBCCCEuiXyrjQPxWeyMTWdnbDq749LZdzKTApvdsc5dPRry/JCWuJhN1ThSIYQQovaSYJ8QQgghhBCi0uVZbOw+kc6qeAOr5+9m98lMDiRkYrGpUut6u5ppEujJ1ug0Zqw5xpboVD4b3YkIf/dqGLkQQghRu0mwTwghhBBCCHFR8iw29p7MYFdhxt7O2AwOJmRitSvABEdjHevWc3eiXagPbUJ8aBeqD+F+bhgMBpbtS2D8D9vZcSKdoZ/+y3sjoxjctkH13TEhhBCiFpJgnxBCCCGEEKLccgts7CkW2NsVm87BxCxs9tIZe77uTgQ55dOnfRPah/vSNtSHMF8d2CtLv5ZBLHy8F4/O3sKW6DQe/G6LTOsVQgghKkiCfUIIIYQQQogyZedb2Xsyw1Fjb1dsOocSsygjrkeApzNtQ31oG+JD21Af2oX5UN/dxJ9//smQAc1wcnIq122G1HNj7gPdeX/Rfr5aeUSm9QohhBAVJME+IYQQQgghBFn5VvbEZTiCejtj0zl8KgtVRmCvvpcL7UJ9aBvi7QjsBXu7lsrYs1gsFzQWJ5OR569tRddGfjKtVwghhKggCfYJIYQQQghxmcnMs7ArNoPdcemOrL2jSdllBvaCvF1K1tgL8yHI2/WSjFOm9QohhBAVJ8E+IYQQQggh6rD0XAu7Y9PZFacbZ+wqDOyVpYGPq2MqbrswnbUX6HVpAntnU9a03q3RqXw2phPhfjKtVwghhDiTBPuEEEIIIYSoI9JyCtgVm1EY2NPTcY8n55S5bmg9N9qGeusae2E6ay/A0+USj7h8zpzWu/1EOkM++Zf3RrZncNvg6h6eEEIIUaNIsK+YV199lQkTJpRYFhQURHx8PABKKSZMmMDkyZNJTU2la9euTJo0iTZt2jjWz8/P5+mnn2bOnDnk5ubSv39/Pv/8c8LCwi7pfRFCCCGEEHVbanaBYwpu0XTcmJTcMtcN83XTNfaKDiHe+NfQwN65lJ7Wu1mm9QohhBBnkGDfGdq0acOSJUsc502m018a3n33XT744ANmzJhB8+bNeeONNxgwYAD79+/Hy8sLgCeeeILff/+d77//Hn9/f5566imGDRvG5s2bS2xLCCGEEEKI8krOyndk6u2K1U00YtPKDuxF+LkXC+zpzD1fD+dLPOKqU9a03t1x6Xx7T1dcneT7thBCCCHBvjOYzWaCg0tPBVBK8dFHH/Hiiy9y4403AvDNN98QFBTE7NmzeeCBB0hPT2fq1Kl8++23XHPNNQB89913hIeHs2TJEgYNGnRJ74sQQgghhKh9TmXmO7rh7oxNZ3dsOnHpeWWu29DfXXfDdWTs+eDj7nSJR3zpFZ/W+8T329h4LJUXftnJ/0a1L9URWAghhLjcSLDvDAcPHiQkJAQXFxe6du3KW2+9RePGjTl69Cjx8fEMHDjQsa6Liwu9e/dmzZo1PPDAA2zevBmLxVJinZCQENq2bcuaNWvOGezLz88nPz/fcT4jIwMAi8WCxWKpgnt66RXdj7pyf4SobrJPCVH5ZL8Sl1piZj674jLYHZuhj09mkJCRX+a6jfzdaRPiTdtQb9o08KZ1Ay+83UoH9mrS67eq96leTfz4bHR7xn2zhXlbYmkZ5Mm4HpFVcltC1BTyWVVzKaWw2RVmk7G6hyIqoLbsUxUZnwT7iunatSszZ86kefPmJCQk8MYbb9CjRw92797tqNsXFBRU4jpBQUEcP34cgPj4eJydnfH19S21TtH1z2bixIml6gUCLFq0CHf3utVlbPHixdU9BCHqFNmnhKh8sl+JyqIUZFshOR9S8g2k5EFyvoGUfIjNNpBhKZ2FZkAR6AZhHopwD0W4pyLMHVzNGUAGpENKOqzad+nvz4Wq6n3quggDvxwz8faf+0g7vocWPqpKb6+uKrDBpiQDZgNcUV8hSZI1m3xW1RyZFth0ysD6RCPxudDBX3FDQzs+daeCwmWhpu9TOTllN9wqiwT7irn22msdp9u1a0f37t1p0qQJ33zzDd26dQMoNS1AKXXeqQLlWef5559n/PjxjvMZGRmEh4czcOBAvL29K3pXaiSLxcLixYsZMGAATk51f3qJEFVN9ikhKp/sV6XlW+1sP5HGxmNp7D2Zwegrw+nZxL+6h1VjKKXIyLNyIjVXH9JyiS08PpGaS2xaHjkFtrNe32iAxgEetA3xpk2oN21DvGkZ7IWnS934mn6p9qlrlYJfdvPL1jhmH3Xl5we7EuFXN/4wT8rKJyY1l6hQH0zGqom+peYU8N36GL5dF01qjs4cSXIJZOINbfFyrRuvxbpEPqtqBovNzj8Hkvh5axzL95/Caj/9J8PWZAMHs5x5emAzRncJw1hF+66oHLVlnyqaAVoe8s59Dh4eHrRr146DBw8yYsQIQGfvNWjQwLFOYmKiI9svODiYgoICUlNTS2T3JSYm0qNHj3PelouLCy4upTuiOTk51egX24Woi/dJiOok+5QQle9y3q9yC2xsjU5l3dEU1h9JZmtMGgVWu+PyNYdTWPh/vQivI4GU4pRSZBfYSM0uIC3HQkpOAWk5BaRmF5CSY9GnC49TCtdJzSk4ZzCvSKCXC+F+7oT5uhUe3GkW6EnrEG/cnev+V/JLsU9NvDGKI0k5bI9J4+HZ25n3cA88annQNDW7gJu+XE9ceh4hPq7c1DmMkZ3DiPT3qJTtx6blMuXfI3y/IYZci34dh9ZzIzEzj7/3JHLw1Hq+ur0zzYK8KuX2ROW6nD+rqtOBhEx+3BTDL1tjScoqcCxvH16PUZ3DaB7kxZt/7GH7iXRe/X0vv24/yVs3tKNVg7qRxFOX1fR9qiJjq92fflUsPz+fvXv30qtXLxo1akRwcDCLFy+mY8eOABQUFLBy5UreeecdADp37oyTkxOLFy/m5ptvBuDkyZPs2rWLd999t9ruhxBCCCHE2WTnW9l8PJX1R5NZfySF7SfSsNhKToEM8HSmayN/jiZls+dkBo/O2cpPD3bHqQbXJLLbFRl5FlILA3Kp2SUDdamO4F0Bqdl6nbQcCwU2+/k3XoYATxdHIO90UM+dcF83Quq5SZfYS8DVycRXt3dm+Ger2J+QydM/bufz2zrV2oYdSime/nG7ozlLXHoeny47xKfLDtG1kR+juoQzpF3wBQWLDyZk8uXKI/y6LdaRjdSqgTcP9WnCkLbB7IxN5+FZWzhyKpvrJ63m3ZFRDIsKqdT7J0Rtkp5r4fftcfy4+QTbY9IcywM8nbmhYyijuoTTvFhQfN7DPflu3XHe+3s/W6PTGPbpKu7t1Yj/69/ssviDR1Q/eZUV8/TTTzN8+HAiIiJITEzkjTfeICMjg7Fjx2IwGHjiiSd46623aNasGc2aNeOtt97C3d2dMWPGAODj48M999zDU089hb+/P35+fjz99NO0a9fO0Z1XCCGEEKK6bYlO5e/d8aw/ksLO2HRs9pLBvSBvF7o28qdrYz+6NvKnSX0PDAYDJ1JzGPLxv2yPSeP9v/fz/JBWl2S8FpudtGKZdTqrrqDsQF5h0C4tpwD7BZZtczYb8XV3wtfdWR88Tp+u5+6En8fp077uzgR5u+LmLMG8miDYx5Uvb+/M6Mnr+HNXPJ8tO8Rj/ZtV97AuyNRVR1m6LxFns5G593fjRGouP24+wb8HT7H+aArrj6bwyq+7GBYVws1XhNEpwve8gc3Nx1P4YsVhluxNdCzr1tiPh/o05epmAY7rd4zw5ffHruLxOVtZcziZR2dvZWt0Gs9d27JGB/mFqEx2u2L14SR+3HSCv3fHk1+Y5W42GujXMpBRXcLp06J+mfuEyWhgbI+GDGoTzITfd/Pnrni+WnmEP3ac5PURbenbIvBS3x1xmZFgXzEnTpxg9OjRJCUlUb9+fbp168a6deuIjNQdvZ599llyc3N5+OGHSU1NpWvXrixatAgvr9MR/A8//BCz2czNN99Mbm4u/fv3Z8aMGZhM8gVQCCGEENVvxf5Exs3YiCoWCAut50bXxn50a+TPlY38iPR3LzNoEObrzrsjo3jwuy189c8RujXxr7IfLKsOJvHGH3uITcslM896wdvxcDZR74yAna+7E74eZQfv/DyccXMy1dpsMAGdI315fUQb/vPzTv63+AAtG3gzoHXQ+a9Yg2yNTuXtP3UHlpeGtaZjhC8dI3wZ3j6EuLRc5m05wY+bT3A8OYe5m2KYuymGxvU9GNU5nBs7hRLk7erYllKK5fsT+WLFYTYeSwXAYIBBrYN5sE8TOoTXK3MMAZ4uzLz7Sv63+ABfrDjM1FVH2Xkinc9u60igl2uZ1xGirlixP5EXf9lFbFquY1mLIC9GdQljRMdQAjxLl+AqS7CPK1/c3pklexJ45bfdnEjNZdz0jQyNasArw1oT6C37kqgaBqWUtKqqgTIyMvDx8SE9Pb1ONehYuHAhQ4YMqdHz4IWoLWSfEqLy1fX9KjPPwsAP/+Fkeh69mgUwokMoXRv7EeZbsfp7L/+6i5lrj+Pn4cyf/9erRGChMqw7kszYaRscWRRFfNyc8HV3op67M34epzPrip8unolXz90JF7P84VqdqnOfKnqderqYmf9ID5oG1o66c+k5FoZ88i+xabkMaRfMpDFlT0VWSrHxWCo/bIph4c6TjtqRRgP0bl6fUV3Cybfa+HLFEfYnZALgZDJwY8cw7u/dmCb1Pcs9pr92xfP0j9vJyrcS6OXCpNs6cUVDv8q5w6LC6vpnVXWy2ux8tOQgny0/BIC3q5nrO4QyqksY7UJ9LuqPoOx8Kx8vPcjUVUex2RVeLmaevbYlt10ZIQ08qllt2acqEieSzD4hhBBCiMvEWwv3cTI9j0h/dybf0eWCp56+MKQVm46lsudkBk98v43v7u1aaV1Ct8Wkcc+MjeRb7fRrGcgLQ1ri6+6Mj5sTZpk+KCrgpWGt2R+fyfqjKdw3czPzH+mJj1vN/REHOoD37M/biU3LJdzPjbdvijprcMFgMHBlIz+ubOTHq9e1YeGOk/y4OYaNx1JZvv8Uy/efcqzr6WLmtq4R3H1VowsKzg9uG0zzIE8e/G4zBxKyGD15HS8MacW4ng0lC1bUGYmZeTw+ZyvrjqQAcGf3SF4Y0qrSaq56uJh5YUgrru8Qwgu/7GJ7TBovzd/Fz5tP8NYN7WgdUjeSfETNIN+YhBBCCCEuA6sPJTFnQzQA79wUdVE15lydTHw6piPuzibWHklmUmEGxMXaezKDsdM2kF1go3tjfz6/rRNNA73w93SRQJ+oMCeTkc9v60RoPTeOJmXz+JytpepT1jQz1x7n790JOJkMTBrTCW/X8gUnPV3M3HxFOD8+2INlT/Xm4T5NCPFxJdjblWcGtWD1c/14fkiri8rCbVzfk18e7sl17UOw2hWvLdjD499vIzv/wqfZC1FTrDuSzNBPVrHuSAoeziY+Hd2R165vWyXNldqE+DDvoR68dn0bPF3MbItJY/hnq5i4cC95lvN3dxeiPORbkxBCCCFEHZedb+U/P+8A4I5ukXRr7H/R22xS35PXr28LwEdLDrD+SPJFbe/IqSzumLqe9FwLnSLqMWVsF+lgKy6av6cLX93RGVcnIysPnOK9v/df1PZyC2z8tj2Ob9ceo8B6YZ2bz2ZXbDpv/rEXgOevbUVUWL0L2k7j+p48O7gla57vz7oX+vNI36aVltHo4WLm41s78Mrw1piNBn7fHseISas5fCqrUrYvxKVmtysmLT/EmK/XcSoznxZBXvz22FUMb1+13adNRgN3dm/I0qd6M6RdMDa74qt/jvDE99tq/J8SonaQYJ8QNZzdrjiUmMmcDdGM/2EbAz9cycOzNrM1OrW6hyaEEKKWePevfZxIzSW0nhv/ubZlpW33ps5h3NgpFLuC//t+G6nZBRe0nZiUHG6bsp6krAJaN/Bm+rgr8XCRajOicrQN9eG9ke0B+HLlYX7dFluh61ttdlbsT+TJudvo/MZiHp+zlZd+3c2tk9dyMj33/Bsoh8w8C4/M3kKBzc6A1kGM69mwUrZbFQwGA+N6NuL7+7sR6OXCwcQsrv9sNX/tiq/uoQlRIWk5Bdw7cxPv/b0fu4KbOoUx/5GeFapnebGCvF35/LbOfHVHZ5xNRv7aHc9bC/destsXdZd8ixKihsm32tgVm87GY6lsOpbCpuOppOVYSqxzICGLhTvjubKRHw/2bkzfFoFSL0UIIUSZNhxN4Zu1xwF4+6Z2eFZyEO3169uyLSaNI6eyefrH7UwZ26VCn0mJGXncPnU9J9PzaFLfg2/vubLG11UTtc/w9iHsjsvgy5WH+c/PO2hS35O2oT5nXV8pxfYT6czfGsuCHXEkZZ0OZIf7uZGWY2FLdBpDP1nFx7d2oFez+hc8NqUUz83byfHkHELrufHeyLPX6atJujT0Y8HjV/Ho7K1sOJrCg99tZvSVEYzr2ZDmQbWjGYq4fG2LSeORWVuITcvFxWzktevbcHOX8Grb9wa1Ceb9m9vz+JytTF11lDBfN8b1bFQtYxF1gwT7hKhm6TkWNkenOIJ720+kl5oW4upkpEN4Pa5o6EebEB+W7k1g/rZYNhxNYcPRFFoEeXH/1Y0Z3j4EZ7Mk7AohhNByC2w8+9N2AG69IvyiAhJn4+Fi5tPRHbnh8zUs3ZfItNXHuOeq8v1AScku4LYp6zmenEO4nxuz7u2Gv6dLpY9RCIBnBrVgX3wGK/af4oFvN/Proz0JOOP1djQpm/lbY/l1WyzHknMcy/08nBkW1YDrO4TSKaIeMSm5PDRrM7vjMrhz2gaevKY5j/ZtekEdNWdviOaPHScxGw18OqYj9dydL/q+XiqBXq7Murcr7/y5jymrjjJnQzRzNkTTKaIet14ZwbCoBrg7y09OUXMopZi59jhv/LEHi03R0N+dz2/rXCOaY1zXPoTY1Fze+Wsfry3YQ0g9Nwa1Ca7uYYlaSt55hagGhxKz+G7dcdYeTmZ/Qmapy/09nOnS0JcrGvrROdKXNiE+JYJ4g9sG89TAFkxbfZTZ66PZn5DJUz9u5/1F+7nnqkbcemXERWduWGx29sdncjw5hysb+VHfS358CSFEbfPB4v0cS84h2NuVF4a2qrLbaRPiw3+HtuLlX3fz9p97uaKh73nrjWXkWbhz2noOJmYR7O3K7Hu7Eexz4c0DhDgfk9HAx7d2ZMSk1RxNyubhWVuYdW9X0nIs/L49jl+3xbL9RLpjfTcnEwPbBDGiQyhXNQvAqViTmAh/d35+qAcTft/NnA0xfLD4AJuPp/LRLR3w9Sh/sG7vyQwm/L4HgGcHt6BThG/l3eFLxMlk5L/DWtOvZSDfrD3G0r2JbIlOY0t0Gq//vofrO4Zw6xUR58ykFOJcbHbF0r0J/LotDhcnIy2DvWgR7E3LYC8CvVzKnY2XVVi/9o8dJwG4tm0w74yMKncjnEvhwd6NOZGaw6z10Tw+Zytz7u9WK98XRPWTYJ8Ql9Dm46l8ufIwi/cklFjeKMCDLpE6uNeloS+NAjzO+6EV7OPKC0Na8UjfpsxeH8201Uc5mZ7HG3/s5ZOlB7mjeyR39WhUriCdUorjyTlsP5HGtpg0tseksTsug/zCDEMPZxMP923KPVc1kmLpQghRS2yJTmXqqqMATLyxXZX/mLmjWySrDyXx9+4EHpuzlQWPXYXXWW4zp8DK3dM3sis2A38PZ767tyvhfu5VOj4hAHzcnPj6zs6MmLSGDUdTGPTRPxxLyqaoHr7JaOCqpgHc0DGUAa2Dzlk70tXJxMQbo+gc6ceLv+xk5YFTDP3kXz6/vTMdwuuddyzZ+VZdp89qp2+L+tx7VeNKupfVo0fTAHo0DSAxM4+fNp9g7sYYjifn8N26aL5bF027UB9uvTKc69qHnPW9QYjiUrILmLsxhu/WHSc2rez6mPXcnWgR5OUIALYI9qJFsFepxId98Rk8/N0WjiRlYzYaeH5IK+7u2bDGTZk3GAxMuK4NJ9PzWLYvkXu/2cQvD/cg0t+juocmahmDUkpavdRAGRkZ+Pj4kJ6ejrd39acUVwaLxcLChQsZMmQITk6Xzwe83a5Yvj+Rr1YeYcOxFMfya1oFMbJzKJ0jKydrLs9iY/7WWCb/c4QjSdkAOJuNjOwcxn29GtMo4PQHxKnMfHac0EG9bSfS2XEirVRdQABvVzP+ni4cLdxeUWH34VENatwH4+Xoct2nhKhKdWW/yrPYGPrJvxw+lc2NnUL54OYOl+R203MsDPnkX2LTcrmufQgf39qh1OdFnsXGvd9sYtWhJLxdzcy5vxttQiTjp66qqfvUkj0J3PftJop+CXUIr8eIDiEMax9Sampveew9mcFD323mWHIOTiYDLw1rzR3dIs/6fUkpxfgftvPL1liCvV1Z+H+98KtARmBtYLcr1h1JZs7GGP7eFU+BTf+J7O5sYlhUA0ZfGUGH8HrynfIC1NT9qrLsPJHON2uP8dv2OEd5I193J27uEo67s5n9CRnsi88sEag/U5ivGy0Ls//cnE18uuwgeRY7DXxc+WxMJzpH1uxsuex8K7dOXsfO2HQaBXjw80M96tx7RE1SW/apisSJJLNPiCpSYLXz2/Y4Jv9zmAMJWQA4mQyM6BDKA70b0zSwcgsXuzqZuPXKCG7uEs6iPQl8ufIw22LSmL1e104Z2DoIs9HItpi0Mv8ZczYbaRPiTfuwenQIr0f78Ho09HdHKfh9Rxzv/LmP2LRcHp+zlemrj/LSsNaSUi6EEDXUJ0sPcvhUNvW9XHh5WOtLdrs+7k58MrojN3+1lt+2x9GzqT+3XBHhuNxis/Po7K2sOpSEu7OJGXdfKYE+US2uaR3EF7d15mhSNte2DaZhwMVlzbRq4M1vj13Fsz/u4K/d8bz86242HUtl4o3tyswO/HHzCX7ZGovJaOCT0R3r5I94o9HgyPZLyS5g3pYTzNkQzeFT2fyw6QQ/bDpBy2Avbr0inO5NAojwc8fNWWaQXK7yrTb+3BnPN2uPsTU6zbG8bag3Y7s3ZHj7kFIzjPIsNg4lZrEvPpP98RmFx5kkZuZzIjWXE6m5LNl7ekbV1c3r89EtHWrF/ubhYmbqXV24YdIajiZlc9/MTcy6t6vMshLlJsE+ISpZVr6V7zdEM3WVnlYL4OliZkzXCO7u2ajK6xEZjQYGtw1mUJsgNh5L5auVh1m6L5G/d5/+oDMYoGl9T9oXBvU6hNWjRbBXmc09DAa4vkMoA1sHM+XfI3yx8jBbo9O48fM1XNc+hGcHtyDMV6ZeidrBblfYlcJskkY2ou7aeSKdr/45AsAbI9pe8mL/nSN9eXpgC975ax+v/LabThG+NAvywmZXPPXDdpbsTcDZbGTKnV3kTyNRrQa3rdzC996uTnxxeyemrjrKxD/38dv2OPaczODL2zuV+JP3QEImL/+6C4DxA5pzZSO/Sh1HTeTn4cy9vRpzz1WN2HQ8lTmFTUn2xWfyamHNQoBgb1ci/d1p6O9BROFxpL87kf7uMvW3jjqZnutITijqeu1kMjC0XQPu7NGQjufI/nR1MtE21KdUPcjU7AJHAHB/QibRKTn0bq6nyl9IE53qEujlyoxxV3DTF2vYfDyVJ+duY9KYTrXqPojqI8E+ISrJqcx8Zqw5yrdrj5ORZwUgwNOFu69qyG1dI/Fxu7RfUAwGA1c28uPKRn7sj8/kl62x+Lg50T7ch3ahPhX+wuTmbOKx/s24+Ypw3v97Pz9tOcFv2+P4e3c89/ZqxEN9ml50UxAhysNis/PXrng2HUsh12Ij32onr/A432Inz2orcZzvOLZTYLPjZDLQrbE/A1sHMaB1sDQEEHVKgdXOMz9tx2ZXDItqUG1d/B64ujFrDifx78EkHp29lfmP9GTC77v5bXscZqOBL2/vRI+mAdUyNiGqksFg4N5ejWkfXo9HZ2/hUGIW1322mok3tuP6DqHkFth4ZNYW8ix2ejUL4KHeTap7yJeUwWDgioZ+XNHQj1eGt+HXbbH8ui2OAwmZZOZZic/IIz4jj/VHU0pdN8DTmUh/DyL93In096BhgDvdGvsT5C2f47WNUor1R1OYufYYf+9OwFY4FzfI24Xbu0Zy65URF1XmyNfDme5N/OnexL+yhlxtmgV5MfnOLtw5dQN/7opn4p97eXHopcvYF7WX/DIX4gJZbXay823EZ+Qxc+0xftx8wlFTolGAB/df3ZgbOobWiFTrFsFePHdty0rZVpC3K++Nas/YHg154489rDuSwqTlh5m78QRPD2zOqC7hmOTfJlEFUrILmLMhmm/XHic+I++Ct2OxKf49qIMQL/26m/ZhPgxsE8yA1kE0C/SU2kGiVpu0/BD74jPx93BmwnVtqm0cRqOBD27uwJBP/mV/QiaDP/6H48k5GA3w8a0d6dcyqNrGJsSlcEVDPxY81ov/+34raw4n83/fb2Pz8VSy820cTMyivpcLH9zc4bLO0PFxc+LO7g25s3tDlFKk5Vg4lpzN8eScwkO243xydgFJWfqw+XiqYxtGA/RsGsDIzmEMbB0s04BruMTMPH7bFsePm06wPyHTsfzKRn7c1aMhA1oHleh6LbRujf15b1QU//f9Nr7+9yih9dy4q2ej6h6WqOEk2CfqjLScApbvT2T1oWTyrXbMRgMmo8Fx7GQyljivj42YTafP51lsZBfYyM63kp1feFxgJTvfSk6Bjaxix0WBveLah9fjod6NGdA6uM4HvNqG+jDnvm4s2pPAxIV7OZacw3PzdvLN2uO8NLSVZGyISrMvPoPpq44xf1uso0N0fS8Xrm8fgq+HMy5mI65OJlzMRlycTLiecVzicrOR1JwCluxNZNHueLbGpLH9RDrbT6Tz3t/7aejvzsA2wQxsHUTHCN86vx+LumVPXAaTlh8CYML1bfC/gCYDlam+lwsf3dKB26eu53hyDgDv3BTF0KgG1TouIS6V+l4ufHtPVz5YvJ9Jyw8zc+1xgMKgd4dKadBWVxgMBnw9nPH1cKZjGdP7M/IsRBcGAXUAMJv98ZlsP5Hu+APP08XMkHbB3NQpjCsa+l3WgdSaJLfAxqI98czbEsu/B085Gmq4OZkY0TGUO7tH0qpB3WhIWZWu7xBKbFou7/61nwkL9hBSz42B1ZS9L2oHCfaJWu1oUjZL9iSweG8Cm4+nOlLALyVns5GeTfx5oHcTujbyu6yyggwGA4PaBNO3RSAz1x7jk6UH2XsygzFT1tO/ZSDXdwylc6QvofXcqmwMNrvi8KksCqx22oR4X1aPf11msyuW7k1g+upjrD2S7FgeFebDuJ4NGdoupMwak+Xh7+lC00AvHuzdhMTMPJYWBv5WH0rmWHIOk/85wuR/juDv4cw1rYIY2CaInk0DakSWrhBnY7Hp6btWu2JQmyCGtqsZAbWeTQP4z+CWTFp2iGcHt2BUl/DqHpIQl5TJaOCZQS3pFOHLk3O3kZFn5bF+zejRRP4UrQhvV6cya7MdT85m3pZY5m09QUxKrqPxR7ifGzd0DOOmTqFE+l9c85XaIrfARkaehQBPl2r/s9JuV6w7msy8LbH8tSuerHyr47KOEfW4sVMY10WF4OMudRgr4qHeTYhJyWXOhmge/34rc+7rVmZwXAgAg1Lq0kdHxHlVpKVybVEZ7axtdsWW6FSW7E1gyZ4EDp/KLnF5y2Av+rcKJMDTBatNYbUrbHZ74bE+b7WVPG8rtp6L2YS7iwlPFzPuzmY8XUy4O5vxcDHrZY7LTq9zoQGHuiglu4CPlxzgu/XRJQKvDXxc6RTpS+cIXzpH+tI6xPuCUvSVUpxIzWX7iTR2nEhnW0wau2PTyS6wAdC4vgdjrozgpk5h+NaCLlsXq7a0iK+IjDwLP2yMYeba40Sn6Ewgk9HA4DbBjOvZkM6RvlUW0M3Kt/LPgVMs2h3Psn2JjtqboP997tk0gBbBnjT096BRgAeR/h4EeDpLgLmOqa371aTlh3jv7/34uDmxePzVBHrVrBpWNruq9h+fonrU1n2qKiRm5LEvPpNezQLks6OS2e2KjcdSmLcllj92niwRXLqioS83dgpjaFQDvGtRk4/MPAsxKbmk5hSQkl1Aak4BqdkWUnMKSMrM42B0HCZ3H9JyLKTkFJBn0bMf3JxMtA31JiqsHlFhulZ3Q3+PS5LpeCgxk3lbYpm/NZa49NMlV8J83bixYyg3dAqj0UV2vr7cWW127pu5ieX7T+Hv4cy8h3tcNgHtqlRbPqsqEieSYF8NJcG+07Lzrfx78BSL9ySyfH8iKdkFjsvMRl1o/5pWgfRvFUS4n3SFrQkOJWby3bpoNh9PZc/JjFIZl65ORqLC6tG5MADYKdIXvzKCc0lZ+ew4kcb2mHRHgK/481/E3dmEUpBr0UE/Z5ORa9sFM+bKCK6sw9mWNelDKd9qIzEjHxcnIx7OZtycTBX6Unk0KZsZq4/y0+YTjuCtj5sTo6+M4I7ukVWaHVoWi83OhqMpLNodz+I9CSW+sBbn5WImMsDdEQBs6O9BwwB92tfdqc6+9uqymrRfldfBhEyGfrKKApudD25uz42dwqp7SEI41MZ9StRuRdNGf94Sy6pi00ZdzEYGtgnmxk6hXN2sfo39A+JgQibTVh/l5y2xZZYNuhBermbahfrQLsyHqFAdBAzzdauU7ynJWfn8tj2OX7bGsuNEeonbHBbVgBs6htEl0lemVVei7Hwrt0xey67YDBoFeDDvoR5lJjpYbXbSci2k5RSQmmMhJbvAcTo1uwCrXdG7eX16NPHHXIW1EvOtNtYeTiYxIx+DAYwGXUar6LQ+r2eNlTptMODlasbf05kAT5cqm2lTWz6rJNhXB1zuwb7EjDz+3pPA0r0JrDmUTIHt9Aedt6uZfi0DuaZ1EFc3r1+r/qG7HOUUWNkek86W6FQ2H9eH9FxLqfUaB3jQKdKXCD939sVnsD0mndi03FLrOZkMtAz2JirMh/bh9WgfVo+mgZ7kWmz8ui2W2euj2R2X4Vi/SX0PRtfRbL+a8KF0NCmbWeuO89OWE6TllHxeXZ2MuBcG/tydiw46M9at2Pnjydks33/Kcb1mgZ6M69mIGzqG1ohC20opdsdlsO5IMkeTdLHwY0k5xKXncq5PUG9XM40CPGhS35PWId60buBN6xBv6rnXrddhXVMT9quKsNkVN32xhm0xafRrGcjUsV0kyCxqlNq2T4m6JT49j/nbYvl58wkOJmY5ljfwcWVUl3BuuSL8kv+hWBalFKsOJTHl36OsPHD6O5G/hzP+ns74uhcePJzx83DCx9VM9ME99Onehfre7oWXOeHubObIqSx2nEhnZ6z+s3xPXIaj5nFxvu5OtAurR/vC7L/6Xi7kWmzkW+zkWmzkWWyFx3byis4X2Miz2sgtsJNntZGaXcCGoylYCyOqZqOB3s3rc2OnMPq3CpQSKFUoMSOPGz5fQ2xaLq0beNMy2Etnf+ZYCrNAC0rMUjkXPw9nBrcNZlhUA7o28q+UQHiexcY/B07x5654luxJIDO/fGM5Hw9nE36ezvh7uBBQeKzP62Cgv6czfoWn/Tycyz2brLZ8VlVqsG/8+PEVHsB///tf/Pz8Knw9cdrlHuz7fkM0z83b6Tgf6e/ONa2CuKZVEF0a+kqXplrMblccScpmS2Hgb3N0KoeKffkqzmDQQcCioF5UmA+tGnif94vDjhNpzNkQza/b4sgpzBJzNhsZ0jaYMV0juaJh1U0FvZSq60PJYrOzZE8Cs9ZHs+pQkmO5s8mIxW4/ZwDsXPq1DGRcz4Zc1bR2TG/Ks9iITsnRAcDCIKA+nXPObsGh9dwcwb82IToAGFqvcv5dFxevtnzZKzL5n8O8tXAfXi5mFo/vTbBPzZq+K0Rt26dE3aSUYldsBj9vOcGv22JJLfyD0mCA3s3rM/rKCPq1DLzkvzHyrTZ+3RbH1H+POrrTGgwwqHUw9/ZqdNbyJRXZryw2OwcTsthxIo0dsensPJHOvvgMLLbKy/mJCvPhho6hDG8fQkA1N4e6nBxMyOTGL9aQeZ6gnrerGT8PZ+q5O+Pr7qSb4bg7k1Ng5e/dCSVmTtX3cmFouwYMi2pAp4iKZWTmFthYeSCRP3bGs2xvgmO2DkCQtwutG3ijALvS+6TNrrArdcb5wtNKYbfrPzUz8iwkZxWUSAAqj2vbBvPF7Z3LtW5t+ayqSJzovA06PvroI7p3746zc/kyEVatWsWjjz4qwT5xUfq1CqRzpC/XtApiQOtAmtT3lB/CdYTRaKBpoCdNAz25+QpdqD0tp4Ct0WlsPp5KbFouzYO8aB+u/2X0uoDMTV2jpB4vDGnFr9vimL0+mj0nM5i/LY752+JoGuhZmO0XKllWFXAyPZc5G2L4fkM0iZn5gP5C2q9FILd3i+Tq5vUxGiDPYienQHeuzrXYyCmwkVPYyTrHYiO38LKcAv0Psdlk4PoOobWuhourk4nmQV40D/IqdVlOgVV3DEzK5kBCFntOprPnZAYxKbnEpunD4j0JjvV93JxKBP/ahPgQ6uuGKvYFSClKfCHSX5b0ebtdX65QGDDgbDaePpiMOJkM8h5ay1ltdo6n5HAwIYuDCZkcSNTHRZkq/x3WSgJ9QghxFgaDgXZhehrr80Na8vfuBOasj2btkWRW7D/Fiv2nqO/lws1dwrj1iogqLw2UnJXPrPXRzFx7nKQs/Z3K3dnEzV3CGdezYaXWYHMyGfWfjCHe3Fq4LN9qY9/JzMLgny6Vk5VvxdXJhJuTCVcnI65OphLn3QrPnz4YcXc20SnCl2ZlfBcSVa9ZkBe/PNyD37afxN3ZpAN5hRmgRad93JzOOUX39evtrDmczIIdcfy1K55TmfnMWHOMGWuO0cDHVQf+2ofQPsynzO+S2flWlu9P5M+duuZ1UVkl0Bm017ZtwNCoYDqGX9xUbqUUWflWkrMKSM7OJymrgOSsAlKKTmcXkJyVX3i5Xn65B57Pm9lnNBqJj48nMDCwXBv08vJi+/btNG7cuFIGeLm63DP7hKhMSil2nEhnzoZoftteMtvv2rbBdGnoR/NAT5oHedWqqb6XYp+y2xX/Hkpi1rrjLN2X6Ki/GODpzC1XhDP6ygjCfKVWZnml51rYezKD3XEZ7InLYM/JDA4mZDqmv1QVg0FnXjqbjbgUBgCLgoEuZhPOZiP+Hs6E1HMjtJ4bIfXcCKnnSmg9NwI8XS6rOjvV/VllsyuiU3I4kJCpg3oJWRxIyORIUvZZazcNi2rAp6M7SkBX1EjVvU8JcS5Hk7KZuzGGnzbHkJR1OrupV7MARl8ZwTWtgiq1GV9RPb55W2IdU2sb+LhyV4+G3HplBD5u5dtHZL8SVaHAamfVoVMs2H6SRXsSSjS6CfdzY1hUCMOiGhDh586yfYks3HmSFftPlZgmHubrxpB2Dbi2bTDtw+pV23dIu11RYLOXeyp5bdmnKjWzb/r06fj4+JxvNYevvvqKoKCgcq9fl33++ee89957nDx5kjZt2vDRRx/Rq1ev6h6WEJcdg8GgpwKH1+PFoa2YX5jtt/dkBr9ui+PXbXGOdQM8XWgW6EnzIE+aFWZtNQv0rFVBwMqQkl3Aj5timL0hmuPJOY7l3Rr7cVvXSAa1CZZO1BfAx82Jbo396dbY37Es32rjYEKWI/hXdJx1jtomRkNR4eJix+hju4ICm71EYxylIN9qJ99qJ7OCY3Y2GWlQz5UQH7fCYKBrYTBQBwRdnUwYDAYM6KCiAUPhMXDG+eLrnZmpaHecL8xSLHa+eDajyWjAbDRgNhkxGw2O8yajASeT0XH+Uge+Cqx2svOtZOWfzmp11DsqOF33KLd43aPCy3MtNnLybRxPyeHwqayzBvVcnYw0C9TvSfr9Sf9JUVlF1oUQ4nLTKMCD565tyfgBzVm6N4HZG3SJkn8P6oO/hzMjC7P9LnQGQlE9vqmrjrKiWI3iqDAf7rmqEUPaNZASRaJGcDYb6dcyiH4tg8iz2Fix/xQLdsSxdG8iMSm5fLHiMF+sOOz4vlkk0t9dZ/C1a0DbUO8a8Z3EaDTgary8a0ZKg44qMnfuXO644w4+//xzevbsyVdffcWUKVPYs2cPERER572+ZPYJUbWUUmw/kc6fu05yIF5PhTuRWrohSJEATxcdACz8kR3s7aoDGMWDGcUCGcbC0xQLwhgMBgqseoqrY3prgZ7WWnQ+t6DYcouV3AIbuRY7ziYDbs6mwmYXZtycTbiYDJw8cZw2LZri6eqMu7OeVqEv1xlbVrvCarNjsSmsdjtWm/6Xy1p43mIruvz0OtEpufy9K95RF8PL1cxNncK4vVsETQNlmsalYLcr8q32068lR7cyyv0FymZXFFjtFFjt5Ntsp08XHhfY7MWW2TiVmU9sWh5xabmOQ3xGHlWcdFhljAYwG42YTToI6OakG8PoKUnGwv3JXHhcOD3J2YSL0cCxwwfoGNUGhZGsfCvZ+VYy861k5elgXlax00WXVVbHRNAdI5sWZhs3C/KkeaCXI6h3OWVZirpBvv+J2iYmJYe5G2P4YVOMo2wJQPswH3zcnfUfTkYDZpMBk7H0H0/6WH/+GAywcv8p9sWfrsc3sHUQ9/ZqTJez1OMrD9mvxKWUU2Bl2b5Eft8ex/L9pyiw2mkc4KEz+NoF07pBzQjwXYzask9dkm68WVlZ2O0lv9jWlaBUZejatSudOnXiiy++cCxr1aoVI0aMYOLEiee9vgT7hLj0svOtHErUU+YOFtbDOpCQVWZX4LpJ4UEe9dA1wMIbBHFjtxYM6xiBu/N5E8FFHWS12UnIzHcE/06k5hYLBuYRl55LgdWOAiisGahrB57OxDvft4ziwfGyApvFz4MOYloLD7bCQ03i6mTEw9nsqGdUFKQvXvuoeOCxeB2kkHpuNA/yJMzXvVI64QlRE8j3P1FbWW12lu1L5PuNMazYn3hRf35Vdj0+2a9EdcnKt5KaXVDnZhXUln2qUqfxFnf06FEeffRRVqxYQV7e6U6DSikMBgM2m+0c1758FBQUsHnzZp577rkSywcOHMiaNWvKvE5+fj75+af/OcrIyAD0i85isVTdYC+hovtRV+6PqHucjdA62IPWwSW/hGXlWzl8KptDiVkkR+8hJGYhNksuBqUAhQGFQdkxKIUBe+GhcBmFywovMxqMYDJjMDphMJkxmJwwmswYzWZMJmd9bHbCZHbGbHbCyckJk9kJC0YK7EbybQby7QbybEZyrIqYuFN4+QdSoEzkWCHPZiDHaiDXBrlWA24GC/UM2fiQhTdZeJONl8rES2XhqbLwtGfibs/Ew5aJmy0TE8Xex1OBP0EtdkO5eIKzPigXL3DxOn3a2fP0ee8wVFBrqBcJBpmSUhcEepgJ9PCiQ+jFZXUWNRkpCgQWBfbK/KKoFNitYCvQB2s+2C36tLLrjThWtWO3K2x2u6OrW1Eg0G63Y7UrLDZFvs1Art1Art1ErtVEjs1Irs1Its1IjtVIjsVOnsVGdr6FI9En8A0IwslswtPFjKeLCQ8Xs+O0Z+Fpj2LnPVzMeDibzlkEu7zsNit2+Uol6gj5/idqs77N/enb3J+T6XlsPp5aOAui6M8mu+O0nklx+rQ+1p9LIfXcuLFjiKMeX2XsC7JfieriYoRgLyes1nN3AK5tass+VZHxVSjYd9tttwEwbdo0goKC6lQktzIlJSVhs9lK1S4MCgoiPj6+zOtMnDiRCRMmlFq+aNEi3N3rVvH7xYsXX5obUgqjsmBUVkx2iz5tt2AqPD7bcpMq0MsdpwvPFy7X5wswKos+rwpQGEj0akeMX08y3CJ0qsrlRCncLMl45sXhlReHV14sXnlxONlysBpdsRldsJpcsRpdC49dsBmLzheddsFqcis8difPyQer0a3mPJZK0SJ5Je1OfIdZFZx//XOp7M+Q7MrdnM1gBgyYlB6owZoL1lzI1nVmyvOMWIyuZLiFk+EWTrpbBBluEWS4hmMz1cKuWMpOSNpGmpz6G2dLBhazJwUmTwrMHiVOF5g8S523mtxrzmu4DEZ7AZ758XjmxeNiTSPLJYR090gKzJU/XdvZmolv9mF8cw7jm30YF2sGRmXFaLc63qv1aX0wcGkz9uwGU+HBjN1gRp0wYzcY9evdEdgvosdWFPAvWmZAYQcsJnfS3SJJc29IultD0twbYjF7XtL7I0RNc8m+/wlRRYyAS+GhQtJg9fLdlT4ekP1KiMpW0/epnJyc869UqELTeD09Pdm8eTMtWrS4oIFdLuLi4ggNDWXNmjV0797dsfzNN9/k22+/Zd++faWuU1ZmX3h4OElJSXVqGu/ixYsZMGBAxVJjbRbITYHcVAy5KZCTArkpGHJTISdZHxcuN+TqyyjIwWDLP/+2q4AKbI297SjsbUeCV4NqGUMp1jwMx9dgSNwNLl4oN19w80W56mPc6oGTx/mDEnYbpEdjSDqAIWk/hqQDcGo/huQDGAoqOeIEKLMbeAaiPIPAM6j0sUcgeAaBR0DVZpHlpmFaOB7jvt8AsId3QzXooG/TcTAAxU6XuKzogI4L2K3nPBhsVlCF521Fyy1gtxcut4HdirJZyUhLwcfLA4Oyn95G0WmbBcyuKLd6+nl29dHPuWs9cKuHci223M0XXH3BzQfMhUFWWwHkZ0FBJuRnYSg8Luu8IT8L8jMwpByBpP0YbKUDogoD+DVCBbZFBbVBBbZBBbUF79CaGRCzWTDs/hnTmo8wJB+6oE0og0nvX26+KDd/cPcDNz+Uu9/pZW6+4O5fuMxPPz+VWVBY2SEjDkPyIX0/Ug45ThsyTpR9Fe9QVHAUKqidPg5uD17B5X+ebAUYEnZhiN2MIW6zPk49euF3AQOYXcDkBIZij41jPIYzzp+xTClQtsJMQUuZr8+qpupFooLboxq018fBUfr1IEQdd8Hf/4QQZyX7lRCVq7bsUxkZGQQEBFT+NN4rrriCmJgYCfadR0BAACaTqVQWX2Ji4lk7Fbu4uODiUvp/Iicnpxr9YrsQ5bpPGSdh+mAd2MvPqJwbNruCyUX/YDS7gtm58Nil5HIn18LlruDkVuy0qw6CmF1OL3cqPJ+bBrt+gv1/Ykjcg2nZBEzLX4dGvaH9aGg1DJwvvj5HhWSchIOL4MDfcGQFWM4TjDM5Fwb+fHXAwa1YIDArAU7tg6SDYM0r+/pGM/g3hfotIKCFPvYIgIIcKMiGgqzCQ3ax4+zS5/OzIC9NB46suZB2HEPa8XOP3WCCkI7Qazy0GFK5gaPodfDzvZAeo+9jv5cw9ngcjNU/RdVisfBPOWpLXPCj4eQErh5ABTus2yz6tZKwC+J3QsJuSNiFISsBUo7ogGBh4BQAVx/wiQAPf3APAHd//dopfuweoE+7+VZuIKwsljzY9h2s/hjSogvHWA+6PgiN+0BuauFB/wlR9AeEPl3sMksOBmWDnGT9xwTlDRga9H7n7q+nSJd4vznjuKxlAClH9HOQfAiSD+vMzLNxrQcBzcAjUO/nKYcxZMRiyIiFA3+eXs89ABq0LzxE6WPfRvqytGiI3QQnCg8nt0NZf7j4N4OwKyCsM/g21O+9Jmf9flz0PmxyKjztrC8zuWAwVXLNSKV00LxomrCtcIqw3YIlP4d/VyyjV4+uOBV13KF4e+FiAUbHZWccZ8VD3Db9OJzcBqnHMBS9lxV/7deLgAYd9GMZ0gEadNT7gRB1UF38TitEdZP9StQoNqv+zmkpdih+3uSkv/95h1b99/kLVNP3qYqMrULfnqdMmcKDDz5IbGwsbdu2LXVDUVFR591GdnY2mzdv5uTJk5hMJho1akSnTp3q1JRgZ2dnOnfuzOLFi7nhhhscyxcvXsz1119fjSOrRZw9IPVYsQXFfvy6+elsCPeijBi/ksvd/HT9sKJAnrnwx2RVv8ZaX6d/5O+eDzvmQvRaOLJcHxZ46MujboFGV1fNm5vdDnFb4eDfcOAv/SOzOK8GENFd174qHqzISTldCysrQR/OxeSiAwP1W0D9lqeP/RrrN/DKUpBzejyZ8cWOE/UP6cwEfZydpDN2YjfB92MgqC1c/TS0uv7iAnI2K/z7Pqx8R2dG+TaCkVMhtHPl3ce6yuQEQa31Ierm08uzTkHCTojfVRgI3AVJ+yEvHfJ2lnPjBr3fewTo4JN/Ex1Ub9wbPAMvbtwF2bBpOqz5VL+2ADzqQ/dH4Yp79PtKRVjySu5nuSmOwB85OjO51LL8dECd3kcri9GsX8MBzXRQPqCZDrwFNNPvn8XfH/My9PNzcnvhYYcOAuYkweGl+lDExUe/x2Ynlr5NN18I7XI6uBfaWS+rCQwGMJn1gTNKZVgsZLod1EG4C/2yF9QamvQ7fT43VT+Wcdt08C9uG6Qe1UHStGjYWywA6BkMQW0K96G2+nRAc/04CyGEEDXJye36d1Zgq+oeibgY1vzC7+NFhzR9nJt2xvJih4JssOToRJCiYJ69nLWKTM66vrdf48JDI33s20j/EWp2rsp7e9moULDv1KlTHD58mHHjxjmWGQyGcjXosNvtPPfcc0yaNMnR3KNoBnFERASffvopw4cPv5D7UCONHz+eO+64gy5dutC9e3cmT55MdHQ0Dz74YHUPrXZw8YK7F50O3rnVq7HR/xLcfKHLOH1IOQo7foDtc/SPuu1z9MErBKJGQdSt+sfcxcjL0MHEA4t0Fl+JH9wG/eO6+SB9CI4qO+CplH6zPjNbyZGxlKqDAUWBPd+Gl+a5cHYvfONvdO71bBbIiIPNM2DD1zpI8eNdOrvw6qehzY2FP+grIC0G5t0P0YUNdaJuhaHvVzzYI0ryrA+e/UoGQaz5kHRAB29zknTwNie58HRysdNJ+osHqvA1mgIc0M/R1m/1tgJbFwb++kBkD3AtZwmE3DT92ln3eeF20f849vw/6HTn6Wy5inJyBacG4F2B6fw2S+G+V3jfC7IL/xXNO8dxjg4sFi1TNv0FqnhAr15k+fcDV2/9+EX2OL3MkgsJeyB+++kgYMJuHZzMRwcTg9sVC+510V/a6tAfeRfFzVe/Lhv3Ob0sNw3id5QMAKYc1oHmrPiSQVWjWT+XQW1KHmrqFHghhBB139F/YeZ1+rfEFfdA/5f1bA1RO+Rl6N9Mx1effebWxTC7FX4Xdi+cfeKuv7OmReskk+SD+nAmgxF8wk4H//waQ9NrLv5382WoQr+A7777bjp27MicOXMq3KDjhRdeYMGCBcyePRtXV1fefPNNhg0bxnXXXcfs2bMZNWoUv/32GwMHDqzwnaiJbrnlFpKTk3nttdc4efIkbdu2ZeHChURGRlb30GoHgwEiulb3KC6OXyPo8x/o/Syc2KgDfbvmQWacnh64+mOdNeTipTMZnT2LHRed9jjjssLTyYd0Bt+x1SX/QXH2gqb9oNkgaDagfJlOBgO4eOpDvfCqezyqiskJfCPhmlegx2Ow/ktY96XOGJt3H6yYCL2e1hlm5ck83PMr/PaY/sfK2ROGfgDtb6n6+3G5MrvoIFFwu/Ova7OezoTLTtINQ+K26mnq8TshcY8+rP9CT+0O7VwYYOmtA1BnZkZlJ+kA34avT5cL8G0EVz2pp99Xx7+KJie9315slmJlc3LT2XlhxTJbbRad8WfJg+C2Fx4UvVy51dOZ3o2uPr0sPxMS9+k/LRL3OKbAk5cOp/bqw66fTq/v6gOBbfQU4Cb9ILKn/qNECCGqS36m/Dl6OchO0mVulF2f3zgF9v0BQ96DVnUngadOW/RiyT8WMeg/fF19Cg/1zjg+4+DsoQN4Z5aVKTp9tliR3QbpJ3TJmdSj+jjlqD6kHj0dEEyLBlbo6yx9De6YV/I7kzivCjXo8PDwYPv27TRt2rTCNxQaGsr3339Pr169AIiNjaVly5YkJSXh4uLC66+/zp9//smaNWsqvO26KCMjAx8fn3IVXqwtLBYLC8tRX6xOs+brGno75urj8qY6n4tfE2g+WGfvRXSXtGfQP4w3TIa1k05PhawXAVeNhw5jyp4OV5ADfz+vMwRBB4pumqL/TaqhZJ8qJjsZjv0DR1bC0ZX6i0NxZjeI7K6Df2FXwt7fYfN0/YUCoH4r6PUUtLmh4pmgok6pcfuVUpARqzMrE3bpAGDiHp0Ra7eWXNfkojMym/aHJv31tCrJ/BPVrMbtU9UlJwV2/wL7FkBED11nuDbMWikvSy78/SJsmqr/fB34RnWPqE6r1v3KbofZo+DQEj2TZuDr8Ndzp797tRymg37eIZV7u0rpTPj02NIZY2eel+9y53ZwCcy6SZ8e8wNEdNNJI9Vdk1wpXbrJEQA8Asf+hZj1unTM3X9VWYZfbfmsqkicqEJ7Qb9+/S442JeZmUloaKjjfIMGDcjLyyM1NZXg4GBuuukm3n777QpvV4haxeyia/cV1fdLP3G6KUWJphVnO1143s1XZ+41GwQBFd8f6zxXH7j6Gej6kP7SueZT/e/Qgifgn/eg5xOF0zNd9frxO+Gne3Q2IAa46gno+2Ll1iAUVcvDXwfq2hTWSU2L1oG/Iyt08C/7FBxepg/FNeigp3u3GFr9X3CEKIvBoKez+IRB82KzH4qmwCfshuNr4NBSyDhxulYs/9VlI5r204G/xn2k+68Ql9rZ/uQ9vEx/Nt00Fbwq2ASrJjq1H34cB4m79fk1n+rvqI16Ve+4ziYzQf+JEtqpukdSO639VAf6zK4waoYOvjS6Wn/HXv2xDmgfWaln3XS5++KD2vlZsPNH2DhV134uD6O5WPCvMNssohsM/VC+7+Wm6VlMoH8rNR9UrcMpwWAAr2B9KConY8mDb0foevizRsK9Syo/kFxHVSjYN3z4cJ588kl27txJu3btSkU8r7vuurNet127dsyZM4cXX3wRgB9++AFPT0+Cg4MBXdOvrG60QtRZRd1uRdVx8dR11664T2fsrf5Yf7n78xndfKPH4/oLyOJXdOdQz2C48auSdbVE7VQvAjrdoQ9K6Uyooqy/mA0646nXeB0EkcwnURsVnwLf/lb9Ok86oIN+h5boGjyZcbD1O30wGHXGcpP+OvMvtPOlzSqy2/R0L6NZ9jlRtymlP2d2fK/Lt+Slnb4sqJ0uLbFpus5W+aqXDvhVZVBMqarb55TS7y8Ln9EdNz3q6+7ih5boYMJDa2pOaQG7Xc8A2DRNTze1W2HwO9CtiuupK6XL7/g3rRvvfTEb9ZRKgGvfOZ1l5eSma/a1vQl+/z9dwmjh0zrQPfxjXWe2ohL36gDf9u+hIFMvM7vq5lW2/MKmEHnFmkTknL6u3apLtBSVaQFdeqR+S+j20IXd97ri7xf09wO/xvo5q+mcXOHW2TBtkP6eM2sUjPuz/LW5L2MVCvYVNZd47bXXSl12vgYdr732GkOHDuW3337D1dWVNWvW8N577zku/+uvv+jYsWNFhiOEEOXj7A7dH9b/Lm79FlZ9pDNgFr14ep1mg2DE57rLq6hbDIbTDQ26P1zdoxGiahgMhd3RW+jXuSX3dMbf4aX6R86Jjfqw8m1dg6dJX53V2myAriFY2Sx5cGixDngc+Kvwh5hBBypNLrrshMlFnze76O58JY4L1/EO1XU0g9tW/hiFqCzJh3Vjth1zdd2pIl4NoN0oHZQvCnh0Ggs/3KnrcM68Ts8muGp85WYcxW6BJa/q6f/dHoJuD+saW5UlLwMWPHm6jmjjvnDDV/qH+efd9WOw/E0Y9Gbl3eaFyEmBbbN0gDXlcMnLFr2og5OR3avmtpXSga8t30Df/0LvZ6rmdi6V3FT46W4dSGt7k34dnymoDdz9tw6qLpmgP3O+ulr/+X71M+ev72st0B3qN03Tf1oV8Wuim4C0H332LHWldDbtmR1iLbk64335m3pMzQaCf5MLfxxqs/1/6f0BA4z4ouYE48/H3Q9u+wmmXKPf0364A8b8KOWrzqNCNfsu1o4dO5g7dy75+fkMGjSIAQMGXKqbrnWkZp8QVchaANtnw78f6LoQA16DK++vdf+4yj4lROWrs/tV+onTgb8jK3Rt0yJGMzS8StdZajEEfELPupnzshbo7e/6WWfPFGVjVIawK6DzOD1dv7b8QBF1d5+Cwjp882D7XDix4fRyJw9dsiXqFj29saws2oJs+OMp3cANdLfJGybrshQXI+UoLHtd74PFeQTqYEvnuy7+B3LsFh30ST2qG2L1+68ukVIUrDywSNd0Mxjh7kUQfsXF3V5FKaVrfG2aBrvn6yww0DXJ2t+i30dWfaAfI88geOAfPW2wsv3zHiwrrF3o7An/t+Pin99Cl3y/Ugrm3q6n6Po20o/Z+TKr0mN11uf+P/R5v8Yw7COd3XqmtGg9C2fLTF16BfRrq8W1cMW90Kj3xQXDlYKZ1+sZHhHd4a6Fl9903pwUHYjPiofuj1Z/IP5CxG2F6UPBkq0DvyO+qLTfb7Xls6rKavbFxMQQHl52t85169bRrVu3c14/KiqKqKioitykEEJUPrOz/rLb8U497aQy/+kWQoiayCcMOo/VB5sVYjfrru77/tBZf0dW6MPCpyGkI7QcqrP+ytPkw27TUxJ3/ayb3xQ1RgLwDoM2I6DtjfoHoq1AZ144jvN1gNCWr8+XdVn0Gj3OoszEv5/XX/I7j4PAllX4oIk6xWYtrIOcdbpWcn6mPi563dks+thuLTxfoK9nK9D19myW0+tkJerae0V1+AxGXQYk6lZoNez83y2cPfQP1cieer87tERP6x05HSK6Vvz+ZSfr4NLGKYVjMuhgY2QPHdhKPabLmKz9DPq+oLMNKzqV327XXeyXvKpvwycCRk6F8CtLrtd8oH4cdnwPvz4CD/5bdnO0ypaXrrMrN03T5TuKBEfprLC2I3WJF4Dhn+jGR6f26nqDY3+r3FrN2+eeDvS5+UFuCqz+SDezqI02TtGBPqMTjJxWvimUPqEwerb+XFj4jG62MPM66HCbbuDi6qP/hNo0FQ4uOt3Z16uBzhrsPLbyarMZDHDdp/BFD137bcNXl9903r+e04E+/2Y6QF8bhXSEm7+B2bfoP0p8wmrvfbkEKpTZ17JlS1avXo2/f8l/JFavXs3QoUNJS0u74IFkZ2ezefNmrr5a2imDZPYJIc5P9ikhKt9luV8lHdKZF/sW6mwYin019G2kA38th+kf9EXBAbtdr7vrZ9jzK2Qnnr6OR6DOvmt7o+5+XRnZE5kJugzDlm90BkiRiO466Nf6+tNNl0SNUuX7lLVA/3g/tATSY4oF8rJ0Zml+YaMza27l3zboOnztb9HBswvNDovfpaf1phzWmbbXTIDuj5QvY6UgB9Z/oUuUFNUna9JPb6NBYZKFtQC2zoSV7+oZDQCBraHfSzpzqjy3k50E8x/SQRmAVtfp4MnZSgDkpMCkK3WW1tXPVO0P8ritOsC386fTddvMbtDuJl3CJaRT2fcx6RBM7qNfJ90egcFvVc54jv4D396oA6I9HteZ07Nv1mP6v+2V0pTlkn5Wndyup0/aCmDw2xcWJMtL17X+Nk4FFLj762zHtOOn12nUWwdlWwypuiZ5G6fCH+P1c/HQ6stnOu/eBTD3turLtq1sm7+B3x/Xp4d/rJM4LlJt+f5XZZl9vXr1YuDAgaxYsQIvLy8A/vnnH4YPH86rr756wQMGOHToEH379j1n3T8hhBBCCFHJAppCwP/pmkpZibD/T51Jd2SFnqa39jN9cA+AFoPBxQf2zNcNj4q4+elpi21v0plKld38wytId86+arzOpto8XY8zeq0+/PUfaD9Gf+Gv37xyb1vUPBlxcHCxDjwdWaGDe+VldNLZXc5ehceeOlBsctaXmYoOzjrwZnI+vcxYuNxk1sGCJn0vrPHAmYLbwv0rdH233fN0Lbnja2DEpLM3c7PbdGbLsjd1sX3QDXsGvKaDfcWZnfVUyPajYf1XOsMscQ98P1oH5K95RQekzubovzDvPsg8qWtpDp6og2jnChK6+8HQ/+kg5r8f6OBgg0qe4bXvD53NGLf19LL6LfXYom45fy3SgKZwwxd6euq6SRDWWb+HXYzEvfD97TrQ1+YGHXQ1GHQZghMbdZblte9c3G1cSvmZOvPRVqCDcF0vsKGJq49+PbS7Wb/OT+2FnGS9vMNt+jkLaFa5Yy9Ll7v1H1RHV+qs08thOm92Mix4Qp/u8XjtD/SBzvpMPwH/vAsLxoNXiM4oFiVUKNg3efJkRo0axdChQ1m0aBFr167luuuu44033uD//u//qmqMQgghhBDiUvAMPD3dNz9L1/jb94dusJGTpDtvFnHx1hl/bW/SNZiqKhOjOKMRml2jDxmF3YY3f6ObLq2bpA+RV0GXcdBq+KWZOiiqns2qa+IdXKSDfAm7Sl7uUR+aDtDBJBcvHcA7M6Dn4qWnztbU14Srt54eGdlDd8vc/wd8tUtPWQsp1sRQKf0YLHnl9FRVnwidOddu1LkDF84euhN9l3Gw+mNY96V+XGcM1TUD+7+sG1YUsVn1j+mV7wIKAprracblbZbT+nod5Nv7mw6s3Les8t4nNnytpz+DDsC2vl4HciK6V6yGV6vhcNWTsOpD+PUxnfEY2OrCxpQZrzuF5qdDeDcY8eXp56Pvi/DtCJ2B2OMxPf2wplNKB1JSDuuSDNdPuvj6aBFddb2/rTPByR1aj7i0NVgNBrj+M127rqZN5z24BBY+pYP1gyZWXrb6n8/oDNv6LaHP85WzzZqg7ws64Ld9Nvx4F4z7o+R7pahYsM9gMDBnzhyGDh1K//792bFjBxMnTuTRRx8973X9/M7SNaeQZPQJIYQQQtQgLp76B3Tr63WdsuNrYP9CHQRsOQSa9K/eqbPeIdD7Wej1lJ7CuWm6rkN4fJU+uPvrjJHOd10+U7XqkswE/bweXASHl+sAioMBwrrorprNBkBw+7qRnWMwwJX3QWhn+HGsnuI4dSAMektn5sVthcUv6xqZoLtqX/00XHFfxfZFN1+45lWdpbXyXT09/tASfWhzow4cml3h53t1zUyAjrfDte9WvM7xkPf1eON36ADj1U9X7PplWfWhrhsIOsDX90XwCLjw7fX9r246cnSlzvK7b3n5atIVl5+lA33pMeDfFEbPKfmcNO6js56Pr4Z/3ofhH134eC+VbbNg5w+6UcbIqWfvgltRRZmm1aVehK6duODJmtOdd8u3OuNR2XRAOG4r3Pwt1Cu7X0K57Z6vy20YTLpGaF0qd2EwwHWf6IzjI8th1s1w72LwbVjdI6sxzluzb8eOHaWWZWZmMnr0aIYOHcpDD52OhJ+r+YaHhwcPPfQQ7dq1K/Py48ePM2HCBAn6FZKafUKI85F9SojKJ/tVLZd+Qndz3DJT/wAo0qi3zmZqMfTiO5GKCqnQPpUZr2tqHVwEJ7eVvMzNT2efNRuoM18qqatpjZWbCvMfOd3JNKjt6YxGkwt0fUBn6Z1tmm9FpByB5W/Bzh/1eYNJB/XyM3R25LAPIWrUhW9/+/fwywM6A+/BVVC/xYVtRylY/qaeugu6FmDfFyunG2d2EnzVW2cJtxwGt3xX/u3arHpK9MFFutzBvYt159kzHVsNM4bo6eGPbb6ooESVf1Yl7tP1DK25OuOz11OVfxvVqaZ051UKVr4DKybq882vhZh1ev9399fZvo37XNi2s07B5131dOmqrptZnfIyYPoQSNipm4/cs+iCAtO15ftfpdbs69ChAwaDgeIxwaLzX331FZMnT0YphcFgOGegrkOHDoSHhzN27NgyL9++fTsTJkw433CEEEIIIYQom0+Yntpz9bM6y2/TdJ2tdHSlPnjU1xlKncaCX6PqHq0ozm6DGcMg+eDpZSEd9fTcZgMhtFPl14Ksydx84dZZsHaSnrKbsAtHh91+L+rspMri1xhumqLrdi59Xe87+RnQoIMONlxs1lPULTq76OAiPZ337r8r/lwqpac3r/tcn7/mVT39trJ4BMDNM2H6YN11dvXHcNUT5RvXwqf0fTO7wZi5ZQf6ABr2hMZ9dRbSyndhxOeVN/7KVJADP43Tgb7GfaFnJT7ONcWZ03nXfwndH760Y7BZ4Y8n9Z9ToAOq/V7STah+uEM3Rvn2Bv1a7/F4xYLaSulGJDnJ+o+Cq5+tkrtQI7h6w20/6iYyyQdhzmi489e6lcV4gc4b7Dt69Gil3ND5uvX6+flx5513VsptCSGEEEKIy5jJXNhFeCikHtc/prZ+qzuRrvpQdy5t0ldPAWw++NLUGxTntm+B/qHm5qunrTa9RteQvJwZDNDjUQjvCrt/gfa3Vn6Ti+KC28FtP0D0eji1T99eZdQ4NBh0duCkbrpJxfqvKhZYsdt0g4GioMiQ9/V058oW1llPVV7wBCydoIPNjXuf+zqrPoTNMwCDDpiGdTn3+v3+q4N92+fohkMBTStp8JXor+d0PUiPQLhxct2YIl+W4tN5l74GzQdduum8+Vk6oHpwke6QO+R93YkYwDdSB8QXjNf16Ba/rKeZX/+Zrj1aHrvn6VqZRrMOKtf1jHbvBnD7TzB1kM6M/OV+GDmj7r52y+m89z4yMpKvvvqKhIQEIiMjz3k4lxdeeIFXXnnlrJeHh4czffr0it8DIYQQQgghzsY3Evq/BE/u1jWQmvQDlO7qO/d2+LAtLHtDZ1OI6rPmU318xb3QYYwE+ooLvwIGv1W1gb7iIrrqJj2V2czEJ0wHVkAHVlKOlO96NgvMu18H+gxGuP7zqgn0Fel8F3S4HZRdB2PST5x93Z0/6aAgwOC3odWw828/rIv+g0HZYeXblTLkSrXzJ13DEQPc9HXd3w87j9NlHqy5OuvUbq/628xKhG+Gnc4GvWXW6UBfESc3HaQb8r4O2O2ZrzPXkg6df/uZCfBH4bTrq58p2XSnLgtspbOhTc664/KiOjptuQLKFeo8efIkw4YNo0GDBtx///388ccf5OfnV/XYhBBCCCGEqBwmJ2h9HdzxCzy+FXo+oaf1ZsXrGmAfRekC+/sW6ulV4tKJXq8zvkzOutmEqJs63wUNe+nAym+Pnz+wYsmDH8bCrp90wGPkNOh4W9WO0WCAoe9DcJSeAvnDnWAt43fvsdUwv7B2fbdHoNuD5b+Nvi/o450/QcKeix9zEaVg/1+6KUPiPh0orYjkw/D7E/r01U9feK242qRoOq+z5+npvFUp6RBMHaAbcLj7w9jfdcOrs43tyvt0PUHPYJ1t+3Vf/Rl1NkrpTMXcVJ2pW9dqLZ5Po166EQnAukmwtoZOlb9EyhXsmz59OgkJCfzwww/Uq1ePp556ioCAAG688UZmzJhBUlJShW5UKcXOnTspKCi4oEELIYQQQghxwfwaw4AJ8OQeGDkdGl0NKJ1p8f1o+KgdLJ8I6bHVPdLLw9rCrL6oW8ArqHrHIqpOUfdMJ3fdoXfLjLOvW5ADc27VDUpMLnDrbGhzw6UZp5Mb3PKt7nYcu1lPay3u1H79PmErgFbXwcA3Krb9Bu319VCnGzNUhrWfwZxbdCfnz7vCm8EwqasOmC6fqKeCJ+4Faxm/wa358NPdUJAJET2g93Ol16mriqbzgs46TT5cNbcTs1EH+lKP6eYs9yzWWbvnE9EVHvhHNxLJz9CvvWVv6untZ9r5o95njE4w4svLs0RFu5FwTWHG7fI3daOSy9R5a/YVMRgM9OrVi169evHuu++yd+9efv/9d77++mvuv/9+unXrxnXXXcfo0aMJDQ0977YmTZqEh4cH//vf/y76TgghhBBCCFFhZmdoe6M+JB+GzdNh6yzIjNNT7P55F5oN0p18m15TtxpEFGRD9indhTQrsfB04XnH6VP6B+WNkyGkQ9WMI/kw7F2gT3d/tGpuQ9Qcfo11E4K/n4dFL+vmKz5hJdfJy4DZt0D0GnDygNFzzl87r7L5NtQ1+GaNgk3TILSLzirMTIBZIyEvHcKuvPCadn1fgL2/67pqJ7df/FTL4tMWA1vrsgQFWTob7NS+kusazeDXRHdFDmylj4/+oztgu/np+20qd5igbug8Tj+GR1bo6byV3Z1330IdTLXm6lqQY36o2BRpryC48zf9HG/4Sn82xW3Vr7+izrMZJ2HhM/p0n/9AcNvKG39t0/P/9Ou/xbXgWb+6R1NtLngvbtWqFa1ateLZZ5/l1KlT/P777/z6668APP300+e9/oQJE2jWrBnvv/8+hspoly6EEEIIIcSF8m+iM3T6vaR/hG+aDsdXwYE/9cEnHDrdCR3v0MXAa5u4bbqra8oRHdCz5JT/ur//H9y3vGqKna/7AlA66BPYsvK3L2qerg/oLLMTG/S00dt+PN1pNCcFvrtRBzJcfHTR/fArq2eczQZAn+dhxVu6s6lfY53llxatT4+eo7MAL0RgK52BtPNHWP6W7uJ7oWI26rqGAFfer5uMgK43WBTsO7VPT+09tV9n7yXt14e9v5Xc1ogvwOfciTt1ksEA131aNd15N07RQThl1+9zo2aAs0fFt2N2hiHvQmhn/Z58aLGe1nvLd7rj7oInIC9Nd9Guix2UK8Jg0M1wLnMXHbK32+2sW7eO3377zRHsK4+AgAByc3NJSEggODj4YochhBBCCCHExTO76B/h7UbCqQO60+a2WZAeo6cErXhbZwt0GQeN+9X8bn9K6cykv57T0w6LM7vqjpseAbp+oUd9nQVRdNrFC36+T2f87PheN86oTDkpsPU7fVqy+i4fRpOuk/blVTpgsWOu7vybmQDfjtCdYN39dX3N6m4ucPUzELtJT/Gffi2gdPbbbT/p/eZi9H4Odv0MB/6CE5vO38m3LKnH9HRna55u/DH47dOB03rh+tBswOn1lYKM2GLBv8IAYOpR3RynxeCLu0+1WWV351VKb2fVB/p8pzth6IcXnzXZ/hYdLJ57m37+pwyAtjfp15HJGW748vLLzBRluuBXwcGDB5k2bRrffPMNqampDBo0qELX//fff/H395dAnxBCCCGEqJnqN9ddUPu/pKd4bZoOMetg3wJ9qBepu5a2HgFeDcDZvbpHXFJ+ps6c2vWTPt/8WrjqydMBPWfP04GBs+n9DCx+GZZM0HXGXDwrb3ybpuppbcHtCusmistG/RbQ5zkdDPnzPxDQTAeWUw7rZgR3/lozMj2NRj1VcnIfHVgxu+osvIsJAhUJaArtx8C273RH8DvnV+jqTtYszHNvhZwk3VDkpqnnLzVgMOhp0z5hujSBKKn4dN75D8O4hRdWvsFaAL89pv8kAejzAvR+9vzvt+XVIAruXwk/3wuHl+rXEOjp4YGtKuc2RK1XoWBfbm4uP/zwA1OnTmXdunXYbDY+/PBD7r77bjw9K/bB/8033zBmTCX/OyiEEEIIIURlc3LTmUftb9XdMzfPgO3fQ9pxHaxY+lrheh7FMuMKM+Y8AwvPBxQuq6+Xudar2qzAhN26MH/yQTCYdEOS7o9W/Mdm1wd1kDP1qM5Q6f9y5YzPmg/rJ+vTPR6vvB/Bovbo8bjuHBu/A77uDyjwiYCxv+ppsjWFmy+Mnqun83a6s3KnFfd+RgeEjizXHX4b9izf9az5XHn0EwxZh8A7TNeAq8xA/OWq+HTemHWw/qvzT+e123Td04w4Xe8146SeHn3sX/3ee90n0PH2yh+ru5+eAr/8Lfj3fd1YpftjlX87otYqV7Bvw4YNTJkyhblz59K8eXNuv/12fvzxR8LCwrjmmmsqHOgDWLJkCXPmzKnw9YQQQgghhKg2Qa113aRrXtV1x7Z8o+vh2fLBkg2p2ToD6HyMZvAO1TW2rrjnwmt/lWXrLPjjKZ015xUCo6ZDRLcL25bZRdcynHsbrPkMOo0F38iLH+OOHyA7UT8Gl6rLqqhZTE5w/SRdd8xuBf+mOqPvzIYdNUFgS7h5ZuVv17ehrgO6ebouE3DXH+cPfCuFaeGTBGTtQzl7Yrjth9pZR7SmOnM6b4P2ut5e5kk9BTrjZGFQrzCwl5UAqozOuE4e+jXTrAozKI0mnXl+5X166rtM3xXFlOvV0KNHDx577DE2bNhAixYtKuWGvb29cXOrxC81laBhw4YcP368xLL//Oc/vP32247z0dHRPPLIIyxbtgw3NzfGjBnD+++/j7Ozs2OdnTt38uijj7Jhwwb8/Px44IEHeOmll6QRiRBCCCFEXeHsrrtzdrxN12bKzyzZxTYrsbCzbWGn26xil+Wl6eBG2nFY9CKsnaQzfDreoQMgF6ogB/585nQdvCb94MavL762WMuheprt0X/0lN6bv7m47Sml7zPozMGLuc+idmsQBTd8pTPb+r9SsQ6ldcXVz8C22XB8tZ4+2qTvuddf8TbGnT9gx4j9pumYg9pckmFeVopP550x5PzrG0zgFazLOXg30A2dOt6h/xy6FLykNJoorVzBvn79+jF16lQSExO54447GDRo0EUHroYPH86UKVPo3LnzRW2nsr322mvcd999jvPFsxZtNhtDhw6lfv36rFq1iuTkZMaOHYtSik8//RSAjIwMBgwYQN++fdm4cSMHDhzgrrvuwsPDg6eeeuqS3x8hhBBCCFHFDAZw9daH8tTyshboOlsHF8PKdyHjhM4iWf2x7v7ZblTF60QlHdTTdhN3g8Goa0T1eqpypgobDDBoInzVC/bMr9h0w7IcWgqn9oKzl655KC5vRQ1xLlc+obrhz/ovdXZf4z5nz+7bNhtW6kSU7eF30bbxeQKD4sIUTeedNhhyU8E7pDCQF1J4OkQH9YpOewZeWG0/IapQuYJ9ixYtIiYmhunTp/PQQw+Rm5vLLbfcAnDBQb+XXnqJDz/8kIyMDLy9vS9oG1XBy8vrrE1DFi1axJ49e4iJiSEkJASA//3vf9x11128+eabeHt7M2vWLPLy8pgxYwYuLi60bduWAwcO8MEHHzB+/PizPl75+fnk5+c7zmdkZABgsViwWCyVfC+rR9H9qCv3R4jqJvuUEJVP9itxaRjArT5EjYHWN2LcOhPj6g8xpB6DXx5A/fsBtt7Po1oMLVctO8OeXzD98QSGgmyURyC2EV+iGl4NNps+VAb/Fhg73IFp6zeoP/+D9e4l5fpxW9Y+ZVr9MUbA1uE27CZ3kP1NXO66PYZ58zcYTmzEunchqtnAUqsYjv2L6bfHMQCWbo8RnX8FLWTfqToeDeDRbfr0+d6HbXZ9ELVWbfn+V5HxGZRSqqI3sHjxYqZNm8b8+fMJDw9n5MiRjBw5kk6dOlV0UzVKw4YNyc/Pp6CggPDwcEaNGsUzzzzjmKL78ssv8+uvv7J9+3bHdVJTU/Hz82PZsmX07duXO++8k/T0dH799VfHOlu3bqVTp04cOXKERo0alXnbr776KhMmTCi1fPbs2bi717DObkIIIYQQolKZbPk0PrWIpol/4GzLASDNrSF7Q0aS6NWuzB+bRruFtrGzaZS0FIAkz5Zsavgw+U71qmSMzpYMrtn7LE62HLZG3EO0f+8Kb8M75zh997+EHSNL2rxPrvNFTjEWoo5oHfs9zRIXkuYWycoWr5XY571yY+l18HWcbDmcqNeVzQ0f0hm8QojLSk5ODmPGjCE9Pf28SXMXFOwrkpqaynfffce0adPYsWMHtsr657CafPjhh3Tq1AlfX182bNjA888/z/XXX8+UKVMAuP/++zl27BiLFi0qcT0XFxdmzJjB6NGjGThwIA0bNmTy5MmOy+Pi4ggNDWXNmjV07969zNsuK7MvPDycpKSkGpX5eDEsFguLFy9mwIABODlJbRYhLpbsU0JUPtmvRLXLS8e47nOMG77EYMkGwB7eDXufF1ERxb5Hph7DNO8ejPH6T2hbz/HYr35WN/6oQsb1n2Na8jLKIxDrQ+vBxeuc65+5T5l+e1jXG2t9A7Ybvq7SsQpRq+QkY57UCUNBNtabZqBaDtPLsxIxzxiMIT0ae1hXbLf9jEWZ5LNKiEpUW77/ZWRkEBAQUK5g30V9G/D19eWxxx7jscceY8uWLRezqSpztoy54jZu3EiXLl148sknHcuioqLw9fVl5MiRvPPOO/j7+wNlT1tWSpVYfuY6RfHUc015dnFxwcXFpdRyJyenGv1iuxB18T4JUZ1knxKi8sl+JaqNUwAMeBm6PwSrPoSNUzDGrMP47XBo0l93XsyIg18egvx0cPODGydjajaAS1IxqttDsOUbDCmHcVr7MQw49/fsIk5OTjjlJMLueQAYez6OUfYxIU7zCYZuD8M/72H+911ocz1Y8+DH2yE9GvwaYxw9B6Obl2Pqu3xWCVG5avo+VZGxnTfYt2PHDtq2bYvxPMV9i6bw7t69mxYtWmA214y2z48++ii33nrrOddp2LBhmcu7desGwKFDh/D39yc4OJj169eXWCc1NRWLxUJQUBAAwcHBxMfHl1gnMTERwLGOEEIIIYQQ5+RZHwa/Bd0fgX/eg63fwuGl+lAk7EoYNR18wi7duMzOMOhNmHMrrPscOt8FfmWXqSllw1e6C3HkVRBau8v/CFEluj8C6ydD4h7Y9ZPuCBu3RQf1b/sJPPyre4RCiFrivBP9O3bsSHJycrk32L17d6Kjoy9qUJUpICCAli1bnvPg6upa5nW3bt0KQIMGDQB933bt2sXJkycd6yxatAgXFxdHV+Hu3bvzzz//UFBQUGKdkJCQswYVhRBCCCGEKJNPKAz/CB7dCFG3AIUzRbo/CuMWXtpAX5Hmg6FxX7AVwOKXyned/EzYNEOf7vFolQ1NiFrNzRd6PKZP//oI7FsAJme4dXb5On0LIUSh86bfKaV46aWXyt0koniQqzZZu3Yt69ato2/fvvj4+LBx40aefPJJrrvuOiIiIgAYOHAgrVu35o477uC9994jJSWFp59+mvvuu88xX3rMmDFMmDCBu+66ixdeeIGDBw/y1ltv8fLLL19w52IhhBBCCHGZ82sMN06G3v+B/AwI6Vh9YzEYYNBb8GVP2Ps7HP0XGvU651WM22fpacf+zaDZoEs0UCFqoW4P6qzZ3BR9fsQXEFl23XchhDib8wb7rr76avbv31/uDXbv3h03N7eLGlR1cHFxYe7cuUyYMIH8/HwiIyO57777ePbZZx3rmEwm/vjjDx5++GF69uyJm5sbY8aM4f3333es4+Pjw+LFi3nkkUfo0qULvr6+jB8/nvHjx1fH3RJCCCGEEHVJTcnuCWoNXe6GjVPgr+fhgZVgLLtqoEHZMG74Sp/p/gicpzyQEJc1Fy9dm3PBeF0Ts93I6h6REKIWOm+wb8WKFZV+o0ajkVatWrF7927HslatWnHgwIFq6+jbqVMn1q1bd971IiIiWLBgwTnXadeuHf/8809lDU0IIYQQQoiap88LsPNHSNipawp2vqvM1RqkbcSQHgPuAdD+3LW0hRDoQHqH28BcuoGjEEKUxyX7W+21114jJycHgGnTpvHmm2+WuHzixIlMmzbtUg1HCCGEEEIIcTE8/KHP8/r00tchL730OkrRNPEvffrK+8Cp9s0AEqJaSKBPCHERLlmwb8KECWRlZQFw1113MWLEiBKXjxgxgrFjx16q4QghhBBCCCEu1hX36jp8OUnwz/ulLjbErMM35wjK7KrXFUIIIUSVu2TBPqXUpbopIYQQQgghxKVgctLNOgDWfQHJh0tcbFw3CQB7u1vAI+BSj04IIYS4LF3S6rjSjVYIIYQQQog6pvlAaHoN2C2w6KXTy5MOYTj4NwD2rg9W0+CEEEKIy895G3RUpv79+2M2n/smt2zZcolGI4QQQgghhKgUA9+Ew8th/x9wZAU07gPrJmFAcdK7IwH+zap7hEIIIcRlo0LBvmXLljFv3jyOHTuGwWCgUaNGjBw5kquvvrpc1x80aBCenp4XNFAhhBBCCCFEDRXYUtfk2/AV/PU83DEfts0G4HDQtcgEXiGEEOLSKXew78EHH2Ty5Mn4+vrSvHlzlFKsWbOGSZMm8fDDD/Ppp5+edxvPPPMMgYGBFzVgIYQQQgghRA3U5znYMRcS98B3N4I1D3uDDiR7tKjukQkhhBCXlXLV7Pvll1+YPn0606ZNIykpibVr17Ju3TpOnTrF119/zeTJk/ntt9/OuY3z1euLiYnh7rvvLv/IhRBCCCGEEDWHux/0fUGfTtgFgL3bIyB1u4UQQohLqlzBvunTpzN+/HjuuuuuEkE7o9HI3XffzRNPPMHUqVPPuY3zdeNNSUnhm2++Kc9whBBCCCGEEDVRl7shoDCTzycC1XJ49Y5HCCGEuAyVK9i3ZcsWbrjhhrNeftNNN7F58+ZzbuPo0aPUr1+/YqMTQgghhBBC1B4mJ7juUwhoDgNfB+Ml7QcohBBCCMpZsy8pKYnQ0NCzXh4aGkpycvI5txH5/+zdd3xUVfrH8c/MJJkU0hMSEgKEXoJKUZqKqBQRbFixoa6ui2VXdIu6FljLb9V1XdtaAbvurhVrsACi9N57JyGk98xkZn5/nFQIaUxI4ft+vS5z586de88lc2bufe5zzuncuWElExERERGR1qfTELhzmZl3Opu3LCIiIiehemX2ORwO/Pz8jvm6j48PDofDa4USERERERERERGRhqt3Xv1DDz1EYGBgja8VFhbW+f7LLrus1tezs7PrWxQRERERERERERGpQb2CfWeffTZbtmypc53ahIaG1vn6DTfcUJ/iiIiIiIiIiIiISA3qFeybN2/ece9o1qxZx70NERERERERERERObZ69dl3pPT0dHJzc71dFhERERERERERETkO9e6zLzs7mwcffJCPPvqIrKwsAKKjo7nppptq7c+v3M0331yv/cycObO+RRIREREREREREZEq6hXsy8zMZNiwYRw4cIBrr72WPn364PF42LRpEy+88AJz585l4cKFrFmzhiVLlnD33XcftY3Zs2fTuXNnBgwYgMfj8fqBiIiIiIiIiIiInOzqFeybMWMGfn5+7Nixg5iYmKNeGzNmDNdffz3Jyck8//zzNW7j9ttv58MPP2Tnzp3cfPPNXHfddURERBz/EYiIiIiIiIiIiAhQzz77PvvsM5555pmjAn0AsbGxPPXUU3z88cdMmzaNG2+8scZtvPzyy6SkpPDnP/+ZOXPmkJCQwJVXXsl3332nTD8REREREREREREvqFewLyUlhX79+h3z9aSkJKxWK4888kit27Hb7VxzzTXMnTuXjRs30q9fP6ZOnUrnzp3Jz89vWMkb6PHHH2f48OEEBgYSFhZW4zp79+5l4sSJBAUFERUVxd13343D4ai2zrp16xg5ciQBAQHEx8czY8aMo4KV8+fPZ9CgQfj7+9O1a1deeeWVpjosERERERERERGRCvUK9kVFRbF79+5jvr5r1y7at2/foB1bLBYsFgsejwe3292g9zaGw+Hgiiuu4He/+12Nr7tcLi688EIKCgpYuHAhH374IR9//DH33ntvxTq5ubmMHj2auLg4li1bxgsvvMAzzzzDs88+W7HOrl27GD9+PGeddRarVq3igQce4O677+bjjz9u8mMUEREREREREZGTW7367Bs3bhwPPvggc+fOxc/Pr9prJSUlPPTQQ4wbN67O7ZSUlPDJJ58wc+ZMFi5cyIQJE3jxxRcZN24cVmu94o6NNn36dMAMFFKT5ORkNm7cyL59+4iLiwPgH//4B1OmTOHxxx8nJCSE9957j+LiYmbPno3dbicpKYmtW7fy7LPPMm3aNCwWC6+88gqdOnXiueeeA6BPnz4sX76cZ555hkmTJjXpMYqIiIiIiIiIyMmtXsG+6dOnM3jwYHr06MEdd9xB7969Adi4cSMvv/wyJSUlvP3227VuY+rUqXz44Yd06tSJm266iQ8//JDIyMjjPwIvWbRoEUlJSRWBPoCxY8dSUlLCihUrGDVqFIsWLWLkyJHY7fZq69x///3s3r2bxMREFi1axJgxY6pte+zYsbz55ps4nU58fX1r3H9JSQklJSUVz3NzcwFwOp04nU5vHmqzKT+OtnI8Is1NdUrE+1SvRLxLdUrE+1SvRLyrtdSphpSvXsG+jh07smjRIqZOncr9999f0UedxWJh9OjRvPjii3Tq1KnWbZRnvCUmJjJ//nzmz59f43qffPJJvQvvTampqUcNQBIeHo6fnx+pqakV63Tp0qXaOuXvSU1NJTExscbtxMTEUFpaSnp6Oh06dKhx/08++WRF9mFVycnJBAYGNvawWqS5c+c2dxFE2hTVKRHvU70S8S7VKRHvU70S8a6WXqcKCwvrvW69gn0AiYmJfPPNN2RlZbFt2zYAunfvTkRExFHr7t+/n7i4uGpNc2+44QYsFku9C1Yfjz76aI0BsqqWLVvG4MGD67W9msrn8XiqLT9ynaqBz4asc6T777+fadOmVTzPzc0lISGBMWPGEBISUq/yt3ROp5O5c+cyevToY2Y4ikj9qU6JeJ/qlYh3qU6JeJ/qlYh3tZY6Vd4CtD7qHewrFx4ezhlnnFHrOn379mX16tV07dq1Ytmx+so7HnfeeSdXX311rescmYl3LLGxsSxZsqTasqysLJxOZ0WmXmxsbEWWX7m0tDSAOtfx8fGptdmy3W6v1jy4nK+vb4v+sDVGWzwmkeakOiXifapXIt6lOiXifapXIt7V0utUQ8rW4GBffZRnsjW1qKgooqKivLKtYcOG8fjjj5OSklLR1DY5ORm73c6gQYMq1nnggQdwOBwVA5UkJycTFxdXEVQcNmwYc+bMqbbt5ORkBg8e3KI/NCIiIiIiIiIi0vo17RC4LcjevXtZvXo1e/fuxeVysXr1alavXk1+fj4AY8aMoW/fvlx//fWsWrWKH374gfvuu49bb721ohnt5MmTsdvtTJkyhfXr1/Ppp5/yxBNPVIzEC3D77bezZ88epk2bxqZNm5g5cyZvvvkm9913X7Mdu4iIiIiIiIiInByaJLOvJXr44Yd56623Kp4PGDAAgJ9++olzzjkHm83GV199xdSpUxkxYgQBAQFMnjyZZ555puI9oaGhzJ07lzvuuIPBgwcTHh7OtGnTqvW1l5iYyNdff80999zDSy+9RFxcHM8//zyTJk06cQcrIiIiIiIiIiInpZMm2Dd79uw6+w3s1KkTX375Za3r9O/fnwULFtS6zsiRI1m5cmVDiygiIiIiIiIiInJcmqQZr7dH3RUREREREREREZG6NUmw70QN0CEiIiIiIiIiIiKV6tWM97LLLqt7Qz4+xMbGcv7557Nhwwbi4+OPu3AiIiIiIiIiIiJSf/XK7AsNDa1zCggIYNu2bVx99dW88cYb2Gy2pi67iIiIiIiIiIiIVFGvzL5Zs2bVe4NfffUVv/vd75gxY0ajCyUiIiIiIiIiIiIN5/U++0aMGMHgwYO9vVkRERERERERERGpg9eDfWFhYXzyySfe3qyIiIiIiIiIiIjUoUlG4xUREREREREREZETT8E+ERERERERERGRNkLBPhERERERERERkTZCwT4REREREREREZE2QsE+ERERERERERGRNkLBPhERERERERERkTZCwT4REREREREREZE2QsE+ERERERERERGRNkLBPhERERERERERkTZCwT4REREREREREZE2QsE+ERERERERERGRNkLBPhERERERERERkTZCwT4REREREREREZE2QsE+ERERERERERGRNuKkCfY9/vjjDB8+nMDAQMLCwmpcx2KxHDW98sor1dZZt24dI0eOJCAggPj4eGbMmIHH46m2zvz58xk0aBD+/v507dr1qG2IiIiIiIiIiIg0BZ/mLsCJ4nA4uOKKKxg2bBhvvvnmMdebNWsW48aNq3geGhpaMZ+bm8vo0aMZNWoUy5YtY+vWrUyZMoWgoCDuvfdeAHbt2sX48eO59dZbeffdd/nll1+YOnUq0dHRTJo0qekOUERERERERERETnonTbBv+vTpAMyePbvW9cLCwoiNja3xtffee4/i4mJmz56N3W4nKSmJrVu38uyzzzJt2rSKTMBOnTrx3HPPAdCnTx+WL1/OM888U2uwr6SkhJKSkornubm5ADidTpxOZwOOtOUqP462cjwizU11SsT7VK9EvEt1SsT7VK9EvKu11KmGlM/iObINahs3e/Zs/vCHP5CdnX3UaxaLhfj4eIqLi0lMTOSWW27htttuw2o1rZ1vuOEGcnJy+Pzzzyves2rVKgYOHMjOnTtJTEzk7LPPZsCAAfzrX/+qWOfTTz/lyiuvpLCwEF9f3xrL9eijj1YEJKt6//33CQwMPM6jFhERERERERGR1qqwsJDJkyeTk5NDSEhIreueNJl99fG3v/2N8847j4CAAH744Qfuvfde0tPT+etf/wpAamoqXbp0qfaemJiYitcSExNJTU2tWFZ1ndLSUtLT0+nQoUON+77//vuZNm1axfPc3FwSEhIYM2ZMnX/E1sLpdDJ37lxGjx59zKCniNSf6pSI96leiXiX6pSI96leiXhXa6lT5S1A66NVB/uOlQ1X1bJlyxg8eHC9tlce1AM47bTTAJgxY0a15RaLpdp7yhMjqy6vzzpHstvt2O32o5b7+vq26A9bY7TFYxJpTqpTIt6neiXiXapTIt6neiXiXS29TjWkbK062HfnnXdy9dVX17rOkZl4DTF06FByc3M5dOgQMTExxMbGkpqaWm2dtLQ0oDLD71jr+Pj4EBkZ2eiyiIiIiIiIiIiI1KVVB/uioqKIiopqsu2vWrUKf39/wsLCABg2bBgPPPAADocDPz8/AJKTk4mLi6sIKg4bNow5c+ZU205ycjKDBw9u0RFiERERERERERFp/azNXYATZe/evaxevZq9e/ficrlYvXo1q1evJj8/H4A5c+bw+uuvs379enbs2MEbb7zBgw8+yG233VbRvHby5MnY7XamTJnC+vXr+fTTT3niiScqRuIFuP3229mzZw/Tpk1j06ZNzJw5kzfffJP77ruv2Y5dRERERERERERODq06s68hHn74Yd56662K5wMGDADgp59+4pxzzsHX15eXX36ZadOm4Xa76dq1KzNmzOCOO+6oeE9oaChz587ljjvuYPDgwYSHhzNt2rRqA2skJiby9ddfc8899/DSSy8RFxfH888/z6RJk07cwYqIiIiIiIiIyEnppAn2zZ49m9mzZx/z9XHjxjFu3Lg6t9O/f38WLFhQ6zojR45k5cqVDS2iiIiIiIiIiIjIcTlpmvGKiIiIiIiIiIi0dQr2iYiIiIiIiIiItBEK9omIiIiIiIiIiLQRCvaJiIiIiIiIiIi0EQr2iYiIiIiIiIiItBEK9omIiIiIiIiIiLQRCvaJiIiIiIiIiIi0EQr2iYiIiIiIiIiItBEK9omIiIiIiIiIiLQRCvaJiIiIiIiIiIi0EQr2iYiIiIiIiIiItBEK9omIiIiIiIiIiLQRCvaJiIiIiIiIiIi0EQr2iYiIiIiIiIiItBEK9omIiIiIiIiIiLQRCvaJiIiIiIiIiIi0EQr2iYiIiIiIiIiItBE+zV0AqZnH4wEgNze3mUviPU6nk8LCQnJzc/H19W3u4oi0eqpTIt6neiXiXapTIt6neiXiXa2lTpXHh8rjRbVRsK+FysvLAyAhIaGZSyIiIiIiIiIiIi1BXl4eoaGhta5j8dQnJCgnnNvt5uDBgwQHB2OxWJq7OF6Rm5tLQkIC+/btIyQkpLmLI9LqqU6JeJ/qlYh3qU6JeJ/qlYh3tZY65fF4yMvLIy4uDqu19l75lNnXQlmtVjp27NjcxWgSISEhLboCibQ2qlMi3qd6JeJdqlMi3qd6JeJdraFO1ZXRV04DdIiIiIiIiIiIiLQRCvaJiIiIiIiIiIi0EQr2yQljt9t55JFHsNvtzV0UkTZBdUrE+1SvRLxLdUrE+1SvRLyrLdYpDdAhIiIiIiIiIiLSRiizT0REREREREREpI1QsE9ERERERERERKSNULBPRERERERERESkjVCwT0REREREREREpI1QsE9ERERERERERKSNULBPRERERERERESkjVCwT0REREREREREpI1QsE9ERERERERERKSNULBPRERERERERESkjVCwT0REREREREREpI1QsE9ERERERERERKSNULBPRERERERERESkjVCwT0REREREREREpI1QsE9ERERERERERKSNULBPRERERERERESkjVCwT0REREREREREpI1QsE9ERERERERERKSNULBPRERERERERESkjVCwT0REREREREREpI1QsE9ERERERERERKSNULBPRERERERERESkjVCwT0REREREREREpI1QsE9ERERERERERKSNULBPRERERERERESkjVCwT0REREREREREpI1QsE9ERERERERERKSNULBPRERERERERESkjfBp7gJIzdxuNwcPHiQ4OBiLxdLcxRERERERERERkWbi8XjIy8sjLi4Oq7X23D0F+1qogwcPkpCQ0NzFEBERERERERGRFmLfvn107Nix1nUU7GuhgoODAfNHDAkJaebSeIfT6SQ5OZkxY8bg6+vb3MURafVUp0S8T/VKxLtUp0S8T/VKxLtaS53Kzc0lISGhIl5UGwX7WqjyprshISFtKtgXGBhISEhIi65AIq2F6pSI96leiXiX6pSI96leiXhXa6tT9enqTQN0iIiIiIiIiIiItBEK9omIiIiIiIiIiLQRCvaJiIiIiIiIiIi0EQr2iYiIiIiIiIiItBEK9omIiIiItHEut4db317OpH//SqGjtLmLIyIiIk1IwT4RERERkTbufyv2MXfjIVbsyeKDpfuauzgiIiLShBTsExERERFpw3KLnTz93ZaK568t2EFJqasZSyQiIiJNScE+EREREZE27MUft5Oe76BrVBCxIf4cyi3hfyv2N/l+1x/IIT2/pMn3IyIiItUp2CciIiIi0kbtSi9g1i+7AHhoQl9uO7srAP+etwOny91k+/1522EmvLCQa99cjsvTZLsRERGRGijYJyIiIiLSRj3+1UacLg/n9IpmVO/2XHNGJyKD/NifVcTnqw82yT5LXW5mzNkIwM70AlalW5pkPyIiIlIzBftERERERNqg+VsP8/2mNHysFv56YV8AAvxs/OYsk9338rztuNzeT7t7f+letqXlVzyfe8CKuwn2IyIiIjVTsE9EREREpI1xutz87UuTXXfDsC50b9+u4rXrhnYixN+HnYcL+GZ9ilf3m13o4Nm5WwH449heBPv7kFpkYe6mNK/uR0RERI5NwT4RERERkTbm3cV72J6WT0SQH78/r0e114L9fblpRCJgBu/weLyXdfevH7aRXeikZ0w7fnt2V64f0gmAl+fv9Op+RERE5NgU7BMRERERaUMyCxz8syy77t4xPQkN9D1qnZtGdCHIz8bm1Dx+8FLW3fa0fN5ZtAcwg4H42KzcOKwTflYPG1PymLflsFf2IyIiIrVTsE9EREREpA3559yt5BaX0js2mKtP71TjOmGBflw3rDMAL/7kney+x7/aSKnbw/l92nNWj2gAIoL8ODPGbPv5H7cpu09EROQEULBPRERERKSN2Jyay3tLTHbdIxP7YbMeeyTc35zZFbuPldX7svlle8Zx7XfeljR+2nIYX5uFB8b3qfbaqDg3fj5WVu3NZtGO49uPiIiI1E3BvioeffRRLBZLtSk2NrbidY/Hw6OPPkpcXBwBAQGcc845bNiwodo2SkpKuOuuu4iKiiIoKIiLLrqI/fv3n+hDEREREZGTjMfjYcacjbg9cEFSLMO6Rda6fnSwnWvOMJl/L/60rdH7rToYyI3DutA1ul2110P84KpB8QC88OP2Ru9HRERE6kfBviP069ePlJSUimndunUVrz311FM8++yzvPjiiyxbtozY2FhGjx5NXl5exTp/+MMf+PTTT/nwww9ZuHAh+fn5TJgwAZfL1RyHIyIiIiInieSNh/h1RwZ+PtajsuuO5bazu+Jrs7B4ZybLdmc2ar/vLd7DjsMFRAT5cdcRg4GU+82ZXfC1WVi0M4PljdyPiIiI1I+CfUfw8fEhNja2YoqONv2NeDwennvuOR588EEuu+wykpKSeOuttygsLOT9998HICcnhzfffJN//OMfnH/++QwYMIB3332XdevW8f333zfnYYmIiIhIG1bsdPH4V5sAuO2sriREBNbrfXFhAUwa2BEwI/M2VFaBg39+b7ICp43uSWjA0YOBHLWfn5TdJyIi0pR8mrsALc22bduIi4vDbrczZMgQnnjiCbp27cquXbtITU1lzJgxFeva7XZGjhzJr7/+ym9/+1tWrFiB0+mstk5cXBxJSUn8+uuvjB079pj7LSkpoaSkpOJ5bm4uAE6nE6fT2QRHeuKVH0dbOR6R5qY6JeJ9qlfSWr2xYBd7MwuJCbbzmxGdGvQZ/s2ZnfnP8n3M33qYVbszSIoPqfd7n527hZwiJ71i2jHptNij9lu1TpXvZ96Whu9HRCrpt0rEu1pLnWpI+RTsq2LIkCG8/fbb9OzZk0OHDvHYY48xfPhwNmzYQGpqKgAxMTHV3hMTE8OePaYT5NTUVPz8/AgPDz9qnfL3H8uTTz7J9OnTj1qenJxMYGD97sy2FnPnzm3uIoi0KapTIt6neiWtSY4Dnl9lAyyMjilk/g/JDd7GgEgrK9KtPPKfX7mll7te70kthPfWmP2eF5lD8nffHnPd8jo1MNLK8gbuR0Rqpt8qEe9q6XWqsLCw3usq2FfFBRdcUDHfv39/hg0bRrdu3XjrrbcYOnQoABZL9RHNPB7PUcuOVJ917r//fqZNm1bxPDc3l4SEBMaMGUNISNu46+l0Opk7dy6jR4/G17fmJh4iUn+qUyLep3olrdGfPlmPw32QUzuG8tD1Z2CtZQTeY+mRls/4F35lbaaVHoPOpEdMu1rX93g83PL2StxkcH7vaO65ZkCN6x1Zp3qk5XPhi2Y/3QeNoGdMcIPLKnKy02+ViHe1ljpV3gK0PhTsq0VQUBD9+/dn27ZtXHLJJYDJ3uvQoUPFOmlpaRXZfrGxsTgcDrKysqpl96WlpTF8+PBa92W327Hb7Uct9/X1bdEftsZoi8ck0pxUp0S8T/VKWos1+7L5dNVBAB69qB92u1+jttM3Ppxx/WL5dkMqry7czb+urjl4V+6nzWn8vD0DX5uFv07oV2d9Ka9TfePDuSAplq/XpfLqz3t4/hhBQhGpm36rRLyrpdephpRNA3TUoqSkhE2bNtGhQwcSExOJjY2tltbpcDiYP39+RSBv0KBB+Pr6VlsnJSWF9evX1xnsExERERFpCI/Hw6NzNgBw2cB4BnQKr+Mdtbvz3O4AzFlzkN3pBcdcz+ly87evNgJw04hEukQFNWg/d4wy+/ly7UF21bIfERERaRwF+6q47777mD9/Prt27WLJkiVcfvnl5ObmcuONN2KxWPjDH/7AE088waeffsr69euZMmUKgYGBTJ48GYDQ0FBuueUW7r33Xn744QdWrVrFddddR//+/Tn//POb+ehEREREpC35fPVBVu3NJtDPxp/H9T7u7SXFh3JOr2jcHvj3vB3HXO+dRXvYebiAyCC/igBhQ/SLC+W83u3L9qOReUVERLxNwb4q9u/fzzXXXEOvXr247LLL8PPzY/HixXTu3BmAP/3pT/zhD39g6tSpDB48mAMHDpCcnExwcGVfI//85z+55JJLuPLKKxkxYgSBgYHMmTMHm83WXIclIiIiIm1MQUkpT36zCTCZcjEh/l7Z7l1lwbuPV+7nQHbRUa9nFjh47vutANw7phch/o1r7nRH2X4+WXmA/Vn173BcRERE6qZgXxUffvghBw8exOFwcODAAT7++GP69u1b8brFYuHRRx8lJSWF4uJi5s+fT1JSUrVt+Pv788ILL5CRkUFhYSFz5swhISHhRB+KiIiIiLRhr8zfwaHcEhIiArjlzESvbXdQ5wiGdY2k1O3htflHZ/c99/1WcotL6dMhhKtOb/w57sBO4ZzZPYpSt4dX5+88niKLiIjIERTsExERERFpRfZlFvLaAhMge3B8H/x9vduCpLxp7gfL9pGWV1yxfOuhPN5bsheAhyb0wdaIUX9r2s9Hy/dxKLe4jrVFRESkvhTsExERERFpJTYezOWP/1tDSambYV0jGdsv1uv7GN4tkgGdwnCUunnz512AGQzkb19uxOX2MLZfDMO7RR33foYkRnB6l3AcpW5eX6DsPhFpeVxuDx6Pp7mLIdJgCvaJiIiIiLRgxU4X/1uxn0tf/oXxz//M4p2Z+FgtPDyxLxbL8WXX1cRisXBn2Yi57yzeQ1aBgx83p/HztnT8bFYeGN/He/s5twcA7y3ZS0Z+iVe2KyLiDTsP5zPqmXmMe+5n9S0qrY5PcxdARERERESOtj3NNJv9eMV+cotLAfCxWhjbL5bfnJVInw4hTbbvc3u3p0+HEDal5PLazzv5dn0qADed2YXOkUFe28/ZPaI4pWMoa/fnMPOXXfxx7PGPKiwicrx2pxdwzeuLOZRrbkJc9epi3r91iFe//0SakoJ9IiIiIiItREmpi2/Xp/Lekr0s3ZVZsbxjeADXnNGJKwZ3pH2wd0berU15dt8d76/k3/PMQB1R7ewVGX/e3s9t76zgrV/3cNtZ3QgNbNwIvyIi3rA3o7Ai0NejfTtcbg870wu44pVFvH/rELq3D27uIorUScE+EREREZFmtju9gA+W7uW/K/aTWeAAwGqB8/rEcO2QTpzdIxrrcQ6I0VDjkmLpFh3EjsMFAPxxbE+C/b0fiDu/Twy9Y4PZnJrHW4t2c/d5Pby+DxGR+tiXaQJ9KTnFdIsO4v1bhwJw3RtL2HIoj6teXcw7twyhb1zTZVaLeIP67BMRERERaQYut4dv1qVw3RtLOOeZeby6YCeZBQ5iQ/z5w/k9+OUv5/L6DYM5p1f7Ex7oA7BZLRWBt6T4EC4flNAk+7FaLdxRljE485dd5JeUNsl+RERqcyC7iGteX8yB7CK6RgXxwa1DiQ62Ex1s58PbhpIUH0JGgYNrXl/M6n3ZzV1ckVops09ERERE6m1XegFvLtzJ0K6RXNi/Q5MMEHEycLrc/O7dlXy/6RAAFguM7BnN5DM6cW7v9vjYWsY9+YtPiyc62E7v2BBsTRhwHN+/A/+cu5Wd6QW8t3gPvx3Zrcn2JSJypJScIq55bTH7s4roEhnI+7cOpX1IZZcJ4UF+vPebodw0aykr92Zz3RtLmHXT6ZzeJaIZSy1ybC3jLEJEREREWrRSl5tX5+9g3HMLeHfxXu58fxVTZi1jX6ZGKGwot9vDff9dw/ebDmH3sTL1nG4s+OMoZt90BmP6xbaYQF+54d2iiAjya9J92KwWppZl973+806Kna4m3Z+ISLlDucVc89pi9mYW0ikikA9uG0ps6NF9o4YG+PLOLUMY2jWC/JJSbnhzKQu3pTdDiUXq1rLOJERERESkxdl4MJdLX/6VJ7/ZTEmpm1M6huJnszJ/62FG/3M+r87fgdPlbu5itgoej4eHPl/P56sP4mO18O/rBvKncb1JiAhs7qI1u4tPi6NjeADp+Q7O/PtP3Pn+St5ZvIftaXl4PJ7mLp6ItEFpZYG+3RmFdAwP4IPbhtIhNOCY6wfZfZh90xmM7BlNkdPFzW8t48fNh7xWns2puRzMLvLa9uTkpWa8IiIiIlKjklIXL/64nX/P20Gp20OIvw9/ndCXKwZ1ZFd6AQ98uo7FOzN58pvNfLb6IE9e1p/TEsKau9gt2t+/3cJ7S/ZiscA/rzqNc3vHNHeRWgxfm5UZF/fjzvdXkZ5fwpdrU/hybQoAUe38GNI1kqGJEQztGkn39u3UhFwEcwNhf1YRq/dls2ZfNmv2ZwPwu3O6MapXe9WTWhzOK2HyG0vYmV5AfFgAH9w6lPiwYwf6yvn72njthkHc9f4qkjce4rfvrOD5qwdwQf8OjSqHo9TNN+tTmPXLblbvyybIz8aL1w5kVK/2jdqeCCjYJyIiIiI1WLEniz9/vJbtafkAjO0Xw98uTqrow6hrdDs+uHUo/1uxn8e/3sSmlFwuffkXbhzWhXvHNM2ora3dSz9t55X5OwB44tL+TDw1rplL1PKc2zuGVQ+PZs2+HBbvzGDxzgxW7MkiPd/BV2tT+Kos+BcZ5MfQrpEM6WqCfz0U/Gu1ihwu3l+6l9wiJ6d3iWBg5zAC/XSZeiw5hU5W7Ennu/0WPnt3JesO5JKe7zhqvWWzl3Nm9ygevLAPfTpo5NgjZeSXcO0bi9melk+HUH/ev3VIgzKs7T42Xrp2INP+s4Y5aw5yx/sr+ceVp3LpgI713kZ6fgnvL9nLu4v3kJZXUrG8wOHiN28t528XJzF5SKcGHZdIOX2LioiIiEiFgpJSnknewuxfd+PxmIyqGRcncUFS7FHBFIvFwhWDEzi3d3se/2oTn6w6wOxfd/Pt+lSmX9yPsf1im+koWp53Fu3m6e+2APDA+N5cc4Yu4I7F7mPjjMQIzkiM4O7zelBS6mLt/hwW78hg8S4T/MsocPDVuhS+WlcZ/BvcJZxu0e3oEhlEl6ggukQGEh1sVxCwhfJ4PHyzPpXHvtzIwZziiuU+VgundAxlSNdIhiRGMKhz+El786Ck1MWmlDzW7MuuyNzbmV5Q9qoNMP3F+dos9OkQwmkJYZzaMYytaXnMWribhdvTGf/8z1w1OIFpY3rSPvjofuhORpkFDq59YwlbD+UTE2Ln/VuH0jkyqMHb8bVZee6q0/D3sfLfFfuZ9p81FDvddX6/rz+Qw6xfdjNnzUEcZV1gRAfbuX5oZ64Y3JF/JG/lfyv288Cn69ibWcifxvZqlhHZpXVTsE9ERESkFSp2upi/9TDfrk8lt8jJkK4RjOgeRZ/YkEZfFPy87TD3f7KO/Vmmv6BJAzvy0IQ+hAXWPjhDZDs7z151GpcN7MiDn61jT0Yhv31nBaP7xjDj4n619n90Mvh01X4e+nwDAHed253bztZIsw1h97FxepcITu8SwV1UBv+W7Mxg8c5Mlu/JJKPAwXcbDgHV+84K8LXROTKQLpFBdI4yjyYYGEhMsL8uoJvJtkN5PPLFBn7dkQFAfFgAgzqHs2x3Jik5xazcm83Kvdn8e94OrBZIig9lSGIEQxIjOb1LBKGBbTf4l1XgYO7GQ3y7IZWF29NxlB7dH2qniACirQVccEYfBnaJpG+HEPx9bdXWuW5IZ/7+7Wa+XJvCh8v28cWag0w9pxu/OavrUeueTLILHVz3xhI2p+YRHWwCfYlRDQ/0lbNZLfx90ikE+Nl4e9Ee7v9kHcVOFzeNSKy2XqnLzXcbDjH7110s251Vsfy0hDBuGtGFC5I64OdjhlR4+vJTSAgP5J/fb+WV+Ts4kF3E05efclL/3aThFOwTkTqVlLpwuyHATz8w0vodyC7i2/WpjOwZTff27Zq7OCINUuRwMW9LGl+tS+HHzWkUOipHLP1hcxoAEUF+DO8WyYjuUZzZPapezZJyCp089tVG/rtiP2AuvJ+4rD8je0Y3qHxn9ojiuz+czQs/buPV+TuZu/EQv25P576xvbhhWBdsJ2Fg5bsNqdz337UATBnehWmjezZziVq/qsG/O881/V2t3W8yn/ZkFLI7o4A9GYXszyqkyOlic2oem1PzatiOlc6RgXSODKJTRCCdIgJJiAigU0QgHcMDdWHdBHKLnfzr+2289etuSt0e/Hys3D6yG78b2Y0AP1tF/3OLd2awZFcmS3ZlsC+ziLX7c1i7P4fXf96FxQK9Y0PKgn8m8FfsdFHkcFPoKDXz5c+dpRQ7yp473RQ5XBQ5S3G5PZzRJYIL+negd2xws2d/puUV892GQ3y7PoXFOzNxuSsHpAkP9OXUhDCTtZcQxmkdw2jnZ+Hrr79m/LDO+PrWHPhMiAjkxckDuWlEJn/7chOr92XzTPJW3l+ylz+O68XFp8afdMHunEIn1725hI0puUS1s/PBrUPoFn3854JWq4XpF/Uzffkt2Mn0ORspcrqYek53MgscfLhsL+8s2kNKWQarj9XChad0YMrwLgzoFH7U9iwWC78/vwcdwwP4yydrmbPmIKk5Rbx2/WDCm3hkdGk7LB4NbdUi5ebmEhoaSk5ODiEhbaOPBafTaX6Uxo8/5o+StCzrD+Tw3pI9fL76ICWlbvrHh1b0jTP4JG5S0VKoTjVMRn4JL8/bwTuL9+AodWOxwIRT4rjr3O70jAlu7uJJC9ES61VBSSk/bUnjm3Wp/Lg5jSJnZYAvLtSfC/p3oEOoP7/uMP2bVQ0AAnSKCKwI/A3vFnnUhcK361N46PMNHM4rwWKBG4Z25o/jetPOfnz3hLek5vHAp+tYscdkMJzaMZQnLutPv7jQ49pua/LL9nRumrUMh8vNpIEdefryU066i+vmrFOOUjcHsovYnV5QEQAsf9yXWUipu/bLoJgQe1kAMJCEcBMM7BRpHqPb2U+6v+XxcLs9fLLqAP/3zWbS803fZKP7xvDQhX3pFFn7DYmD2UUsLQv8LdmZWaUZq3ckRgVxQVIsFyR1ICk+5IQF/spvPn67PoXle7KoelXet0MIFyTFMjYptsb+KBtarzweD3PWpvD3bzZzoGyk11M6hvLXC/tyRmKEV4+rpcotdnL9G0tYsz+HyCA/PrhtqNfP/zweD899v41//bANgOHdIlmxJ4uSsuzMyCA/rh3SiWuHdiYmpH5Nqn/dns5v311BXnEpXaOCmHXT6Y1qciy1a4nnfzVpSJxIwb4WSsG+pufxeMgtKiW9oIT0vBIyChyk55fg72PjzB5RxNVjJKa2qNjp4su1Kby7eA+r92Ufcz2b1UJSXEhF59iDu0QQ0gqDf45SNw6X+7gvaptDS6tTLVV+SSlv/LyT1xfspKAsCNI1KqjaxcIFSbHceW73kyoIITVrKfUqv6SUHzYd4pt1qczbmkaxs7IZV8fwAC7s34EL+nfg1I6h1S4CHaVu1uzPZuG2dH7Zns6qfdnVMkQsFugXF8KI7lEMSYzgv8v38836VAC6Rgfx1KRTGNzFexd+breH95fu5e/fbiavuBSb1cLVpydwxeCEo8re1qzYk8X1by6h0OFiXL9YXpw8AB+btbmLdcK1lDp1pFKXm4PZxWXBvwL2ZhayL7OIvZmF7M0sJL+ktNb3232sJEYFMaJ7FCN7RnNGYkSbygQ0GXJuIryQRbT+QA4Pf76elXuzAfMb/PDEvpzTyJFG0/KKTfBvZyYr9mThcLkJ9LPh72sjoGwK9LPh71f5PMCv+mNJqYvvN6Uxf+vhas1kO4YHML5/B8YlxXJaxzCvB3R3pxfwTVmAb83+nGqvnZYQxgVJsYxLiq0zmNPYelXsdDHzl128/NOOis/4BUmx/OWC3q0ugOTxeMgrKSW7wElWoYOsQgfZheXzTrKrPM8udHIwu4iMAgfhgb58cNtQesc23TX2v+ft4O/fbq54nhQfwk3DE7nwlA6N+p7YeiiPm2Yt40B2EZFBfrx+42AG1pARKI3XUn+rjqRgXxugYF/jlaf/70ovID2/hIx8E8RLL3vMKCghPc9BRkEJTtexP/69YoI5p1c05/Rqz+Au4fi28RP0nYfzeX/JXv67Yj85RU7AdPY7LqkD1w3pRHx4AEt2ZlY0q9ibWVjt/VYL9IsLZWh55l+XCEIDmveL0uPxkFHg4GB2EQezi8sei0jJKeZA2fzhsrvLgzqFM7ZfLGP7xdZ5h7mlaC0/Ss2l2OnivSV7eemn7WQWmFHqkuJD+NPY3pzVI4pNKXm8+NM2vlmfWnE3/fw+Mdx9XndO6RjWfAWXZtVc9crl9nAot5gluzL4el3qURegnSMDGd+/A+MbmHmSX1LK0l0ZLNyWwS/b09ly6OimjDarhdtHduWuc3s0WbAiLbeY6XM2VgymACab5pLT4rlkQFyru8isy6aUXK56dRG5xaWc1SOKN24cjN2n7QSCGqI1/lZ5PB6yC50Vgb99WSYTsPz5weziakF0AH9fK0O7RnJ2j2hG9oqma1RQiwxmlx9bam4xqTnFpOYWk5JTzKGcYlJyyx5zisgtNoGg6GA7SXEhJMWHVkxxof71OrasAgdPJ2/hg6V78Xgg0M/G3ef14OYRiRV9kzW3/JJSftqcxjfrU/hp8+FqmdMdQv0ZlxTL+P4dGNQpvEGBv2Kni/T8Eg7nmWuQjQdz+WZ9SrXm5BYLnN4lwmTw9YttUKLB8darw3klPDt3Kx8t24vbY875pwzvwo3Du1Dq8pBfUkqhw0VBSSn5JaUVj0cvc1HoKMVigQ6hAcSF+tMhLIC4sMr5xtxQ93g8ZBU62Z9VyIGsIg5kF7E/q3wqJD2/hOxCZ53ZuUeKCPLj3VuG0Deu6a+vP16xn2W7M7l8UEcGdQ4/7u+DtNxibn5rGesP5GL3sfKvqwcwLkmDYHlLa/mt8mqwb9q0aQ0uwF//+lciIk6OdOCmomBf/aXlFpf145HNmrLHrEJnvd8fbPchKthOZJAfUe3spOUVs3pfNlV/O9rZfTize1RF8C82tHlHsvJ4PLjcnuPOEHC63Hy/8RDvLtnDL9szKpbHhwUweUgnrhycQHSwvcb3HswuYsmuDBbvMM0qdmdUD/6VZ4/0jw+ja1QQiVFBJEYHkRAe6LUTPJfbQ0pOEfsyi9iXVcj+rKJqAb2D2UUVafMN0adDCOP6xTI2KYZeMc3fj8uxtJQfpZwiJwu3pfPTljQW78zA44Fgfx/a2X1oV/ZY8dzuSzt/H4KrvFb+PCbU3yvZoaUuN5+sPMBz32+tGN2va1QQ947pxQVJsUedrG89lMeLP25nztqDFUG/Ub2iueu8Hm32rmlusZOU7GIO5pTVl7J5R6mbID8fAvxsBNltBPr5EOhnI8jPh0C7rfK1sueBfmadEH+fFltPGqqp6pXH4+Fwfgn7Ms2Fyv6sIvZllj1mFXIwu+ioG1Bdo4IY378DF/SPpW8H7zQtS8st5tcdGSzcns6SXRl0CA3gkYl9T1hW66/b0/lw2T6SN6ZWy1Yc2CmMSwfEc+EpcV7JJGpOu9ILuOKVRaTnlzCoczjv3HIGgX6tL3vcW1rKb5U3OV1uUrKLWXcghwVbDzN/62FSc4urrdMxPICRPaMZ2TOa4d2jmrQFgdPlNtlMBU4yC0yGU2aBg+xCB5kFTjIKSkxAryzA15hzo6rCA31Jig+lX1woSfEhJMWF0jkysOI7ylWW0fvMd1sqbiBffFoc91/Qp9nPoWtT5HAxf2saX69L5YdNhypaA4AJeo7rF8sFSbGEBPhyuCyQVz6VB/YO55sWQ+XB0iPZrBaGd4tkXFIsY/rGHvM8uy7eqlebU3N5/KtN/LwtvdHbqEuIvw9xYQF0CPU3QcAq8742KweyizhQFsSrnC+qFnitjb+vlfBAP8IC/QgP9C2br/4YHuRLWKAfPWOCW2VrnnIFJaXc9cEqftychsUCD47vwy1nJp6wc7DybMrcImfF94gF08dgeQksFrBgoWqRLJbKdXysFvx8rNh9bPj5WJusL1+Px0Op20Opy1Ovfudby2+VV4N9VquVYcOG4edXvxOvhQsXsmXLFrp27Vr/EstRFOyrWU6hk7UHslm7P4c1+8zjkSdXYO5OdY1qR3Swnch2JohX/hhV8dwE+GrKYsgqcLBg22HmbznMvK2HK7KCyvXpEMI5vaIZ1as9AzuFea1ZTpGj7C5gfg0nD+Xz+SYzscjpIizQl9gQf9qH+BMTbCcmxJ+Y0Mr52FB/IoP8jipfSk4RHyzdx4dL95KWZzLbLBYY1as91w3txMie7Rv8xZuSU8SSnSbwt3hnJruO0Z+KzWohITyAxKggukQFlQUC25EYHUSHkOqj4nk8HtLzHRV31Msvjs1zE6So646exQLR7ezEhQUQX+1Eo/KEw1HqNqOerU9l6e7qnSJ3iQw0GX9N1JzjeDTXj5LH42HroXx+2pLGj5vTWLEn66gMh8aKC/WnV2wwvWJD6B0bTK/YYLpFt6tXgNjj8fDt+lSeSd7CjsPm89ch1J/fn9eDywd1rLOebk/L5+WftvPZ6gMVwf6zekRx93k9OL2BzRqdLjfbDuWz/kAO6w7ksPVQHgF+NiIC/QgP8iMiyJyAVn1eflLamCxit9uDw+WmpNSNo9RNQUkpB3PKgnjZRRwsy9QoD+zl1dE8raFCA3zpX5bx0T8+lFM6htIxPKBVBgCdTidfffU1g886l+3pJpugMW0gCkpKKwJ55d9fdV1g+1gtdItux9ikWMb3j23RNxuOV35JKd+tT+Wz1Qf4ZXt6RZ3zsVoY2TOaSwbEM7pvTKtrFnkgu4grX1nEgewi+nYI4YPbhjZ7lntzay0XUMfD4/GwLS2f+VtM4G/prkwcrsr67mO1MLhLOGeXBf9qCt6Xutzkl5SSV1xKTpGTvOJScovNY16xk9wi8zyrwEFmWTPFrAIHWQWORn2nRwT5EVt2rhgb6l8x36HKvI/VysaUXDYczGH9gRzWH8hl66G8Gs+9gv196BcXQr+4UBbtyGBjSi4AvWODmX5RP4Z0jWxwGZtTsdPFwm3pfL0+hbkbD5F3jOBdbfxsVqKD7UQF24kP82dUr/aM7htT5+jm9eHNeuXxeJi39TB//2Yzm1PzCPKzEWT3KZvMDb52Fc99aGe3lT36EOhn1jE34IuPuul+rKBnfbUPthMfbs7hO4YHEh8eQMfwAGKC/SvOpVrb78TxKnW5eXTOBt5dvBcwAz89NKFvg6/dCkpK2ZdVyKHcEnKLnOSUTbnFzornuUWlRy330il/BZvVgt3Hip+PFT+bFbtv2WNZMNAEBs25saPUjdPlxunylD3WPg/mHHXNI2PqLEdr+a3yerAvNTWV9u3r16dCcHAwa9asUbDvOCnYZy5eV+zNqgjqrd2ffVT2GJjmo93bt+OUjmGc2jGUUzqG0btDsNeay7jdHtYdyOGnLWnM23KYNfuzq134Bfv7cHaPaIZ2i8TXaqm42C4pdVWZr3xeUuqmxGmel7+WU+TkcF5Jnf3DNIbVAlHt7MSG+tM+2B+X282CbekVwZmodn5cOTiBa87oVK8RG+vLNEfLZNuhPHamF7DrsOkc+8iO46uy+1jpEhlE+xA7qTnF9bqr52ezVvzwdwwPpGO4CeR1CDUnBjEh/g3KJMwscPD9pkMkb0hlwbb0as3oYkLsjOlrmloM6RrR7E27T+SPUqGjlF+3Z/DjljTmbU6ryJgr1y06iFG92jOyVzTB/r7kF5eSX2IuUvJLSsuel5JXZT6/uOx52XrZx8jI9bFaSIwKoldscFkA0AQC48MCKoKvC7el89R3m1lb1v9NeKAvU8/pzvXDOjf4JHB3egEvz9vOJysPVFzQDOsayd3n9WBo14gaL9C2peWz7oC5GFq7P4dNKbmNzpwI8fcpO4H1o53dB4fLfI+U9y9Z/v1SdVltXRIcS1igb1k9MfWlQ5g//j42ipymiU6hwzTNKXC4KKx47qLAUUqRo3KdYwXcwwJ9SYoLpX9HEwDsH9+wAGCho5SD2SZIWZ55mJpTTFahg+hgO/FhgVUuAAIa3Vl+sdPFtkP5bErNZVNKLpsO5rBuXyYFpd4Pslks0CHEn45lnf13DA8gIaLyMTbE/6QcrTYtt5gv1hzks9UHWH8gt2J5O7sP45JiuXRAPEO7Rrb4/5v0/BKufGURO9ML6BoVxH9uH0ZUu8Zl7bQlreUCypsKHaUs3pnB/C2HWbAt/agboNHBdhLCA8oCeSaYV1DL+VF9WCxU3DQqv5EUHuhrbigF+lUE9DqEBtA+xN7oAElJqYutqWW/eQdz2HAgh02pedXOl8D8lt07phfXDunU6vuqdJS6+WVHOt+uS+XHLWlYMH/DqHZ2ooPLpnYmqBddZVlTZr03Vb1yuz1evbGdX1JKSra5cZaSU1w2X3kD0unyEB8WUHEuXzWo1yHU/6QL5NWXx+Ph9Z938sTXpl/A8/vE8Pw1p1XLIi92ujiQXZ4oUdaqoEprqCOTWRrCXiUA5yn7x1NWrvJlHg948JQ9lq9jsu1OZEdygX42Ns4YV+d6reW3yqvBvrfeeourr74au71+Jyvvv/8+F198MUFBbavvlcZ4+eWXefrpp0lJSaFfv34899xznHXWWfV6r4J95sfm1BnJR91J6xQRyCkdQzm1YxindDSZJEEnMB07I7+En8uaLC7YerhBTYbrw+5jrThJKD+JqDiZaGcnOtiP6Hb+BNltpOc7OJRbXGUqqTZ/OL/kmBlXZyRGcN3QzozrF3vC+k3xeDyk5ZWw83ABu9IL2JWez670Qnal57M3s7DGgIXFArEh/hUj4SVEBJQ9mvmYYP8my7bLLyll/pbDfLshlZ82p1ULxoYG+HJ6lwjCA30JCfAlNMCXEH+fyvkAX0L8fQkJ8CE0wJcAX1u9TvhKXe6KoHDVoHF5gLjI6aLI4aK41E1+kYMVq9fStWdvHC7zo17sLFvH6TbrOV1YLCYoHWz3JbisjMH+PgT7lz/6EOJffZmvzcru9IKK7L0lO6tnKdh9rAzrFsm5vdtzTs/2XunnMKfIydZDeWxOzWNLai5bUs38se6mB/nZ6BkbjNViqRjtM8jPxi1ndeXWsxKPe7TofZmFvDxvB/9bsa/is3l6l3BuObMrecVOE9g7YAJ7VZsjlgu2+5hMt46h9OkQTKnLU9a0qkpmRpXH7CKn105+Av1sxIb6ExdaGfwuz2Ytn/dWs8Jip4vtZcHOtftNwHNzam6N9TkssHoGYFigLynZps+oqpkAKTnFFU2/6svPZqVDmL+5aCi7cKi4gAgLJDbUn7S8Yjan5LE5NZdNqXlsTsllV3pBjXeprRboGt2OLpFB+DTiO8buazVBvLLvq47h5v++pfRT1VJtT8vjs1UH+XTVgYoRI8F8pgN8bdisFnysFmw2Cz5Wa+Xzao9ly23HWF7+3HaM5VYLNqu1hveXLT/q/RasFgvPfb+NjSm5xIcF8N/bh520A30dqbVcQDWlPRkFFc19f91x9IjZVQX42ip/mwN8K36Xy88pIgL9ypol+hFR1jQxItCPkADfZguIO11utqfll2X/5RBk9+GWMxOJVLC7yaheCcBXa1O45z+rcZS66dshhJ4x7dhX1hKqvPVWbcpbiYWWXb+EVrmOqZz3qZz3N68dTxC2vHmto8r1juOIxJjym9klTlfZoxurFXxtVnxtJvPP12Z+pyue+5h5X2uVeZsVX5ulXue8raVOaYCOFuCjjz7i+uuv5+WXX2bEiBG8+uqrvPHGG2zcuJFOnTrV+X4F+4zff7iKQoerImOvf3wo4S2oLx+X28Oa/dnM23KYtfuz8bFasPvYzN2O8hRkX/O8PC25PCXZXqWvghB/n4oAXzu79+4CutweMvJLKoKAqbnF5JeUcm7v9l4fav54lbrcHMguYmd6AYfzSioCfHFh/i2iU/OSUhe/bs/g2/WpzN10qMF3w3ysloofzgBfW7UMrfJgnsPl9lpz2ONl97EelZnWMTyAc3u3Z1Sv9gztGlmv/i+Ol8djmoWUB/7Kg4E70vKrBR/9bFauHdqJO0Z193omzYHsIl6dv4MPl+6rts+q2tl9SIoPqQhkndIxjM4RgQ0KRLvcHnKKqve3VFBSWtGsoWr/JuV3VCubN9gq1vO1WZq96WfVzI91B7JZdyCHLal5Dc5AbGf3oUN5Z9+hJmgZHuRLWm5JRb8+Jlug6LialUQE+dGnQzC9Y0PoER1I+vY13HjpWIIDW27fUm1deXb/p6sO8NXalAYHf5tLVDs7/719GIlRuuldrrVcQJ0oJaUuVu7JJqfIUXajzVxMV73ZJlIX1Sspt3x3Jre+vbzGBJQgP1vFDceOVW4+JoQH0jEiwCt9ZbcVraVOnZBgX35+Pm73EenabSQo5Q1Dhgxh4MCB/Pvf/65Y1qdPHy655BKefPLJOt+vYJ9Iy1XqcrNiTxZbD+WRW2w6qc2t0p+O6ePCSW5ZvzvlATwbLvxxYMMFWPBgMWnuVebdlKfEW/Apv3vl44OfjxUfHx8CygZI8PexYfexkJ2RRmKnjgTZffD3sZnXfE0GjL+vjQA/K2435JX3+1NS1vdPlaZDVR+rZhv4WC2ckRjBqF7tGdU7mm7R7Zo9iFTO6XKzO72Azal5HM4rYUy/GDqGN+0oyqk5xby6YAfJGw4RHx7AKfGVTVS7RAa1qP4cW6KSUhdbUvNMAHC/6cuwyOGiQ5g/sSGVGYgdwkxGYoew+g/Y4nS5SS0bZbs8AFjxWDY5St342kyfeH06mKbgvTuE0Cc2mOhge8VnW79VLY+j1M2+rEJKXR5K3eamSKnbDFRV6ip7LFtePpVWe3TXsP4Ry6u9XsPy8vVdRy6vLE9YgC9/vqA3vWPbxnmbt6hOiXif6pVUtTejkP+t2Eeg3adaNyHhgb4t5ty9pWstdaohcaIGteHZtWsXd955J/PmzaO4uLK/Jo/Hg8ViweU6vr4m2gqHw8GKFSv4y1/+Um35mDFj+PXXX2t8T0lJCSUllam2ubmmzxqn04nT2TruZtel/DjayvHIyW2QcyWnp/wPHIVQWgyuEigtgdJiLJYS8CsGazH4mWWUlmDxNPI70g04wOOygy0SLJF4/KNx+4ezuyifTtEDsQbHQGAkBEbhCYqCwAjwawdH/sB73OAsAmdh2WMRFmcBOD3gdOIqKaKkKJ+S4gL8Izvj36kTBEUDUFrq/T4lj0eXCH+6RFRmXjX1d0tkoI0HxvXkgXE9j3rN5SpFP4G1swJ9YoLoExPElX3bYdmzCwBPVHsITwTr0ackDfmbxgb7Ehvsy6CEo0983G4PWUVOgu0+NTajrfrZ1m9Vy2MBOoW1nuaA+uxUpzol4n2qV1JVhxBf7hp19JgJLe3cvSVrLXWqIeVrULDv2muvBWDmzJnExMQoSnwM6enpuFwuYmJiqi2PiYkhNTW1xvc8+eSTTJ8+/ajlycnJBAY2bbbKiTZ37tzmLoLX+TlzCS3ajcfig9vig9vqg8viWzZf9mjxrViORU00Wi2Pm96pn9Ir9fMTvmuLqwTyDkLeQSyY4El3gMPf1bi+y+KDwyfYZAm6S7C5Hdg8tf9A+ABHXlIX+kaSHZhYbXL6qImaNExAyWFic1cRm7OKqLzNWKmMjrotNvLtseTbO5DnH0e+f5x5tHfAZTv+II/V7cTHXYzTFoDHUr9Tn7b4WyXSnFSnRLxP9UrEu1p6nSosPHrA0mNpULBv7dq1rFixgl69ejW4UCejI4Oh5RmQNbn//vuZNm1axfPc3FwSEhIYM2ZMm2rGO3fuXEaPHt2iU2MbJG0TtqWvYNn0Xyyu+vfh5rHYwMcONj8IisbddRSebufj6TwcfNRHFO6yu1A1ZPo0q6IsbJ/djjX1BwDcp0zG0+FUPD5283fz8Td/17LnHlvZcl9/KJ/3sZcdl8cMU1Xt0U3FCA2esuflr3vc4CzEUpAOhelQmIE7L409m1aQ2D4Ya1EGFGZgKSx7dBZg85QS4Mw65uF4fALAt3wKBN8APGWP2PywZO6EjO0EOjMIzMkgLmd55XvDE82xdxiAp8NpeGJPAXvL6gdSmpnHjeXgaizbvsW67VssaRurvxzZ3XzuMrZjdRYSUnyAkOIDkHPEZkI64onqiSeyB0T1wBPRzdSJkhwozsFSnA3FuVCcjaXYLKM4B0tJDhRlQ0kultIqrRECIiAoGk9QtHls1x6C2lc8d9rDWbBiM2eNuwxf/yNutnk8JlPXkW+mknwsjnxwFFQss5Qtp7TI1HWbHWy+Fd/5niOeV0w+djxWX5OhG9qxaf4mIs2gTZ7/iTQz1SsR72otdaq8BWh9NOhK+vTTT2ffvn0K9tUhKioKm812VBZfWlraUdl+5ex2e40jHvv6+rboD1tjtPpj8nhg50/w64uw44fK5ZHdwepb1qTTYZp0VjxWHw3J4nGVNaMshOJsbBnbYNlr5sI3cST0HAPdR0NYwgk+uBOoOBeydkPWLvOYuavyefY+k/0Y0RWie0JUL4juBVE9IaoH+DVDVlnKGvjoesjeAz4BMPFfWE+96sSXI7pbxazT6WRj7td0GT8e65F1ylkEBelQcNg05S0P4vkGmsnHH4v16AzTo25HFOdC6lo4sBIOrjJT1i4sZRMbP6t8Z1QPiBsAp1wF3c/z5lHXLD8NvnsQgqLgjNsgIrHp93miFWaagJF/E9z0KcmHQ+vNZ7t8yk8zgaawThDe2TyGdS6bEsxnqDaOQtg1H7Z8DVu/g/xDla9ZrNBpOPQaBz0vwBLV3Sx3uyF3P6RvhcNbIX1L2eNWKEzHkrsfS+5+2PmjVw7bUpQJRZlY0rfU+LoPMBZgwx8gIBwCIsz3eklZgK+xzfEbovtoGHU/xA9q+n2JnCCt/vxPpAVSvRLxrpZepxpStgYF+9544w1uv/12Dhw4QFJS0lE7OuWUUxqyuTbLz8+PQYMGMXfuXC699NKK5XPnzuXiiy9uxpLJcSktgXX/g0UvQdoGs8xihT4TYdidkHDGsd/r8YDLWdavm6OyfzeXw1zQbkuGbXMhLwW2fmMmgPb9oMdo6DEGEoaArYVlutWlPFB0ZDAvazcUZtT+Xo/LXPSnbwHmVH8tNMEE/qJ7mQBTeTAwKKppjmP1+/DlPeaCP7wLXPUuxPZvmn15i2+ACc4cb8DYPwS6nGmmcoWZJjB0sDwAuBpy9pnPcvpWWPsfGPMYDLvj6D4DvSV9G7w7yQRfAZa8Ar0vLKuLQ7y/34wdsPo9E8BqFwMdTy+bBpmAkDe4XZC2CfYtgX1LzWOW6deOoPbmhkJUd/NYPoV3MRlidSnKNnWxamAvfRtQwxhdBWnmb1uTdjFlAcDyIGDZfM5+2PIN7JxnMtrK+QWbwG+v8ea7LDDi6G1arZXb6X5+9dcKM+Fw2fdA+jYzn7nTZML5h0JAmHn0DwX/KvM1LfdrB8XZJqBZkAb5h8se06osS8OTn4Yn/7BpZlyUZaaa+AaBvZ3Zbvlj1XnfAJOl7HJUfu+7nJU3gCrmq9wccjlMWbbPNVOPsSboFzeg9r+viIiIiEgVDYocHD58mB07dnDTTTdVLLNYLBqgowbTpk3j+uuvZ/DgwQwbNozXXnuNvXv3cvvttzd30VoXZ7G50GoXYy4Im0NhJiyfCUtfq8xS8Q2CgdfDkNvrl01ksYCPn5mOvC6P7mUChh4PpK6rDPztX2qCimkb4JfnwB4K3c81F3/dz4d20d4+Uu9wu8wF/+r3YfOXJkB2LIFRJlgRkWgewxMr592lNWT6bDFBwpx9ZqqaWQkmA6fHGBh6u3cujksd8O1fYPmb5nmPMXDZa94L7rRWgRHQbZSZyuUfhpTVsOFTExRLftD8jcY+AVabd/e/ZxF8eI35bghPNBmgO36ATXPMFD/IBBr7XHx8AfKSPNjwGax6F/Ytrlx+aH31z15UT+h4BnQcbIL+0b3rd8zFObB/eWVgb/9ycOTVvG5BWTBq7xGDPFmsJuhWEQDsZgLgrlJIrRLYy9pd83aDO0CHUyun4A6Qe9AEUbP3QlbZY/Yek9WWf8hM+5cd+7hCE6DXBWbqfKb53muswAjoPMxM3hAUVXZToO8xVyl1Ovn6qy8ZP2o4viWZ5nPm42+aqZcH83yDmu43KWMHLHgG1n4I274zU6/xcM5fzN9IREREpDVxOWHPr+bG8MGV5ty5y5nQeUTTtmTLTTGJCR1OOSm7SGnQVdDNN9/MgAED+OCDDzRARx2uuuoqMjIymDFjBikpKSQlJfH111/TuXPn5i5ay+J2VV5YZu05+jEvBfCYZofRvaB937Kpj3kMjm26zKGMHbD4ZRO0cpZ1hBkcB0N+C4OmmMwRb7JYzBdRh1Pg7PtMkHHHjyaTaPv3UJRpAikbPgUsENPP/J+U9WNVcbFvb+fdctXX4a2w5n1Y85EZRKJcSEdTviMDemGd626aWFOmT0FGWQbZluqBwJy95v9o7YdmShhqgn69JzYu4JNzAP57Y1lQw2IutM/+U/MFnVu6dtEmc6v7+aZuJj9osu1y9sNlr4OflwYa2vApfPJbkxkVPxgmf2SCN2mbTH1d8xEcWAH/u9kEnc64DQbeUP/66nabgNqq90wT5fK6b7FCt/PglCvLgnTLzJS5szKjcfW7Zl2/YIgfaDL/Es4w5QyMMOvuW1KZuZe2iaMy6/zalQUNh1S+12Ix30cZOyBjO2RsK3vcYQJwWbvMtL2ODoXDOlUJ7J0GsadAcA1dS8QPPHqZx2OCXhXf0Xsrg4DZe025e44zAb6Yfk33vXyiWKzmbxZac9cbTSqyG1z6b/M7MP8pWPcf0yx6y9fQe4L5LmrpmcUiIiJycivONdewW742ySzFVTpl3rcEVr1j5kM7QZcRJvDXZYS5VmzMeWTeIRPYS1ld2fVQeaLOhc/C6bcc9yG1NhaPx+OpezUjKCiINWvW0L1796Ysk2A6XgwNDSUnJ6dtDNCRuZPSfcvZujiZXrEB2HL2lV0k7gN3XcNHW6ixqRmYDKuqwb/y+cYE4twuc9fh4ErTH9+Wryv3G9sfht0F/S49viyVxnK7TABjW7KZUtYce92Q+LLmfj0qA4FRPUzQzduBqqIsWP+xCYgeWFG53D8M+l8Op042gYMTceHvKDT/L8tnwoZPKgf5COkIZ/wGBt5YcxPCmuz6Gf53k+nvzj8ULnvD9KPYwjidTr7++mvGjx/f8vqWqBqU63g6XPPh8TWz9nhME/rkB83zXhfCpDeODiLmHzafgWWvm78fmEDUgOtN8De8S83bz94Lqz8wAeuqWXCR3eG0a+HUqyEk7uj3FaSbjLz9y0w27oGVJgB3JL/gmrP2wrtUBvYShpjvsPpmQno85iQmvTz4VxYAzNgGlN88KAvuxZ5S/8//Sa7F1av0bWVBv/9S8ZvUZyKcc78JrIq0cC2uTom0AapX0iKVd+uy5WtzPVX1Oj8w0twY7jwCDm8ymX4HVx/dF3JwHHQeXhYAPNNcxx55LZmfZt5bNbiXl3J0eSxW0+Jm6FTTKq8WraVONSRO1KBg38SJE5kyZQqTJk067kJK7dpcsG/e/8G8J2t+zepjMnDCyzqBD+9sLoDDuph5/zCTtZK20WTCHNpgHjN3lI1WWoOQeHNXwOOu7AfJ5TRfOOXz1R4dNW+rx1gYfid0OatlZarkppgvtvStlRf66dvMKK3H4hNgMkYiupoMn9AEk85c3hl/QHj9jtFVapowrn7PfJmXj0JssZnMrlOvMdk99elHrKnkppimt8tnVvYN6BNgAjZDbof2vWt+n8cDi16EuY+YH56Y/nDV2+b/rAVq8T9KRza3ve5j8xlsKLcLvnvAZAqCydYb93+1B8WcxSY4suglc0IB5ge/94TKPjZLi02z31Xvwq4FVARS/IIh6VI47TqzXkPqfnm/e/uXlQUBl5p6CmZU1rgBlYG9hDOgXfsG/3dI02qx9erwFpj/d1j/CRWf1b6XmEy/9n2as2RNa98y872cMASGTW3u0kgjtNg6JdKKtfp65XKaQda2fAN9JpibsjHH7mJDWqjybqi2fA2bvzL9Q1cV2d10RdJrvDnvPfLcvSTPZPnt+RV2/2KSR45MBAqKNsG/qJ7mHPvgKsg9cHRZLFbTj3vcaeZ8u8NpEJtU74EdW0udarJg32uvvcZjjz3GzTffTP/+/Y/6T7jooouO+d4VK1YwaJBGlauvNhfs2/gF7l9f5ECBjbh+w7BFdqsM7oXENa5PL2exacKZtqlKIHCjGdXxePj4m9FEh91hmsm2JoWZlYG/jG3mMX2baT5YVwalb2BZ8C+h8jGsSkCwJB/WfGAGXyhIq3xf+35w2mTTvLGlBS6cxbD+f7D4FTi0rnJ511Ew9HdmxMvybMeSfPjizrJm0pjPwITnvNf8tAm0ih+lqgNpBEaaDL/aBrM5kqMQPrnV9P8IZQN/3Fn/AJzHY5rDL3qpej97Mf1NmUqqDF/f5SwYcJ3JmvLmiM9FWaZZeFSP5g2CS720+HqVtsncQKs6Ena/S+G8h9vWiNSHt8APMyrrPha4/Wc1YW6FWnydOtE8HvP7ExBuWg+INEKrrldFWfCfG2HX/OrL4waa87CkSd7vLkkaxuMxXdkU51RORdnVn+ceMM10c/ZVeaPF3JzrdYEZOC+qR8P26yg0N8z3/Ap7fjHzNfb/bjHBv7gBlcG92P7Hdf7eWupUkwX7rLU0AaxrgA6r1UpiYiK33HILN954I/Hx8fXd7UmpzQX7OIEVqDgH0jabLx6brxm10eYL1vJ5v+rLbUcs9wlofaPe1sVVak4s07eZLMmc/abZYs5+M1UN3tVHYCT0vxJOu8Y0D2xJWY818XjMD8bif5u7TuVZMRHdTB+MCWfAp7fD4c0m03Tc/8Hpv2nxx9VafpTIT4P3rzR34nz8TfPbPhPrfl9BOnxwtfmht9nhsldNUKOxDm00/fqt/Y9pXgymn5DTJpvP8rGa+MpJpdXUq0MbTNBv0xfmeUhHmLqo7r5QW7qcA6YlwOr3TMa9xWpuPmXvgW7nwvWfNncJpYFaTZ1qaqUl5obiklfM76HFCjFJJmOl83DoNLzlDr4mLU6rrVeZO+H9q0yrB98gGPWAGQRtyzeVXfD4+EOfi0zgr8tZ6i+7KR3eYq6PsnZXCeRlm8fyv0ddfALM73Pv8aZVnDe/x0pLTBc5exaaPqPb9zXBvdj+ZuA0L2otdaohcaIGRTTc7mM0mayn8847j+eff55HHnmEsWPH8pvf/IaJEydis3l5pEY5ufmHQqchwJDmLknLYfMxzSeP1YTSWWQGSsnZZ/pRLA8C5lQJCHo80HOsCYx0H908fRc2lsViRnzqcqb5MVv6Oqx82zQF/+ZPleu1i4Ur3y77/IjXtGsPU74yg2Zs/RY+ut4EVIfWMjp5xg6TEZi1y2Q/XP3B8Y/IGtMXLn4RznvENDcI76KTSGm9YvrBVe+Y5jMfXWe+2+Y+DBOfa+6SNU5hJiz8Jyx9rfIufu8JJmPR5gcvnm6ydLf/AN3Pa96yijREXqrpVmT5zMq+ZC02011I6lozlXdTEdmjbATyEdBpmOlmpYXfeBSptz2L4MPJZkC9kHjT2qPDKcCdps/ldf+Ble+Y7lfW/cdMYZ1MtyqnTW7aUVtPNunbTdcgVfsDronFZq6ty6eAsCrz4eZ7qus54BvQNOX0sZd9Jx7nNcBJqkHBvn379pGQUHMlW7x4MUOHDq31/Y899hgvv/wyn3/+OTNnzuTyyy8nKiqKG2+8kZtvvplevVpZk0mRtsI3oPZgoNtt7u60pgDfsYR3gbGPm36uVn9gTrAzd5g76lfMrnl0Ujl+fkFw1XvwzR/NBc+3fzbB5dF/OzrYtm+pyegrzDBN/a/7uOHNAGrTLhoG3ei97Yk0p9j+cNGL8NYEWDHLZL92Hdncpao/RyEsfdUE+spH6us8As5/tHqT/zNug8UvmYBm13Ma1/2HyIm0f7k5x9jwaWWGTHCcGRFy0BSzbM+vZtq7yGTrZpR1w7LybbN+SMeyC92yzL/oXgr+Seu05iPTXY7LYfpSm/wRBMdWvt4u2nShNHSqyeRa9Y4ZBDB7L8x7wmR8dz3HZPv1ngC+/s11JK1bxg5Y8DSs/aiyv/reE8wUEGb6yq8a3PML0ndOK9agYN/o0aP55ZdfiIyMrLb8l19+4cILLyQ7O7vuHfr4MGnSJCZNmsSBAweYOXMms2fP5plnnmHEiBEsWLCgQQcgIieA1QrWNhDoq8oeDENuM811M7aZDmR18di0bD5w4bPmLu33j5pO93P2waWvVZ60bZoDH//GZPbEDYDJ/2l5fUGKtDSJZ8HgW8zARF/cBb/7FeztmrtUtXOVwup3TVPk8hH02vczQb4eo4++uDj7PrP+ofWw5kMYcO0JL7JInUpLYMNnZU11V1Yu7zTMdBvSe4LpMqZc0mVmAtOP2d4lptuRvYvKOqHfbzJv1v3XrBMQYbpSwWMu1D1u0/LC46myrMpr5cuwmJtmnYaasiScYbJyvM3lNF2ipG02+1ImlrjdJli34GnzvM9EuPTVY/etZrFAx0FmGvtE2UBq78Dun2HnT2byD4Wky02z0c5nKvBXH1m7zd9g9QeVo9/2vMAkP8Sd1pwlkybUoGDfWWedxZgxY5g3bx7BwaaN9IIFC5g4cSKPPvpore+11BARjo+P56GHHuKhhx7ihx9+YObMmQ0pjojI8bNaW99ALK2ZxQJn3mOyFT77HWz8HPIOwTVlg798+xfAAz3HweUzvTtQhkhbNno6bEs2fdv9+De44O/NXaKaeTzm4u2HGeZGC5i+M899EPpfceybLoERcNa9JrPvx8dMBmMLHkBJTjJ5qbB8VllT3bJ+kG126H+5yUqtz8V0QDj0GmcmAEdBWUf1i8o6ql9umj8WZTaujHvTTRCRf5rn7fuajvQ7DSsLzDWwybCr1PS7dnBV5XRofWUz/JgkuH2hsoJOZs4ic65XPvjdiD+YrlTq232KXyCcepWZMnfB6vfNlLvf3Nxa/qbpLy7xLNPFUI/zIaJrkx1Oq5S9D35+Bla9W5lh3H00jLof4jV4alvXoGDfa6+9xhVXXMGFF15IcnIyixYt4qKLLuKxxx7j97//fa3vrWsckPPOO4/zzlMfLCIiJ4VTrjDNNz681nTM/MKgyguYwbfABU+1vYFyRJqSPRgm/gvevQyWvAp9L2l5fdwc3mou/A4sN88DIuDsP5pmjfUZqfqM38LSN0x/sotfNtl+Is3FWQQHVsCK2Sabz+00y6s21Q2Kavz2/YJMs8Wu55jnpQ4TTHMWmcE9LJayRytgKXtuqfK8yjouJ6Ssgb2LTcAvcwekbTTTilmV5e5UJfgXk1QZfHe7zCBvB1dByuqyx7VQWnR0ue2hZhTPQ+tNgDLh9Mb/H0jrlZ8GH1xjvu+tPub3acB1jd9eRKK5KXTOX0x234bPTB+ueQfNja5tyfANZvC9HqNNQKvLiKbrS66lyzkAP//DdAlQ/t3U7Vw45wHVyZNIg66kLBYLH3zwARdeeCHnnXcea9eu5cknn+TOO++s870//fQTERERjS6oiIi0MYlnwS3fwXtXmOa8AOdPhxG/VyaASGN0P89cTK16Fz6/A373S8u50HGVwn+nQNoG8A00fTMNv8s0x6ovX3847yH45FZY+NzxB1NE6qskzwyGk7Kmcjq8pbI5HEDCUNNUt8/E6k11vcXHD+IHNv79HU6Bgdeb+fw02LekMviXssYETTZ8WpmF5RcMHQebpskpa8BZcPQ2/dqZ/tfiTjNdb8QNgPBE+HwqrPkAVr6lwMLJ6NBGM+Juzl7TB9xV75pzPm+w2qD7+WbyeExfl9vnwrbvzc3jzB2wZIdpSu/jbwZi6zHarH+svsnbkrxU+PlZE8R3OcyyxLNNkK+l3QCUJldnsG/t2rVHLXvkkUe45ppruO666zj77LMr1jnllFOOuZ2RI1tRZ9EiInJitO8Dv/ne9CPS7VzofWFzl0ikdRvzuMl2yNwBPz0BY/7W3CUyVswygb6AcLj9FwiNb9x2ki43/X2mrDEjCY5/2rvlFCnKMllrKasrA3sZO6hxxMqgaJNBNOQ2E+hqLdq1N0HJPhPNc0ehyVIsD/7tXwYluSaDqpxvkAkYlgf14gaYLKqammQOvNEE+9Z/AuOeNJnHcnLY9r25sePIM01qJ/8Xoro3zb4sFohNMtOZ90BxLuyaD9vmwvbvIfeACQRun2vWj+hqzjNH/rltfiZ/ftb8LpY3pe88AkY9AF3ObN5ySbOpM9h32mmnYbFYqjXDLX/+6quv8tprr+HxeLBYLLhcrlq2VMnj8bB+/Xp69eqFn18b6/RfREQaJjgWLvxHc5dCpG0ICIMJz8EHV5mgWN+LTXZOcyrIMP3sAZz718YH+sAEFsY8Bm9NNP2jnfHbpruQlJNDSb4JTO1aYAJ72XtqXi+kI3Q4tfoUHNs2MtH9Ak3mVXn2ldtlmvjuX2b6RIsbYAb4qO9AZp2GQmQP0y/n+k9g0I1NV3ZpOZa+Dt/8yQwK0/lMuOod09/qieIfUhnE9nggbVNZ1t9cE8jO3Am/vgAZO+Hq99pG3S23/mP4YbqZTxgCox40GX1t6RilweoM9u3atcvrO7VYLLz00ksEBQXxj3/oAk9ERETEa3qNg/5Xwrr/mOa8v11Qvz7xmspPj0FxNsT0h0E3Hf/2Es+GHmNh23fww6OmiZhIQ+UcgKWvwvLZUJJT/bXwLkcE9k47uZqMW20Q299MjWGxwMAbYO5Dps8wBfvaNmexGTxp6avm+WnXmptOPs2Y1GOxQExfM434vWmKv/U702/slq9M0G/E3c1XPm/K2AFflI2fcOY9ZhAUBfmEegT7OnfuzAMPPMAll1zCGWec4bUdT58+nR49evDMM8/UOFKviIiIiDTSBX83TfAObzbN5M/9a/OUI2WNGaW0vEz1zQyqy+jpJmNj0xyTsdFpqHe2K21fylqT9br+48rRKSO7m/4u4weZAFdAePOWsS049RqTaXRguelXLaZfc5dIGsvjgcIMyNptRsXN2g1Zuyqf5x2sXPe8R0zAqaVd39uDzejYxTnw1TT4/lGT9d55eHOX7PiUlsD/bjLNpjsNh1F/bXn/99Js6jVAR0pKChMmTMBmszFx4kQuvvhizj//fOz2xt8ljoqKoqioiEOHDhEbG9vo7YiIiIjIEQIjTPP4/9xg+vHpM9FkKJ1IHg9882fAA0mTzMiI3tK+jwnOrHwbkh+CW5J1gSPH5nabPrwWvWCa65brPAKG3Qk9x9Xc95w0Xrto6DUeNn0BK9+BC/6vuUskdXG7YPfPJlOsIpi32zw68mp/b1A0jH8G+l3S9OU8HoNvNjeI1v0H/nsT3P6z6cOytUp+yNxUC4iASW+ArUHjr0obV69Pw6xZs/B4PCxcuJA5c+Zw7733cuDAAUaPHs1FF13EhAkTiIpqWGr7zz//TGRkpAJ9IiIiIk2h78Vm2vg5fHYH3PZT04wSeizrPzad/fsGwugmGChk1IOw7n+wf6kJKPS92Pv7kNbNWQxrP4RFL0P6FrPMYoN+l5oRoY9ndFup28AbTd1c+yGc/6gZUbul2PINpG8zTYwbMip4W+XxwEfXwZavj71OSLxp4h6eaB4jEiufB0a0jhsuFgtM+CekrjWZ7x/fAtd/5r2s8xNp05zKptOXvnp8/eFKm1Tv0K/FYuGss87irLPO4qmnnmLTpk3MmTOH119/ndtuu42hQ4dy0UUXcc011xAfX/cH7a233mLy5MnHVXgRERERqcX4Z2DXz3BoHSx8Dkb+8cTstyTfZBwAnHVv01yEBMfC8LvM6IPfPwo9L2jePqKk5cg/DMvfNAMGFKabZfYQ04/ckNshLKF5y3ey6DbKDGySux82f2maUTY3txt+ehx+fsY8/+U5GPkXGHzTib0Z0tIse8ME+mx26Hbu0cG8sE4tK1h7POzt4Mq34bVRJtN33pPN19VFY2XtMX3yAgy/G3qOad7ySIvU6Hz1Pn368Kc//YlffvmFAwcOMGXKFH7++Wc++OCDer3/+++/57LLLmvs7kVERESkLu3awwVPmfn5f4dDG0/Mfn/+h+nHKbyLaSbZVIbfDUHtzSiLK2Y13X6kdUjfBl/cDf/sZy7gC9MhNAHGPA73bICxjyvQdyJZbaa5PcDKt5q3LADOItO/WXmgLzjO9EX3zR/hpSGw8QuT4XaySd9WeXNm9HSY/KFpdj3kt9BzLET3bDuBvnLRveCi5838gqfNiL2tRakD/nez6X+w4+lw3sPNXSJpoY67cwq3283ixYv54osv+Pzzz7nvvvvq9b6QkBACAgKOd/ciIiIiUpv+l5u+s9xOkwngKm3a/WXsMAMgAIx9smkvEu3tYNT9Zn7e/5mLHzn5FGXB138yAZuVb4GrBOIGwuUz4e7VMPxO8A9p7lKenAZcC1hMBlXmzuYrR94hmH0hbPwMrL5w8cvwh7Wmb9OgaMjcAf+5HmaOg33Lmq+cJ5rLCR//BkqLoOs5cMZvm7tEJ07/y+H0W838J7dC9t7mLU99/TjDDHzjH2q+407mjFSpVaODfdu2beP++++nY8eOXHnllQ1+/8SJE3njjTcau3sRERERqQ+LBS58FuyhcHAlLH6paff33YPgckC386DXBU27L4ABN0BUTyjKhIX/bPr9ScvhdsGyN+H5gabvKo8LeoyFm76BW380A8Oow/rmFdbJNAsFWPVu85QhdT28fi4cWGFGWr7hMxOEtPnC6b+Bu1fB2X8EnwDYtxjePN8MbpSxo3nKeyLN+z9IWQ3+YXDJv0++gWrGPm5uDBRlwX+nmNFtW7Kt38GvL5j5i1829UvkGBpUm4uKinjrrbc4++yz6devH0899RR/+ctfOHz4MJ999lmDdvzQQw8RHx9Pbm5ug94nIiIiIg0U0gHGPWHmf3zcNNtqCtvmwtZvwOoD4/7vxHTYbvOB86eb+cX/hpz9Tb9PaX67f4FXR8JX00ygN7qP6Wj/2v9A5+GtY7CAk8XAG8zjqveaPrP4SFu/g5ljTb+Bkd3hNz9AlzOrr2MPNn223b2yrNmxxQxs9NIQ+OYvUJh5Yst8ouxdAgufNfMT/gkhcc1bnubgY4cr3zLBzgMrILkF992XcwA+Lcu8HPI76DOhecsjLV69gn1Lly7ltttuIzY2lhdffJFJkyaxb98+rFYr559/Pu3atWvwjoOCgvjrX/9KSIhS6kVERESa3GnXmmw7V4lpzut2eXf7pQ749i9mfsjtpp+nE6XXBdB5BJQWm2CmtF3Z+0wGzuzxZuAZ/1DTL+XtC82AENLy9BoPgZGQnwrbT1DfaB6PCf5/cDU48qHLWXDLXIjsduz3hMTBxS/B736B7uebrg+W/Bv+dZoZ4MhZfGLKfiKU5MGnt4HHDadcDUkncV/6YZ3gstfM/NLXzCjvLY2r1IwcXJQFHU4zfSuK1KFewb7hw4cTFBTE0qVLWbZsGb///e+JiYlp6rKdcF26dMFisVSb/vKXv1RbZ+/evUycOJGgoCCioqK4++67cTgc1dZZt24dI0eOJCAggPj4eGbMmIHnZOzsVURERFoOiwUm/gv82sG+JWakUm9a8gpkbDcDZoz8s3e3XReLBcb8zcyv+QBS153Y/UvTcxaZJocvng4bPgWLFQbfDHetMgMJqLluy+XjB6deY+ZXvt30+3M5Tcbnt38xwayBN8D1n0JgRP3eH9MPrvvYvCemP5TkwPePwIuDYc1HZkTf2ng85mZKqcMECB0FZoTyluTbv0DWbgjtBOOfau7SNL+eY83I8WAG+Tm85fi25yw2zdb/d7MZ6fh4A8XznoC9i8yo4lfMMhmJInWo16/iueeey5tvvklaWhrXX389Y8eOxdJGU+NnzJjBrbfeWvG8ataiy+XiwgsvJDo6moULF5KRkcGNN96Ix+PhhRdM2/nc3FxGjx7NqFGjWLZsGVu3bmXKlCkEBQVx7733nvDjEREREakQlgCjZ5gL4R+mQ88xENH1+Lebl2pG+wU4/9HmGQwhfpDpo239x2ZkyRs+O/FlEO/zeMygCskPQc4+s6zzCLjg7xDbv1mLJg0w8AYzcM/W7yA3xXQt0BSKsk3m586fAIv5vht+V+OadXc7F347EtZ+BD8+Zj5/n94GX91rtudxm8ntqpz31JIxnTDEDKgQ2rGRB+clm74s6z/RApe+YrJjBc55APYthd0/mz4bb/0R/IIato38NNOP6PI3oeCwWbb+Y5j/tPkcDr6p4dvc/gP8XNbc+qLnvfObLSeFegX7kpOT2bdvH7NmzeJ3v/sdRUVFXHXVVQBtLugXHBxMbGxsja8lJyezceNG9u3bR1yc6dPgH//4B1OmTOHxxx8nJCSE9957j+LiYmbPno3dbicpKYmtW7fy7LPPMm3atGP+f5WUlFBSUtkhaHlfhk6nE6fT6eWjbB7lx9FWjkekualOiXjfSVGvTr0O2/pPsO5ZiPvzO3FdW5YldRxscx/B6sjHHTcQV7/Lobn+/86+H5+NX2DZ+ROlm7/DUz4wgDSb46pThzZgm/sA1j2/AOAJicd13nQ8fS42wZa2XE/bmrCu2DoOwbp/Ca6V7+Ie8Qfv7yNrNz7/mYwlfSse30BcF7+Cp9d4KD3OfgL7XQE9J2Bd+irWX5/D4shr3Hb2LcHz6khcl72Bp/OZda9fi0bXq/xD+My5GwvgGnYn7vgzVI+quvgVfN48F8vhzbi/uBvXRf+uX6D40HpsS1/FsuFjLC7T6s8TEo+79wSsm+ZgyTsIyQ/i+fkfuM/4Le7Bv6lfkDUvFZ9PbsOCB9fAm3D3nKC/VxNpLed/DSmfxdOI9qVz585l5syZfPbZZyQkJHD55Zdz+eWXM3DgwIZuqkXp0qULJSUlOBwOEhISuOKKK/jjH/+In58fAA8//DCff/45a9asqXhPVlYWERER/Pjjj4waNYobbriBnJwcPv/884p1Vq1axcCBA9m5cyeJiYk17vvRRx9l+vSj296///77BAYGevlIRURE5GQWWHKIUZsfxMftICuwKxvjriQ9uG+jthVesJ2zt84AYH7PR8gOqqVPrBOg3/736H74O3L8E5jX+2/HHciUE8+3NJ8+Kf+jS/pP5iLX4su2mAlsjxmPy6rma61VQsbPDNz7Ovl+7fmh71NerZsR+Vs5Y9e/sJfmUeQbzpKu95AT2MVr2y9ncxUT4MzEgxWPxQJljx6sUPbowVLlNfPc35nN4N0vEla0FzdWNsRfw87oMSd2IBmPh6E7/0FM7lpyAjqxoOcjuK2+J27/rURk/maGb/s/rLhZnTCFPVHHuGnkcROTu4Zuad8Snb+pYnFmYDd2tB9HSthgPBYbFncpCVm/0CN1Du0caQA4rQHsij6fHdFjcfgeIxPe42b49r8Tnb+p7O/1MG6rn7cPV1qZwsJCJk+eTE5OTp3jXzQq2FcuKyuLd999l5kzZ7J27VpcLi939HyC/fOf/2TgwIGEh4ezdOlS7r//fi6++GLeeOMNAG677TZ2795NcnJytffZ7XZmz57NNddcw5gxY+jSpQuvvfZaxesHDx4kPj6eX3/9lWHDhtW475oy+xISEkhPT28zg5g4nU7mzp3L6NGj8fXVD4vI8VKdEvG+k6leWdb/D9vX07A4CwFwJ56Da9RfTeff9eVxY5s1BmvKatynTMY18fkmKWuDFGXh8/JgLMU5lE54AU95X2HSLBpTp2wfXYO1bCAHd5+LcZ03vfmbPsrxcxTg83wSlpI8Sq/9FE+Xs7yyWcv6/2L78vdYXA48sadQesV7TddM+Hg4C7F9fS/W9f8FwJ10Oa7xz4JvwxM7GlOvrCtmYvv2T3hsdkpv+QGiezd4vycL66IXsP04HY/Nj9Ibv67+u+jIx7rmQ6zLXsWStQsAj8WGp89E3Gfcjid+cM0bdZdi2fgZtl+fw3J4s3mfbyDuAdfjHnLnUZ9Z64KnsP38FB7fIPP3iuzeFIcqZVrL+V9ubi5RUVH1CvYdV0+24eHh3HXXXdx1112sXLnyeDbVZI6VMVfVsmXLGDx4MPfcc0/FslNOOYXw8HAuv/xy/v73vxMZGQnU3GzZ4/FUW37kOuXx1NqaPNvtduz2o+9U+vr6tugPW2O0xWMSaU6qUyLed1LUqwHXQI/zYMHTsHwW1l3zsO6aB30vgXP/ClE96t7GyncgZTXYQ7COmY61Jfyf+baHs+6DuQ/hM/9JOOVy8FMrieZW7zrlKoVdC8z8NR9h7TWufiMKSsvnGwb9r4DlM/FZ+z708EIz+5+fNf2PAvSegOWy1/BtaJ9oJ4pvKEx6HToOhu8ewLr+f1jTt8BV70F458Ztsr71Kn2bGWQEsJz/KL5x6u+yVmfdAweWY9nyFb6f3Ay/XWAGWVn6Gqx8C4pzzHr+oTBoCpbTb8USllDHd5Wv+d099SrY8jX8/AyWg6uwLX0V24pZcNq1cOYfILyL+Q78+WkALBOfwze2T9Mer1Ro6ed/DSlbnb+da9euxV3XiENQ0YR3w4YNlNbRL4LVaqVfv37VlvXp0webzVbnfhrqzjvvZNOmTbVOSUlJNb536NChAGzfvh2A2NhYUlNTq62TlZWF0+msGJ24pnXS0ky6blscwVhERERasXbtYfzTcNdyOOVqwGIGQ3hpCHxxF+QcOPZ7i7Lh+0fN/Mg/m221FGfcZkaZzDsIi19u7tJIQ2TtAleJyXbqMaa5SyPeNvAG87jxCyjMPL5tLXuzMtA34g9w5TsNH/zgRLNYYOjtcMPnEBhlRg5/7RzY8VPT7dPlhE9uhdIiSBwJQ25vun21FRYLXPIyhHWG7L3w6kj416nw6/Mm0BfRDcY/A/dsNIPAhCXUf9tWK/SZALf+ZEZ97jQcXA5YMQueHwif/BY+vhXwwIDr4ZQrm+wwpW2rM9g3YMAAMjIy6r3BYcOGsXfv3qOWz5gxg8JC00xk5syZPP7449Vef/LJJ5k5c2a991NfUVFR9O7du9bJ39+/xveuWrUKgA4dTErtsGHDWL9+PSkpKRXrJCcnY7fbGTRoUMU6CxYswOFwVFsnLi6OLl26eP34RERERI5beBe47FX43S/Q8wIzouTKt+H5AZD815ovyuc/BYXpENXTBNdaEl9/OO9hM7/wOcg/3KzFkQY4tME8Rvc2F8XStnQ4zYyi7CqBdf9t/HY2fGZGxQVzs2H09Nb1eUk8C347H+IGQFEmvHsZ/PK8GX3a2+b/HQ6uMllol/y7df0/NaeAMLjybbDZIXuP+V1MPBuu+QjuXA5n3Ar2do3fvsUC3c+Hm7+BKV+b0Z89Llj7IeSnQnQfuOAprx2OnHzqbMbr8Xh46KGH6j1IRNUgV1XTp0/n9ttvJzAwkClTphz1+iWXXFKv7TeVRYsWsXjxYkaNGkVoaCjLli3jnnvu4aKLLqJTp04AjBkzhr59+3L99dfz9NNPk5mZyX333cett95a0V568uTJTJ8+nSlTpvDAAw+wbds2nnjiCR5++OE2N3KxiIiItDEx/WDyh7B3MXw/Hfb+Cr++ACveghF3w5DfmYubtM2w9FXznnH/Bz4tsNPwpEmw6AVIWWMudi98prlLJPWRttE8xjRuwBhp4SwWGHgjfH2f+V4547aGD1Kxc77JVMMDg26Cc+5vkqI2udCOcNO3Jmi5+l2Y+5AJyl38ovcyFPcugZ//YeYn/BNC472z3ZNF3Glw9fuw8yc49WoTqG4KXUaY6cAK0zQ9cxdcMUtdUMhxqTPYd/bZZ7Nly5Z6b3DYsGEEBAQctfw4xgE5Iex2Ox999BHTp0+npKSEzp07c+utt/KnP/2pYh2bzcZXX33F1KlTGTFiBAEBAUyePJlnnqk8eQwNDWXu3LnccccdDB48mPDwcKZNm8a0adOa47BEREREGq7TULjpa9j+vQn6HVoHPz4GS16Ds/8IW74Cdyn0uhC6n9fcpa2Z1QpjHoO3JprmUUNuhyh1cN7ilWf2te9X+3rSevW/3GQMp22AgyshflD935uyBj681jR77HMRXPiPEzuirbf5+pvgXtxp8O1fYMMncHgLXP0uRHQ9vm2X5MGnt4HHDadcZW6ASMP1ON9MJ0L8ILj6vROzL2nz6gz2zZs3z2s7a8mZbQMHDmTx4sV1rtepUye+/PLLWtfp378/CxYs8FbRRERERE48iwV6jIZu55kL0B//Blm74Zs/mtdtdhj7eK2baHaJZ0OPsbDtO/jhUbjq3eYukdSlPLOvvTqkb7MCwqHvxbD2I9NdQH2DfRk74N1J4MiDLmfBZa+D1ft9vp9wFotpEhqTBP+5wQRBXzsHJs08viDTt/eb7+zQBNM3q4icVI5rNN6GOu+88/DxqX2XLXVUXxEREZGTktVqMnH6XASr3jZ99eUfMqMGRiQ2d+nqNnoGbJ8Lm+aY5smdhjZ3ieRYHIWm+RqYJuXSdg28wQT71v0Pxjxed99neYdMv3YFh01TyqvfN1lxbUnnYaYfv//cAPuXwXuXw3kPwZnTGp69uOlLWPUOYIFLXzH99YnISeWEBvvGjh1Lu3bH0YmliIiIiDQPHz84/Tdw6jVweDPEDWzuEtVP+95mRMOVb0HyQ3BLcutu9teWHd4MeMwopS1pdGfxvs4jTDPVzJ1mBPAB1x173eIck9GXtdsMJnTtx+AfcoIKeoKFxMGUr+CbP8GK2fDDDNOFgs3PZFPbfMHHjo/Nj3OLSvA5+LT5bq7yGjY/2POL2d7wu6DLmc16SCLSPE5osO+Pf/wj7dvrh1tERESk1fILalgfWy3BqAfMyJ/7l8LGz6HfJc1dIqmJBuc4eVgsJrvv+0fNQB3HCvY5i+GDyabf0KD2cP2nEBxzQot6wvnYYeK/zEi9394PzkIoLTZTGQsQDFB88NjbiUmCc//a1KUVkRbqhAX76uqvb9++fTzyyCPMnDnzBJVIRERERE4KwbEmw2X+301wodf4kUn7AwAAMVVJREFUljmC8MnuUHl/fWrCe1I4dTL88DcThE/bdHQ/jW4XfHwL7FkIfsFw3f+Of9CK1mTQFDOwRnEOlJaAywmuEnA5KC0pZPEvPzN08AB8LO6jXsftgj4TTeBQRE5KJyzYV9dovJmZmbz11lsK9omIiIiI9w2/G5bPgqxdZaPz/ra5SyRHSisfiVeDc5wUgmOg1wWw+UtY+Q6Me6LyNY8HvrzHvGbzg2vehw6nNl9Zm4tvgJmO4HE6yQhOx9PtXPD1bYaCiUhLZ23Iyj/++CN33nknEyZMYOLEidx99931HnV2165dREdHN6qQIiIiIiLHxd4ORt1v5uf9n8mWkZYlbZN51OAcJ4+BN5jHNR+Y7LRyPz1u+tnEApPeMCNri4hIvdU72Hf77bdz/vnn88EHH5CRkcHhw4d57733GDVqFHfddVed7+/cuXOdTXlFRERERJrMgBsgqhcUZcLCfzZ3aaSqggwzyjNAdO/mLYucON3Ph+A4Uyc3f2WWLXkVFjxt5ic8C30vbr7yiYi0UvUK9n366afMmjWLmTNnkp6ezqJFi1i8eDGHDx/m9ddf57XXXuOLL75o6rKKiIiIiDSezQdGTzfzi/8NOfubtzxSqbwJb3gXk4UpJwerrXJwjpVvw/qP4Zs/m+fnPACDb26+somItGL16rNv1qxZTJs2jSlTplRbbrVaufnmm9myZQtvvvkmF1100TG3cdlll9W6j+zs7PoURURERESk8XqOg85nmk7/f3wMLn2luUskoME5TmYDrjOZfDt/gt0LAQ+cfiuM/FNzl0xEpNWqV2bfypUrufTSS4/5+qRJk1ixYkWt2wgNDa116ty5MzfccEPDSi8iIiIi0hAWC4yZYebXfAgpa5u3PGKUZ/bF9G3ecsiJF94Zup5j5t1O6HsJXPB3U1dFRKRR6pXZl56eTnx8/DFfj4+PJyMjo9ZtzJo1q2ElExERERFpCvGDIGmSaTI492G44bPmLpGUD86hkXhPTkN/ZzL7uo6Cy14zzXtFRKTR6pXZ53A48PPzO+brPj4+OBwOrxVKRERERKRJnfcw2PxMgGH7981dmpOb210l2KdmvCelnmPh92vhuo/Bx97cpRERafXqldkH8NBDDxEYGFjja4WFhXW+/+ab69e56syZM+tbJBERERGRxgnvAmfcBotehOSHTUaRsomaR85ecOSb4Gtkt+YujTSX8M7NXQIRkTajXsG+s88+my1bttS5Tm1mz55N586dGTBgAB6Pp/4lFBERERFpCmfdC6veMf3FrfmgclRQObHKB+eI6gU23+Yti4iISBtQr2DfvHnzjntHt99+Ox9++CE7d+7k5ptv5rrrriMiIuK4tysiIiIi0iiBEXDWfTD3ITMyb7/LwK/mlizShDQ4h4iIiFfVq8++I6Wnp5Obm9ug97z88sukpKTw5z//mTlz5pCQkMCVV17Jd999p0w/EREREWkeZ9wGoZ0gLwUWv9zcpTk5aXAOERERr6p3sC87O5s77riDqKgoYmJiCA8PJzY2lvvvv79effYB2O12rrnmGubOncvGjRvp168fU6dOpXPnzuTn5zf6IEREREREGsXX3wzWAbDwOcg/3KzFabHc7qbbdnkzXg3OISIi4hX1asabmZnJsGHDOHDgANdeey19+vTB4/GwadMmXnjhBebOncvChQtZs2YNS5Ys4e67765zmxaLBYvFgsfjwd2UJw8iIiIiIrVJmmQG6khZDfP/Dhc+09wlqpnLCYc2wP5lkLoOeo2HXuOafr/bf4CProeRf4Iz/+DdbZc6IGObmVczXhEREa+oV7BvxowZ+Pn5sWPHDmJiYo56bcyYMVx//fUkJyfz/PPPH3M7JSUlfPLJJ8ycOZOFCxcyYcIEXnzxRcaNG4fV2qgWxSIiIiIix8dqhTGPwVsTYMUsGHI7RHVv7lJBzgE4sNwE9/Yvh4OrobSo8vV1/4Wpi8zIwk2lOBe+uAucBbDqXe8H+9K3grsU7KEQEu/dbYuIiJyk6hXs++yzz3j11VePCvQBxMbG8tRTTzF+/HgeeeQRbrzxxhq3MXXqVD788EM6derETTfdxIcffkhkZOTxlV5ERERExBsSz4Ke42Drt/D9I3D1eyd2/45Ck1m4v0pwL+/g0ev5h0L8YMhLNQNbfDkNrvsYLJamKdePf4PcA2Y+Y5vZb3Cs97afVtaEN6Zv0x2DiIjISaZe6XQpKSn063fsPjSSkpKwWq088sgjx1znlVdeISQkhMTERObPn8+tt97KZZdddtTUVB5//HGGDx9OYGAgYWFhNa6zd+9eJk6cSFBQEFFRUdx99904HI5q66xbt46RI0cSEBBAfHw8M2bMOGqAkfnz5zNo0CD8/f3p2rUrr7zySlMdloiIiIh4y/nTwWKFzV/C3sUnZp8rZsOrZ8OTHWHWBWZk4E1fmECfxQax/WHwzXDJv+HO5fCn3XD9J3Dl22Czw44fTIZfU9i3FJa+buYDws3jnl+8u49DZSPxanAOERERr6lXZl9UVBS7d++mY8eONb6+a9cu2rdvX+s2brjhBizNeLfO4XBwxRVXMGzYMN58882jXne5XFx44YVER0ezcOFCMjIyuPHGG/F4PLzwwgsA5ObmMnr0aEaNGsWyZcvYunUrU6ZMISgoiHvvvRcw/xfjx4/n1ltv5d133+WXX35h6tSpREdHM2nSpBN6zCIiIiLSAO17w4DrYeVbkPwQ3JLctNlm+5fDnN9XPm8XCx0HQ8fTzRR3GvgF1fzeqO4w8o/w42Pw7V+g23kQ5MVWM6UO+OJuwAOnXgP+YbDk37D7F9PHobdUjMSr/vpERES8pV7BvnHjxvHggw8yd+5c/Pz8qr1WUlLCQw89xLhxtXcOPHv27EYX0humT59eazmSk5PZuHEj+/btIy4uDoB//OMfTJkyhccff5yQkBDee+89iouLmT17Nna7naSkJLZu3cqzzz7LtGnTsFgsvPLKK3Tq1InnnnsOgD59+rB8+XKeeeYZBftEREREWrpRD8C6/8H+pbDxc+h3SdPsx+MxAUWAvpfA2MdNn3UNCS4O/z2s/8Q0hU1+EC71YmuSX/4FhzdBYCSMeRz2LioL9i303j6gSjNejcQrIiLiLfUK9k2fPp3BgwfTo0cP7rjjDnr37g3Axo0befnllykpKeHtt99u0oI2tUWLFpGUlFQR6AMYO3YsJSUlrFixglGjRrFo0SJGjhyJ3W6vts7999/P7t27SUxMZNGiRYwZM6batseOHcubb76J0+nE19e3xv2XlJRQUlJS8Tw3NxcAp9OJ0+n05qE2m/LjaCvHI9LcVKdEvE/1SvCPxDp0Krafn8bz/aOUdhsNNr+639dAlq3f4LP3Vzw+AZSeNwMCY6C0tKFbwTL+n9hmj8Oy5gNK+07C0/Wc4y9cxjZ8FjyFBSgd/RgevxCIOx1fgPQtOLMPQlB0vTZVa50qzsU3Z595PbwHqN6J1It+q0S8q7XUqYaUr17Bvo4dO7Jo0SKmTp3K/fffX9FHncViYfTo0bz44ot06tSpcaVtIVJTU48agCQ8PBw/Pz9SU1Mr1unSpUu1dcrfk5qaSmJiYo3biYmJobS0lPT0dDp06FDj/p988smK7MOqkpOTCQwMbOxhtUhz585t7iKItCmqUyLep3p1crO5enC+Tyj+WbvY/M6f2Nl+TN1vagCLx8WoTQ8QDGyLPJ9NC1cDqxu9vf7R59P18FxKPp7KT30ex2W11/2mY/G4GbH9SaJcDg4F92fxnkDY+zUA5/gnEFq8j9WfvcTB8DMatNma6lRE/lbOAop8I0j+6dfGl1nkJKXfKhHvaul1qrCwsN7r1ivYB5CYmMg333xDVlYW27ZtA6B79+5EREQcte7+/fuJi4vDaq3X+B+N9uijj9YYIKtq2bJlDB48uF7bq6lPQY/HU235ketUDXw2ZJ0j3X///UybNq3ieW5uLgkJCYwZM4aQkJB6lb+lczqdzJ07l9GjRx8zw1FE6k91SsT7VK+knCU+D765l6TMr+l99XQzCq6XWFfOxrY6BU9gJInX/YtE/+M81ys5C89rZxKUe4ALAtbgPu/RRm/KsuptfFZvweMbSMQNbzE+rPKGvtX2Myx/nYGRRZw2bny9tldbnbKuOATbwN5pIOPH1297IqLfKhFvay11qrwFaH3UO9hXLjw8nDPOqP1OXt++fVm9ejVdu3Zt6OYb5M477+Tqq6+udZ0jM/GOJTY2liVLllRblpWVhdPprMjUi42NrcjyK5eWlgZQ5zo+Pj5ERh6702S73V6teXA5X1/fFv1ha4y2eEwizUl1SsT7VK+EwVNg2WtY0rfgu+RFOP9R72y3JB8WPAWAZeSf8Q32wqAavhFw4bPwwVXYlvwb26lXQodTG76dvFT4wdxIt4x6EN/obtVf73o2LH8d295fsTWwftRYpzK2AmCN6YtV9U2kwfRbJeJdLb1ONaRsDQ721Ud5JltTi4qKIioqyivbGjZsGI8//jgpKSkVTW2Tk5Ox2+0MGjSoYp0HHngAh8NRMVBJcnIycXFxFUHFYcOGMWfOnGrbTk5OZvDgwV7/0LjdbhwOh1e32ZScTic+Pj4UFxfjcrlOyD59fX2x2WwnZF8iIiLShth8YPR0+OBqWPxvOP03ENrx+Le76EUoSIPwRBh00/Fvr1yvcdDvUtjwKXxxF/zmR3MMDfHNn6AkBzqcBkNuP/r1ziPM4+FNUJBx/KP/anAOERGRJtEkwb6WaO/evWRmZrJ3715cLherV68GTFPkdu3aMWbMGPr27cv111/P008/TWZmJvfddx+33nprRTPayZMnM336dKZMmcIDDzzAtm3beOKJJ3j44YcrmujefvvtvPjii0ybNo1bb72VRYsW8eabb/LBBx949XgcDge7du3C7XZ7dbtNyePxEBsby759+2pt0uxtYWFhxMbGntB9ioiISBvQcxx0PhP2LIQfHzv+0W7zDsEvz5v58x8BHy8P/DHu77DjR0hZY0bOHX5X/d+7+Wsz+rDFBhe9UHOgMCgS2vc1Qbo9v0DfixpfVo8HDm0w8+37Nn47IiIicpSTJtj38MMP89Zbb1U8HzBgAAA//fQT55xzDjabja+++oqpU6cyYsQIAgICmDx5Ms8880zFe0JDQ5k7dy533HEHgwcPJjw8nGnTplXray8xMZGvv/6ae+65h5deeom4uDief/55Jk2a5LVj8Xg8pKSkYLPZSEhIaPK+Eb3F7XaTn59Pu3btTkiZPR4PhYWFFU2tjzU4ioiIiEiNLBYY8zd4fRSs+RCGToUOpzR+e/OeBGcBxA+Gvpd4rZgVgmNgzGMms++nJ6DPRAjvUvf7inPhq3vN/PA7az/GziNMsG/3wuML9uWlQHG2CS5G92r8dkREROQoJ02wb/bs2cyePbvWdTp16sSXX35Z6zr9+/dnwYIFta4zcuRIVq5c2dAi1ltpaSmFhYXExcW1qpF6y5sd+/v7n7AAZUBAAGD6TWzfvr2a9IqIiEjDxA+EpMth/f9g7kNw/WcmCNhQh7fAyrfN/Ji/NW4b9THgelj7H9j9M3x5D1z3Sd37+mEG5B00gcGRf6l93S4jYNnrJrPveBwqa8Ib2R18jmP0YBERETlKk0Rc1FyyaZX3d1feb6DUrjwg6nQ6m7kkIiIi0iqd9xDY/GDnPNjxQ+O28f108Lig14XQebhXi1eNxQIT/wU2u2nSu/Y/ta+/bykse8PMT3gO/Oq4kdz5TPN4aD0UZja+nOX99bXv0/htiIiISI2aJNh3ogboONkpqFo/+n8SERGR4xLeBc64zcwnPwzuBg40tudX2PKVabLqrVF9axPZDUb+ycx/d78ZTKMmpQ744m7AA6dOhm6j6t52u2iIKmt2u+fXxpdRg3OIiIg0mXo1473sssvq3pCPD7GxsZx//vls2LCB+Pj44y6ciIiIiEiLcNa9sOodSNsAaz6AAdfV730eDyQ/ZOYH3QjRPZuujFWN+D2s/8SU97sH4LJXj17nl+fMyLqBUTD28fpvu8uZkL7F9NvXZ0LjyqfBOURERJpMvTL7QkND65wCAgLYtm0bV199NW+88Yb6RhMRERGRtiMwAs7+o5n/8TFwFNbvfRs/gwPLwTeo7v7wvMnmCxc9D1hg7Yew/Yjmx4e3woKnzfwFfzfHV19dRpjHPQsbVzZXqenDECBGwT4RERFvq1dm36xZs+q9wa+++orf/e53zJgxo9GFEhERERFpcc64DZa+Btl7YfFLlcG/Yyl1mL76AEbcbUbLPZE6DoYhv4Ulr5jBOqYuAr8gcLthzu/B5YDuoyFpUsO2W95vX+p6KMqCgPCGvT9zJ7hKwDcQwro07L0iIiJSJ6/32TdixAgGDx7s7c1KGzF16lRsNhsWi6XaNG7cOAC6dOly1GsWi4X/+7//A2D37t1YLBZWr17djEchIiIiJyUfO5z3iJlf+C/IP1z7+itmQdYuCGoPw+5s+vLV5Ny/QkhHyN4D8540y1a+BXt/NdmGE55t+MjAwTEQ2QPwwJ5FDS9TeX990b3B2iRdiIuIiJzUvP7rGhYWxieffOLtzUobMnbsWFJSUqpNH3zwQcXrM2bMOOr1u+66qxlLLCIiIlKm32XQ4TRw5MH/t3fn4VHVd9/HP5OFZAKTQAjJJIQsGDZZK3iBGJJgIQT7KCjtpbVyk4pglVAhvQFBRZZbFBVqkSr2KZutWsuDCgpFcmsW1hopVLBWwCZAMTEuQALZmfP8ETJlCJAEkjmZ5P26rrmYOed3znwm8CPhy2/JXnrlduVn/nN+5FzJr4Nb4tXhZ6sp6EnSnt9Khz+QMi4ULG97QuoYdW33dU7l3dX4a52bczCFFwCA5tCgabxo2QzDUFlVI3eFayJWX+9G73br5+cnu91+xfM2m+2q5wEAAEzj5SUl/4+0/v/UjNwb+gspJK5uu12/kUq/k0J6Sj/4L/fnvFjPMTVFys/elt64R5IhRdxUM8X3WsWMkPatk/J3NP5a5+Yc7MQLAEBzoNjXCpRVndeN8z8w5b3/sWiMAtrxxwgAALQhsSOkninS4W3S/z4l3fu66/kzJ2tG0UnSqIWSdwv4WWnsUunLj6Ty05LFu2bzDq/r2FAv+sLIvsKDUtlpydqx4dcysg8AgGbFIhlwuy1btqhDhw4uj8WLFzvPz5kzp875rKws8wIDAABcatRCyeIl/fP9uuvWZS6RqsulqOFSr7Hm5LtUh1DpR8tqMifNlez9r+9+geFS8A2S4ZCO7234dZXnpO/zap4zsg8AgGbRAv6bEdfL6uutfywaY9p7N1ZSUpJWrVrlciw4ONj5fNasWUpNTXU537Vr12vKBwAA0CxCe0s3/VfNVNaMJ6XJGTUbXXz9mXTgwki/5MWN3/yiOfX/sdT7R5KvtWnuF3Or9P2X0rGdUq+Uhl3zzReSDCkgROrQpWlyAAAAFxT7WgGLxeJRU2nbt2+vuLjLrG1zQUhIyFXPAwAAtAhJ86RPN0j/zpX+8a7U964Lm18YNc8jh5idsK6mKvRJNev2/e01KX9nw69hCi8AAM2OabwAAADAtbCFScOn1zz/34XSkQzpaIbk5Sv9cL652dyhdt2+gr9L5cUNu+brC8U+pvACANBsPGc4GFqNiooKFRYWuhzz8fFRSEiIJKmkpKTO+YCAAAUGBrotIwAAQIMMn16zK++pPOnPF3bdvXmyFNzd3FzuENRV6hQjncqvWbevZ3L91xRd2ImXkX0AADQbRvbB7T744AOFh4e7POLj453n58+fX+f87NmzJUkOh0NSTXEQAADAdH4daja8kKSqUskvUEqYZW4md4q58DPcsQZO5WVkHwAAzY5iH9zq5Zdf1vnz52UYhsvjn//8pyQpPz+/zjnDMJwbehQVFUmS7Ha7aZ8BAADAxQ8mSl161zyPnyG1DzE1jltFXyj25e+qv+25b6VzNT/LKbR382UCAKCNY3gUPEJ1dbXy8/P1/PPPa+DAgc4pvwAAAKbz9pHu+7OUlyMN/KnZadwr5sK6fV/tlypKJD/bldvWbs7RKUZq177ZowEA0FYxsg8e4dChQxowYIAKCgr02muvmR0HAADAVado6aaJNYW/tqRjVM3DOC+d+OvV2zKFFwAAt2hjP43AUw0aNEilpaVmxwAAAMClYkZIB16X8ndKcaOu3I7NOQAAcAtG9gEAAAC4dtEXpvLWt26fc2QfxT4AAJoTxT4AAAAA1652R96v/iZVnrt8G8MhfVOzIZvCmMYLAEBzajPFvqefflrDhw9XQECAOnbseNk2FoulzqN2F9haBw8eVGJioqxWq7p27apFixbJMAyXNtnZ2Ro8eLD8/f3VvXv3OvcAAAAAWo1O0VJQN8lRfeV1+86ckCrPSt7tpODu7s0HAEAb02aKfZWVlfrJT36ihx9++Krt1q5dq4KCAudj0qRJznPFxcUaPXq0IiIilJubq5deekkvvPCCli9f7myTl5en22+/XSNGjND+/fs1b948/fKXv9TGjRub7bMBAAAApqpnKq+ldifekF6St6+bQgEA0Da1mQ06Fi5cKElat27dVdt17NhRdrv9sudef/11lZeXa926dfLz81O/fv10+PBhLV++XOnp6c6RgFFRUXrxxRclSX369NEnn3yiF154QRMmTLji+1ZUVKiiosL5uri4WJJUVVWlqqoql7ZVVVUyDEMOh0MOh6O+j95i1I6ArM3uLg6HQ4ZhqKqqSt7e3m57X6C51f7dcOnfEQCuHf0KuDaWbrfI59M/yZG3Q+cv6j+1fclReKjm1y69Xc4DaDy+VwFNy1P6VGPytZliX0OlpaXpwQcfVGxsrCZPnqypU6fKy6tmAOSePXuUmJgoPz8/Z/sxY8Zo7ty5ys/PV2xsrPbs2aPk5GSXe44ZM0arV69WVVWVfH0v/z+ZzzzzjLMgebHt27crICDA5ZiPj4/sdrvOnj2rysrK6/3IbldSUuLW96usrFRZWZlycnJUXV3t1vcG3CEjI8PsCECrQ78CGiegolKjJenkJ/rg/Xd03svP5XzRwSxFSvr8ey8d3brVhIRA68P3KqBptfQ+VVpa2uC2FPsusnjxYv3whz+U1WrVhx9+qF/96lf69ttv9cQTT0iSCgsLFRMT43JNWFiY81xsbKwKCwudxy5uU11drW+//Vbh4eGXfe+5c+cqPT3d+bq4uFjdunVTcnKyAgMDXdqWl5frxIkT6tChg/z9/a/3Y7vNqlWrNGfOHH377bfOoufZs2fVuXNnDRs2TNnZ2c62O3bsUFJSkj7//HOlpKTo2LFjde63ZMkSzZkzR/n5+brhhhu0b98+DRo0qE678vJyWa1WJSQkeNTXC6hPVVWVMjIyNHr06Cv+RwKAxqFfAdfIMGSc+LW8Sr5SSt/OMmITJP2nT0X4nJYk9Rpxl3rGjTIxKOD5+F4FNC1P6VO1M0AbwqOLfQsWLLjsaLiL5ebmasiQIQ26X21RT5KzaLRo0SKX4xaLxeWa2qmpFx9vSJtL+fn5uYwYrOXr61vnD9v58+dlsVjk5eXlHHXoCUaOHKmzZ89q3759Gj58uCRp165dstvtys3NVXl5uXMUY05OjiIiItS7d29JNb8PU6ZMcbmfzWZz+Rpc6evh5eUli8Vy2a8l0BrwZxtoevQr4BrExEsH/yyff++Vev7QedjiqJbl+y8lST4R/SX6FtAk+F4FNK2W3qcak82ji31paWm69957r9rm0pF4jTFs2DAVFxfr66+/VlhYmOx2uwoLC13aFBUVSfrPCL8rtfHx8VHnzp2vOUtr0KtXL4WHhys7O9tZ7MvKytK4ceOUmZmp3bt3a9SoUc7jI0eOdF5rs9muuJYiAAAAWoALxT7l73Q5bKv4ShZHteQXJAV2NSkcAABth0cX+0JCQhQSEtJs99+/f7/8/f3VsWNHSdItt9yiefPmqbKyUu3atZNUs6ZeRESEs6h4yy236L333nO5z/bt2zVkyJDmqxAbhlTV8LnbTco3QLrKiMVL3XrrrcrMzNTcuXMlSZmZmZo9e7YcDocyMzM1atQoVVZWas+ePXrppZeaKzUAAACaWkx8za8nP5GqyiRfqyQpsOzfNcfDbmzUz40AAODaeHSxrzGOHz+u77//XsePH9f58+d14MABSVJcXJw6dOig9957T4WFhbrllltktVqVmZmpxx9/XFOnTnVOr73vvvu0cOFCpaamat68eTpy5IiWLFmi+fPnO6fo/uIXv9DKlSuVnp6uKVOmaM+ePVq9erXefPPN5vtwVaXSkojmu//VzPtKate+wc3j4+P1+OOPq7q6WmVlZdq/f78SEhJ0/vx5rVixQpK0d+9elZWVuYzsmzNnjst0akl6//33lZSU1CQfAwAAANcpuLvUwS6dLZT+nStdWLcvsOxEzfnQG00MBwBA29Fmin3z58/X+vXrna9/8IMfSKoZWZaUlCRfX1+9/PLLSk9Pl8PhUPfu3bVo0SJNmzbNeU1QUJAyMjI0bdo0DRkyRJ06dVJ6errLxhqxsbHaunWrZs6cqd/+9reKiIjQihUrNGHCBPd92BZsxIgROnfunHJzc3Xq1Cn17NlToaGhSkxM1MSJE3Xu3DllZWUpKipK3bt3d143a9Yspaamutyra1emgQAAALQYFkvN6L5D/0/K3+Us9tnKLxrZBwAAml2bKfatW7dO69atu+L5lJQUpaSk1Huf/v37Kycn56ptEhMT9be//a2xEa+db0DNCDsz+AY0qnn37t0VGRmpzMxMnTp1SomJiZJq1jqMjY3Vrl27lJmZqdtuu83lupCQEMXFxTVZbAAAADSDmFtrin3HdjkPOafxhvY1KRQAAG1Lmyn2tWoWS6Om0potKSlJWVlZOnXqlGbNmuU8npiYqA8++EB79+7Vz3/+cxMTAgAA4JrEjKj59cTHUlW5VH5OAVXf1RwL7W1eLgAA2hCKfXC7pKQkTZ8+XVVVVc6RfVJNse/hhx9WeXm5y3p9klRSUlJnl+OAgAAFBga6JTMAAAAaoHOc1D5UOlckndwni8OQJBm2CFmsnUwOBwBA2+BldgC0PSNHjlRZWZni4uIUFhbmPJ6YmKiSkhLdcMMN6tatm8s18+fPV3h4uMtj9uzZkiSHwyFJ8vGhdg0AAGCq2nX7JCl/pyxF/5AkGWzOAQCA21AdgdvFxMTIMIw6xyMjIy97PD8//6r3KyoqklSz7h8AAABMFnOr9Nnb0rGdUnAPSZIR2sfkUAAAtB0U++CxqqurlZ+fr+eff14DBw5USEiI2ZEAAABw0bp9lspSSZLRhWIfAADuwjReeKxDhw5pwIABKigo0GuvvWZ2HAAAAEhSSE+pfRepulxeJz+RRLEPAAB3YmQfPNagQYNUWlpqdgwAAABczGKRoodL/9gkSXLIq6YACAAA3IKRfQAAAACaVu1UXknn/O2Sj5+JYQAAaFso9nmwy21mgbr4OgEAALhZ9K3Op8X+kSYGAQCg7aHY54G8vb0lSZWVlSYn8Qy1U319fX1NTgIAANBGdOktBXSWJBVbu5kcBgCAtoU1+zyQj4+PAgIC9M0338jX11deXp5Rs3U4HKqsrFR5eblbMhuGodLSUhUVFaljx47OIikAAACamZeX1O/HMnL/r4oC+yvO7DwAALQhFPs8kMViUXh4uPLy8nTs2DGz4zSYYRgqKyuT1WqVxWJx2/t27NhRdrvdbe8HAAAASWOeVvWtv9LprL1mJwEAoE2h2Oeh2rVrpx49enjUVN6qqirl5OQoISHBbVNqfX19GdEHAABgBm9fKSDY7BQAALQ5FPs8mJeXl/z9/c2O0WDe3t6qrq6Wv78/6+cBAAAAAAA0A89Y7A0AAAAAAABAvSj2AQAAAAAAAK0ExT4AAAAAAACglWDNvhbKMAxJUnFxsclJmk5VVZVKS0tVXFzMmn1AE6BPAU2PfgU0LfoU0PToV0DT8pQ+VVsfqq0XXQ3FvhaqpKREktStWzeTkwAAAAAAAKAlKCkpUVBQ0FXbWIyGlAThdg6HQ1999ZVsNpssFovZcZpEcXGxunXrphMnTigwMNDsOIDHo08BTY9+BTQt+hTQ9OhXQNPylD5lGIZKSkoUEREhL6+rr8rHyL4WysvLS5GRkWbHaBaBgYEtugMBnoY+BTQ9+hXQtOhTQNOjXwFNyxP6VH0j+mqxQQcAAAAAAADQSlDsAwAAAAAAAFoJin1wGz8/Pz311FPy8/MzOwrQKtCngKZHvwKaFn0KaHr0K6BptcY+xQYdAAAAAAAAQCvByD4AAAAAAACglaDYBwAAAAAAALQSFPsAAAAAAACAVoJiHwAAAAAAANBKUOwDAAAAAAAAWgmKfWhSOTk5uuOOOxQRESGLxaJ3333X5XxqaqosFovLY9iwYeaEBTxEff1Kkj7//HPdeeedCgoKks1m07Bhw3T8+HH3hwU8QH196tLvU7WP559/3pzAgAeor1+dPXtWaWlpioyMlNVqVZ8+ffTKK6+YExbwAPX1qa+//lqpqamKiIhQQECAUlJSdOTIEXPCAh7gmWee0c033yybzabQ0FCNHz9eX3zxhUsbwzC0YMECRUREyGq1KikpSZ999plJia8PxT40qXPnzmngwIFauXLlFdukpKSooKDA+di6dasbEwKep75+9eWXXyo+Pl69e/dWVlaW/v73v+vJJ5+Uv7+/m5MCnqG+PnXx96iCggKtWbNGFotFEyZMcHNSwHPU169mzpypbdu26Y9//KM+//xzzZw5U9OnT9emTZvcnBTwDFfrU4ZhaPz48frXv/6lTZs2af/+/YqOjtaoUaN07tw5E9ICLV92dramTZumvXv3KiMjQ9XV1UpOTnbpM88995yWL1+ulStXKjc3V3a7XaNHj1ZJSYmJya+NxTAMw+wQaJ0sFoveeecdjR8/3nksNTVVp0+fvuzIJAD1u1y/uvfee+Xr66s//OEP5gUDPNTl+tSlxo8fr5KSEn344YfuCwZ4sMv1q379+umee+7Rk08+6Tw2ePBg3X777Vq8eLEJKQHPcWmfOnz4sHr16qVDhw6pb9++kqTz588rNDRUS5cu1YMPPmhiWsAzfPPNNwoNDVV2drYSEhJkGIYiIiI0Y8YMzZkzR5JUUVGhsLAwLV26VA899JDJiRuHkX1wu6ysLIWGhqpnz56aMmWKioqKzI4EeCyHw6EtW7aoZ8+eGjNmjEJDQzV06FAK6kAT+frrr7VlyxZNnjzZ7CiAR4uPj9fmzZt18uRJGYahzMxMHT58WGPGjDE7GuBxKioqJMllFoe3t7fatWunnTt3mhUL8ChnzpyRJAUHB0uS8vLyVFhYqOTkZGcbPz8/JSYmavfu3aZkvB4U++BWY8eO1euvv66PPvpIy5YtU25urm677TbnNywAjVNUVKSzZ8/q2WefVUpKirZv36677rpLd999t7Kzs82OB3i89evXy2az6e677zY7CuDRVqxYoRtvvFGRkZFq166dUlJS9PLLLys+Pt7saIDH6d27t6KjozV37lydOnVKlZWVevbZZ1VYWKiCggKz4wEtnmEYSk9PV3x8vPr16ydJKiwslCSFhYW5tA0LC3Oe8yQ+ZgdA23LPPfc4n/fr109DhgxRdHS0tmzZwj+kgGvgcDgkSePGjdPMmTMlSYMGDdLu3bu1atUqJSYmmhkP8Hhr1qzRz372M9bABK7TihUrtHfvXm3evFnR0dHKycnRI488ovDwcI0aNcrseIBH8fX11caNGzV58mQFBwfL29tbo0aN0tixY82OBniEtLQ0ffrpp5cdCWuxWFxeG4ZR55gnoNgHU4WHhys6Opqdo4BrFBISIh8fH914440ux/v06cM0DuA67dixQ1988YXeeusts6MAHq2srEzz5s3TO++8ox/96EeSpAEDBujAgQN64YUXKPYB12Dw4ME6cOCAzpw5o8rKSnXp0kVDhw7VkCFDzI4GtGjTp0/X5s2blZOTo8jISOdxu90uqWaEX3h4uPN4UVFRndF+noBpvDDVd999pxMnTrh0JgAN165dO9188811to0/fPiwoqOjTUoFtA6rV6/W4MGDNXDgQLOjAB6tqqpKVVVV8vJy/aeHt7e3c4Q6gGsTFBSkLl266MiRI/rkk080btw4syMBLZJhGEpLS9Pbb7+tjz76SLGxsS7nY2NjZbfblZGR4TxWWVmp7OxsDR8+3N1xrxsj+9Ckzp49q6NHjzpf5+Xl6cCBAwoODlZwcLAWLFigCRMmKDw8XPn5+Zo3b55CQkJ01113mZgaaNmu1q+ioqI0a9Ys3XPPPUpISNDIkSO1bds2vffee8rKyjIvNNCC1denJKm4uFgbNmzQsmXLzIoJeJT6+lViYqJmzZolq9Wq6OhoZWdn67XXXtPy5ctNTA20XPX1qQ0bNqhLly6KiorSwYMH9eijj2r8+PEumwsA+I9p06bpjTfe0KZNm2Sz2Zzr8AUFBclqtcpisWjGjBlasmSJevTooR49emjJkiUKCAjQfffdZ3L6a2AATSgzM9OQVOcxadIko7S01EhOTja6dOli+Pr6GlFRUcakSZOM48ePmx0baNGu1q9qrV692oiLizP8/f2NgQMHGu+++655gYEWriF96tVXXzWsVqtx+vRp84ICHqS+flVQUGCkpqYaERERhr+/v9GrVy9j2bJlhsPhMDc40ELV16d+85vfGJGRkc5/Vz3xxBNGRUWFuaGBFuxy/UmSsXbtWmcbh8NhPPXUU4bdbjf8/PyMhIQE4+DBg+aFvg4WwzAMN9QUAQAAAAAAADQz1uwDAAAAAAAAWgmKfQAAAAAAAEArQbEPAAAAAAAAaCUo9gEAAAAAAACtBMU+AAAAAAAAoJWg2AcAAAAAAAC0EhT7AAAAAAAAgFaCYh8AAAAAAABarGeeeUY333yzbDabQkNDNX78eH3xxRcubQzD0IIFCxQRESGr1aqkpCR99tlnLm1+97vfKSkpSYGBgbJYLDp9+nSd94qJiZHFYnF5PPbYY1fNl5WVJYvFok6dOqm8vNzl3Mcff+y8j7tQ7AMAAAAAAECLlZ2drWnTpmnv3r3KyMhQdXW1kpOTde7cOWeb5557TsuXL9fKlSuVm5sru92u0aNHq6SkxNmmtLRUKSkpmjdv3lXfb9GiRSooKHA+nnjiiQbltNlseuedd1yOrVmzRlFRUY34tJdXWVnZ4LYU+wAAAAAAANBibdu2Tampqerbt68GDhyotWvX6vjx49q3b5+kmlF9L774oh5//HHdfffd6tevn9avX6/S0lK98cYbzvvMmDFDjz32mIYNG3bV97PZbLLb7c5Hhw4dGpRz0qRJWrNmjfN1WVmZ/vSnP2nSpEku7b777jv99Kc/VWRkpAICAtS/f3+9+eabLm2SkpKUlpam9PR0hYSEaPTo0Q3KIFHsAwAAAAAAgAc5c+aMJCk4OFiSlJeXp8LCQiUnJzvb+Pn5KTExUbt37270/ZcuXarOnTtr0KBBevrppxs8qm7ixInasWOHjh8/LknauHGjYmJidNNNN7m0Ky8v1+DBg/X+++/r0KFDmjp1qiZOnKi//vWvLu3Wr18vHx8f7dq1S6+++mqD8/s0uCUAAAAAAABgIsMwlJ6ervj4ePXr10+SVFhYKEkKCwtzaRsWFqZjx4416v6PPvqobrrpJnXq1Ekff/yx5s6dq7y8PP3+97+v99rQ0FCNHTtW69at0/z587VmzRo98MADddp17dpV//3f/+18PX36dG3btk0bNmzQ0KFDncfj4uL03HPPNSq/RLEPAAAAAAAAHiItLU2ffvqpdu7cWefcpZtgGIbR6I0xZs6c6Xw+YMAAderUST/+8Y+do/369u3rLCCOGDFCf/nLX1yuf+CBB/Too4/q/vvv1549e7Rhwwbt2LHDpc358+f17LPP6q233tLJkydVUVGhiooKtW/f3qXdkCFDGpW9FsU+AAAAAAAAtHjTp0/X5s2blZOTo8jISOdxu90uqWaEX3h4uPN4UVFRndF+jVW7vt/Ro0fVuXNnbd26VVVVVZIkq9Vap/3tt9+uhx56SJMnT9Ydd9yhzp0712mzbNky/frXv9aLL76o/v37q3379poxY0ad6cKXFv8aijX7AAAAAAAA0GIZhqG0tDS9/fbb+uijjxQbG+tyPjY2Vna7XRkZGc5jlZWVys7O1vDhw6/rvffv3y9JziJidHS04uLiFBcXp65du9Zp7+3trYkTJyorK+uyU3glaceOHRo3bpzuv/9+DRw4UN27d9eRI0euK+fFGNkHAAAAAACAFmvatGl64403tGnTJtlsNucafUFBQbJarbJYLJoxY4aWLFmiHj16qEePHlqyZIkCAgJ03333Oe9TWFiowsJCHT16VJJ08OBB2Ww2RUVFKTg4WHv27NHevXs1cuRIBQUFKTc3VzNnztSdd96pqKioBuddvHixZs2addlRfVLNWnwbN27U7t271alTJy1fvlyFhYXq06fPdXyV/oNiHwAAAAAAAFqsV155RZKUlJTkcnzt2rVKTU2VJM2ePVtlZWV65JFHdOrUKQ0dOlTbt2+XzWZztl+1apUWLlzofJ2QkOByHz8/P7311ltauHChKioqFB0drSlTpmj27NmNytuuXTuFhIRc8fyTTz6pvLw8jRkzRgEBAZo6darGjx/v3GX4elkMwzCa5E4AAAAAAAAATMWafQAAAAAAAEArQbEPAAAAAAAAaCUo9gEAAAAAAACtBMU+AAAAAAAAoJWg2AcAAAAAAAC0EhT7AAAAAAAAgFaCYh8AAAAAAADQSlDsAwAAAAAAAFoJin0AAAAAAABAK0GxDwAAAAAAAGglKPYBAAAAAAAArcT/B6uSFLWD7zNWAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1500x500 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def plot_AEJ_envelope(ds_AEJ_peaks):\n",
    "    # Masks to identify which sector the satellite is in\n",
    "    #  and which current type (WEJ/EEJ) is given\n",
    "    mask_asc = ds_AEJ_peaks[\"QDOrbitDirection\"] == 1\n",
    "    mask_desc = ds_AEJ_peaks[\"QDOrbitDirection\"] == -1\n",
    "    mask_WEJ = ds_AEJ_peaks[\"PointType\"] == 0\n",
    "    mask_EEJ = ds_AEJ_peaks[\"PointType\"] == 1\n",
    "\n",
    "    fig, axes = plt.subplots(nrows=2, sharex=True, sharey=True, figsize=(15, 5))\n",
    "    # Select and plot from the ascending orbital segments\n",
    "    #  on axes 0\n",
    "    # Eastward electrojet:\n",
    "    _ds = ds_AEJ_peaks.where(mask_EEJ & mask_asc, drop=True)\n",
    "    _ds[\"J_QD\"].plot.line(x=\"Timestamp\", ax=axes[0], label=\"EEJ\")\n",
    "    # Westward electrojet:\n",
    "    _ds = ds_AEJ_peaks.where(mask_WEJ & mask_asc, drop=True)\n",
    "    _ds[\"J_QD\"].plot.line(x=\"Timestamp\", ax=axes[0], label=\"WEJ\")\n",
    "    # Identify approximate MLT of sector\n",
    "    _ds = ds_AEJ_peaks.where(mask_asc, drop=True)\n",
    "    mlt = round(float(_ds[\"MLT\"].mean()))\n",
    "    axes[0].set_ylabel(axes[0].get_ylabel() + f\"\\nMLT: ~{mlt}\")\n",
    "    # ... and for descending segments\n",
    "    #  on axes 1\n",
    "    # Eastward electrojet:\n",
    "    _ds = ds_AEJ_peaks.where(mask_EEJ & mask_desc, drop=True)\n",
    "    _ds[\"J_QD\"].plot.line(x=\"Timestamp\", ax=axes[1], label=\"EEJ\")\n",
    "    # Westward electrojet:\n",
    "    _ds = ds_AEJ_peaks.where(mask_WEJ & mask_desc, drop=True)\n",
    "    _ds[\"J_QD\"].plot.line(x=\"Timestamp\", ax=axes[1], label=\"WEJ\")\n",
    "    # Identify approximate MLT of sector\n",
    "    _ds = ds_AEJ_peaks.where(mask_desc, drop=True)\n",
    "    mlt = round(float(_ds[\"MLT\"].mean()))\n",
    "    axes[1].set_ylabel(axes[1].get_ylabel() + f\"\\nMLT: ~{mlt}\")\n",
    "    axes[1].legend()\n",
    "    axes[0].set_xlabel(\"\")\n",
    "    axes[1].set_xlabel(\"\")\n",
    "    axes[0].grid()\n",
    "    axes[1].grid()\n",
    "    fig.suptitle(\"Auroral electrojet envelope measured by Swarm Alpha\")\n",
    "    return fig, axes\n",
    "\n",
    "fig_aej, axes_aej = plot_AEJ_envelope(ds_AEJ_peaks)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7df54a5a",
   "metadata": {},
   "source": [
    "This shows us the envelope of the auroral electrojet system - how the strength of the Eastward (EEJ) and Westward (WEJ) electrojets evolve over time - but only over the two local time sectors that the spacecraft is moving through. The strengths of the electric current along the contours of Quasi-Dipole latitude, `J_QD`, have been calculated."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08247e47",
   "metadata": {},
   "source": [
    "### Peak ground magnetic disturbances below satellite tracks\n",
    "\n",
    "Swarm also provides predictions of the location and strength of the peak disturbance on the ground (along the satellite ground-track) caused by the auroral electrojets. Note that this is from the AEJ_PBS (using the SECS method) collection rather than the AEJ_PBL (using the LC method) used above."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "bc8da2c1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:36.417970Z",
     "iopub.status.busy": "2025-06-21T21:48:36.417615Z",
     "iopub.status.idle": "2025-06-21T21:48:38.217652Z",
     "shell.execute_reply": "2025-06-21T21:48:38.217032Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body[data-theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block !important;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-index-preview {\n",
       "  grid-column: 2 / 5;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data,\n",
       ".xr-index-data-in:checked ~ .xr-index-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-index-name div,\n",
       ".xr-index-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2,\n",
       ".xr-no-icon {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:           (Timestamp: 305, NE: 2)\n",
       "Coordinates:\n",
       "  * Timestamp         (Timestamp) datetime64[ns] 2015-03-15T00:00:15 ... 2015...\n",
       "  * NE                (NE) &lt;U1 &#x27;N&#x27; &#x27;E&#x27;\n",
       "Data variables:\n",
       "    Spacecraft        (Timestamp) object &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; ... &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27;\n",
       "    Latitude          (Timestamp) float64 83.5 66.16 58.53 ... 75.91 74.42 84.5\n",
       "    OrbitNumber       (Timestamp) int32 7314 7315 7315 7315 ... 7390 7390 7390\n",
       "    QDOrbitDirection  (Timestamp) int8 -1 1 1 -1 -1 1 1 -1 ... 1 -1 -1 1 1 -1 -1\n",
       "    B_NE              (Timestamp, NE) float64 23.81 -67.72 ... 38.74 -57.74\n",
       "    Longitude         (Timestamp) float64 95.92 -77.83 -78.88 ... 120.3 103.4\n",
       "    B_Total           (Timestamp) float64 71.78 1.622 50.35 ... 8.373 69.53\n",
       "Attributes:\n",
       "    Sources:         [&#x27;SW_OPER_AEJAPBS_2F_20150101T000000_20151231T235959_010...\n",
       "    MagneticModels:  []\n",
       "    AppliedFilters:  [&#x27;Latitude &lt;= 90&#x27;, &#x27;Latitude &gt;= 0&#x27;]</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-89f13014-9b4b-440b-8c42-bf4572e7bd23' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-89f13014-9b4b-440b-8c42-bf4572e7bd23' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>Timestamp</span>: 305</li><li><span class='xr-has-index'>NE</span>: 2</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-82a2ceda-6510-4e61-8190-b32288deec83' class='xr-section-summary-in' type='checkbox'  checked><label for='section-82a2ceda-6510-4e61-8190-b32288deec83' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>Timestamp</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2015-03-15T00:00:15 ... 2015-03-...</div><input id='attrs-65a140f9-8fed-439e-8fd9-602ea3f30a06' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-65a140f9-8fed-439e-8fd9-602ea3f30a06' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6c62c559-795d-4bfb-936a-37e95f6ea25a' class='xr-var-data-in' type='checkbox'><label for='data-6c62c559-795d-4bfb-936a-37e95f6ea25a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>description :</span></dt><dd>Time of peaks in ground magnetic field disturbance</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;2015-03-15T00:00:15.000000000&#x27;, &#x27;2015-03-15T01:22:10.000000000&#x27;,\n",
       "       &#x27;2015-03-15T01:24:03.000000000&#x27;, ..., &#x27;2015-03-19T22:36:05.000000000&#x27;,\n",
       "       &#x27;2015-03-19T22:42:57.000000000&#x27;, &#x27;2015-03-19T22:45:33.000000000&#x27;],\n",
       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>NE</span></div><div class='xr-var-dims'>(NE)</div><div class='xr-var-dtype'>&lt;U1</div><div class='xr-var-preview xr-preview'>&#x27;N&#x27; &#x27;E&#x27;</div><input id='attrs-f26b496a-2ba0-4381-b159-9f12fa6501d8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f26b496a-2ba0-4381-b159-9f12fa6501d8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e3da06ee-33e4-4679-809f-7819441ca930' class='xr-var-data-in' type='checkbox'><label for='data-e3da06ee-33e4-4679-809f-7819441ca930' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd></dd><dt><span>description :</span></dt><dd>Horizontal NE frame - North, East</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;N&#x27;, &#x27;E&#x27;], dtype=&#x27;&lt;U1&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-60c8ebff-e168-4fdb-ad3b-a209aef3f17a' class='xr-section-summary-in' type='checkbox'  checked><label for='section-60c8ebff-e168-4fdb-ad3b-a209aef3f17a' class='xr-section-summary' >Data variables: <span>(7)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>Spacecraft</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>&#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; ... &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27; &#x27;A&#x27;</div><input id='attrs-4aaf1ec1-b7ad-43d2-9686-6ef0249de7f1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4aaf1ec1-b7ad-43d2-9686-6ef0249de7f1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-22d1278f-1feb-4c58-a637-648a24ebfcb9' class='xr-var-data-in' type='checkbox'><label for='data-22d1278f-1feb-4c58-a637-648a24ebfcb9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>-</dd><dt><span>description :</span></dt><dd>Spacecraft identifier (values: &#x27;A&#x27;, &#x27;B&#x27;, &#x27;C&#x27; or &#x27;-&#x27; if not available).</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;,\n",
       "       &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;, &#x27;A&#x27;], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Latitude</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>83.5 66.16 58.53 ... 74.42 84.5</div><input id='attrs-302d8829-a308-415a-8cf6-dd6ca2b77ab3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-302d8829-a308-415a-8cf6-dd6ca2b77ab3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-91322cb0-9354-467f-ab1e-2c3724550563' class='xr-var-data-in' type='checkbox'><label for='data-91322cb0-9354-467f-ab1e-2c3724550563' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>deg</dd><dt><span>description :</span></dt><dd></dd></dl></div><div class='xr-var-data'><pre>array([83.50300598, 66.15681458, 58.52561188, 76.57507324, 87.41651917,\n",
       "       67.11888885, 59.26384735, 75.84377289, 82.14648438, 62.38469315,\n",
       "       53.27690125, 73.90876007, 80.16030121, 82.61323547, 66.25975037,\n",
       "       71.4413147 , 79.31881714, 85.28779602, 69.43439484, 79.52684021,\n",
       "       71.86678314, 81.13808441, 73.0427475 , 77.85772705, 71.56430054,\n",
       "       87.29177094, 74.31719971, 74.96910858, 68.79899597, 72.5348053 ,\n",
       "       64.10626984, 64.80910492, 72.32174683, 86.82937622, 72.49042511,\n",
       "       64.92171478, 72.25286865, 87.08478546, 71.22782135, 65.94503784,\n",
       "       77.38280487, 68.44661713, 86.55429077, 69.81350708, 78.16150665,\n",
       "       80.90084076, 73.32239532, 71.9413147 , 84.02529144, 81.94670105,\n",
       "       56.00151062, 76.2368927 , 87.26335907, 83.14543152, 72.86753845,\n",
       "       79.78707886, 87.26700592, 75.70121765, 67.18228149, 84.55677795,\n",
       "       85.78712463, 77.07545471, 64.25072479, 86.15210724, 81.21786499,\n",
       "       77.53781891, 66.81939697, 85.24825287, 87.33692932, 59.72038651,\n",
       "       75.30081177, 73.90441132, 80.28702545, 79.38647461, 67.18966675,\n",
       "       75.11135864, 82.24680328, 84.35484314, 68.28553772, 85.1125946 ,\n",
       "       78.08302307, 83.23342133, 73.20589447, 76.72637177, 81.89989471,\n",
       "       87.09910583, 75.59636688, 50.27690125, 70.2355957 , 87.29399872,\n",
       "       74.19487   , 71.27262878, 76.73308563, 87.30827332, 73.50959778,\n",
       "       70.90438843, 76.99745941, 85.939888  , 75.57196808, 71.48960876,\n",
       "...\n",
       "       77.56538391, 68.5089035 , 53.3296051 , 70.96261597, 84.84288788,\n",
       "       68.53005981, 71.54380798, 78.18890381, 77.59371185, 69.34030914,\n",
       "       63.32382965, 46.27634811, 86.49032593, 68.76426697, 78.32714081,\n",
       "       63.87670517, 78.80654144, 64.79029083, 63.86645126, 80.86991882,\n",
       "       78.27100372, 68.36707306, 70.95281982, 82.57063293, 87.39982605,\n",
       "       67.46025085, 71.84642792, 85.32004547, 85.39686584, 71.95215607,\n",
       "       72.05076599, 81.62001801, 71.51428986, 59.54436493, 73.88691711,\n",
       "       83.58627319, 82.06331635, 73.98015594, 73.94762421, 82.71115875,\n",
       "       60.750103  , 52.85040665, 74.9822998 , 87.46440887, 65.3155899 ,\n",
       "       58.43878555, 77.59370422, 85.7000351 , 67.47210693, 59.96735382,\n",
       "       75.03356934, 81.50709534, 68.83849335, 60.1174469 , 80.90164185,\n",
       "       86.28899384, 84.68421936, 67.40029144, 70.80861664, 79.5075531 ,\n",
       "       78.05810547, 70.1601944 , 69.18295288, 77.7804718 , 76.39561462,\n",
       "       68.90507507, 70.18817139, 77.79621124, 73.42754364, 66.2853775 ,\n",
       "       59.30492401, 68.51451111, 77.35144043, 67.85871124, 62.78434753,\n",
       "       74.1844635 , 80.12785339, 66.53829956, 64.38806915, 80.22318268,\n",
       "       86.70908356, 71.88565063, 70.50668335, 82.70321655, 87.29708099,\n",
       "       69.6563797 , 74.25914764, 86.74336243, 56.37661743, 65.40895844,\n",
       "       73.4779892 , 84.64411163, 85.65302277, 63.31573868, 74.55505371,\n",
       "       84.83091736, 68.99603271, 75.91121674, 74.4176712 , 84.50045776])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>OrbitNumber</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>7314 7315 7315 ... 7390 7390 7390</div><input id='attrs-eeb66b5f-f0e5-4bbf-9caf-aca9e3b179f9' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-eeb66b5f-f0e5-4bbf-9caf-aca9e3b179f9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-494cf7d2-122a-487e-bd56-2f7c3be9ad58' class='xr-var-data-in' type='checkbox'><label for='data-494cf7d2-122a-487e-bd56-2f7c3be9ad58' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>-</dd><dt><span>description :</span></dt><dd>Orbit number (set to -1 if not available)</dd></dl></div><div class='xr-var-data'><pre>array([7314, 7315, 7315, 7315, 7315, 7316, 7316, 7316, 7316, 7317, 7317,\n",
       "       7317, 7317, 7318, 7318, 7318, 7318, 7319, 7319, 7319, 7319, 7320,\n",
       "       7320, 7320, 7320, 7321, 7321, 7321, 7321, 7322, 7322, 7322, 7322,\n",
       "       7323, 7323, 7323, 7323, 7324, 7324, 7324, 7324, 7325, 7325, 7325,\n",
       "       7325, 7326, 7326, 7326, 7326, 7327, 7327, 7327, 7327, 7328, 7328,\n",
       "       7328, 7328, 7329, 7329, 7329, 7329, 7330, 7330, 7330, 7330, 7331,\n",
       "       7331, 7331, 7331, 7332, 7332, 7332, 7332, 7333, 7333, 7333, 7333,\n",
       "       7334, 7334, 7334, 7334, 7335, 7335, 7335, 7335, 7336, 7336, 7336,\n",
       "       7336, 7337, 7337, 7337, 7337, 7338, 7338, 7338, 7338, 7339, 7339,\n",
       "       7339, 7339, 7340, 7340, 7340, 7340, 7341, 7341, 7341, 7341, 7342,\n",
       "       7342, 7342, 7342, 7343, 7343, 7343, 7343, 7344, 7344, 7344, 7344,\n",
       "       7345, 7345, 7345, 7345, 7346, 7346, 7346, 7346, 7347, 7347, 7347,\n",
       "       7347, 7348, 7348, 7348, 7348, 7349, 7349, 7349, 7349, 7350, 7350,\n",
       "       7350, 7350, 7351, 7351, 7351, 7351, 7352, 7352, 7352, 7352, 7353,\n",
       "       7353, 7353, 7353, 7354, 7354, 7354, 7354, 7355, 7355, 7355, 7355,\n",
       "       7356, 7356, 7356, 7356, 7357, 7357, 7357, 7357, 7358, 7358, 7358,\n",
       "       7358, 7359, 7359, 7359, 7359, 7360, 7360, 7360, 7360, 7361, 7361,\n",
       "       7361, 7361, 7362, 7362, 7362, 7362, 7363, 7363, 7363, 7363, 7364,\n",
       "       7364, 7364, 7364, 7365, 7365, 7365, 7365, 7366, 7366, 7366, 7366,\n",
       "       7367, 7367, 7367, 7367, 7368, 7368, 7368, 7368, 7369, 7369, 7369,\n",
       "       7369, 7370, 7370, 7370, 7370, 7371, 7371, 7371, 7371, 7372, 7372,\n",
       "       7372, 7372, 7373, 7373, 7373, 7373, 7374, 7374, 7374, 7374, 7375,\n",
       "       7375, 7375, 7375, 7376, 7376, 7376, 7376, 7377, 7377, 7377, 7377,\n",
       "       7378, 7378, 7378, 7378, 7379, 7379, 7379, 7379, 7380, 7380, 7380,\n",
       "       7380, 7381, 7381, 7381, 7381, 7382, 7382, 7382, 7382, 7383, 7383,\n",
       "       7383, 7383, 7384, 7384, 7384, 7384, 7385, 7385, 7385, 7385, 7386,\n",
       "       7386, 7386, 7386, 7387, 7387, 7387, 7387, 7388, 7388, 7388, 7388,\n",
       "       7389, 7389, 7389, 7389, 7390, 7390, 7390, 7390], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>QDOrbitDirection</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>int8</div><div class='xr-var-preview xr-preview'>-1 1 1 -1 -1 1 ... -1 -1 1 1 -1 -1</div><input id='attrs-b96fb6db-a332-457e-8ece-35b4c5969e3d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b96fb6db-a332-457e-8ece-35b4c5969e3d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-abf7882c-a737-43ef-8351-57a187757307' class='xr-var-data-in' type='checkbox'><label for='data-abf7882c-a737-43ef-8351-57a187757307' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>-</dd><dt><span>description :</span></dt><dd>Orbit direction in magnetic (QD) coordinates (values: 1 - ascending, -1 - descending, 0 - undefined)</dd></dl></div><div class='xr-var-data'><pre>array([-1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,\n",
       "        1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1,\n",
       "       -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1,\n",
       "       -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,\n",
       "        1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1,\n",
       "       -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1,\n",
       "       -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,\n",
       "        1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1,\n",
       "       -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1,\n",
       "       -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,\n",
       "        1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1,\n",
       "       -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1,\n",
       "       -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,\n",
       "        1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1],\n",
       "      dtype=int8)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>B_NE</span></div><div class='xr-var-dims'>(Timestamp, NE)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>23.81 -67.72 ... 38.74 -57.74</div><input id='attrs-9c9f3066-750f-4b44-a268-21b3715fea59' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9c9f3066-750f-4b44-a268-21b3715fea59' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8ed0e6bc-2545-4a58-ac01-25a7d178a66b' class='xr-var-data-in' type='checkbox'><label for='data-8ed0e6bc-2545-4a58-ac01-25a7d178a66b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>nT</dd><dt><span>description :</span></dt><dd></dd></dl></div><div class='xr-var-data'><pre>array([[ 2.38135484e+01, -6.77190266e+01],\n",
       "       [-1.36067109e+00,  8.83695107e-01],\n",
       "       [ 4.69884333e+01, -1.80878448e+01],\n",
       "       [-2.21184184e+01,  3.65518429e+00],\n",
       "       [ 9.30168851e-01, -5.29336888e+01],\n",
       "       [ 6.58689039e+00, -1.10598849e+00],\n",
       "       [ 7.64189565e+01, -9.42900282e+00],\n",
       "       [-1.27524750e+01,  1.27193602e+01],\n",
       "       [ 3.56268430e+01, -6.41929975e+01],\n",
       "       [ 8.09723914e+01, -9.07536712e+00],\n",
       "       [ 1.63744108e+01, -1.35829413e+00],\n",
       "       [-2.28301486e+01,  1.72913852e+01],\n",
       "       [ 4.88462268e+01, -5.88170863e+01],\n",
       "       [ 2.28335363e+01, -1.44775069e+01],\n",
       "       [ 7.54609205e+01, -8.08186733e+00],\n",
       "       [-8.05781540e+00,  1.33730948e+00],\n",
       "       [ 1.32664914e+01, -3.85653346e+00],\n",
       "       [ 4.16824123e+01, -3.77474777e+01],\n",
       "       [ 1.19836213e+02, -8.13206511e+00],\n",
       "       [ 1.64249373e+01, -1.61302864e+01],\n",
       "...\n",
       "       [-1.24314249e+01, -6.11793567e+01],\n",
       "       [ 6.28586241e+01, -4.37702972e+01],\n",
       "       [ 3.35983212e+01, -2.99164654e+01],\n",
       "       [ 2.61699376e+01, -8.03418845e+01],\n",
       "       [-7.59793408e+00, -3.12783693e+01],\n",
       "       [ 2.75054084e+01, -7.37778519e+01],\n",
       "       [ 4.31452130e+01, -2.80454819e+01],\n",
       "       [ 5.76815459e+01, -6.09816560e+01],\n",
       "       [-1.07099266e+01,  6.01390900e+00],\n",
       "       [ 3.71829095e+01, -2.76905949e+01],\n",
       "       [ 2.52026540e+01, -2.02179121e+01],\n",
       "       [ 4.28657277e+01, -5.63154736e+01],\n",
       "       [-1.21464315e+01,  3.86364017e+01],\n",
       "       [ 4.51467458e+01, -2.71976857e+01],\n",
       "       [ 8.07966667e+00, -1.93511966e+01],\n",
       "       [ 2.69862808e+01, -7.40709013e+01],\n",
       "       [-2.00653790e+01,  3.86051364e+01],\n",
       "       [ 3.79325498e+01, -1.30913144e+02],\n",
       "       [ 2.93746917e+00, -7.84053328e+00],\n",
       "       [ 3.87424984e+01, -5.77371014e+01]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Longitude</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>95.92 -77.83 -78.88 ... 120.3 103.4</div><input id='attrs-369f9faf-e3ee-46c7-97aa-f82d16c77b33' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-369f9faf-e3ee-46c7-97aa-f82d16c77b33' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e27e4e44-b56c-4776-9d6e-2138849a2f50' class='xr-var-data-in' type='checkbox'><label for='data-e27e4e44-b56c-4776-9d6e-2138849a2f50' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>deg</dd><dt><span>description :</span></dt><dd></dd></dl></div><div class='xr-var-data'><pre>array([  95.91954803,  -77.82585144,  -78.87832642,   84.10261536,\n",
       "        -14.96786976, -100.52805328, -101.72745514,   61.40705872,\n",
       "         53.56054306, -124.48379517, -125.34754181,   38.91818237,\n",
       "         33.51649857, -134.06221008, -147.30300903,   16.06389046,\n",
       "         10.54699516, -144.7888031 , -170.39254761,  -14.03983688,\n",
       "         -8.20133114,  174.90261841,  166.93232727,  -36.21258163,\n",
       "        -32.12989044, -147.07972717,  143.85292053,  -57.56612015,\n",
       "        -54.86734772,  119.67534637,  117.24526215,  -77.11898804,\n",
       "        -79.33538055,  143.7472229 ,   96.65029907, -100.05945587,\n",
       "       -102.20914459,  128.80342102,   72.9573288 , -123.29761505,\n",
       "       -128.46434021,   48.48921204,  171.10379028, -147.67930603,\n",
       "       -152.59353638,   33.7114296 ,   26.45518494, -172.25758362,\n",
       "        170.82435608,   11.48911095,   -1.1322087 ,  161.34983826,\n",
       "         61.18709946,   -9.6117239 ,  -21.92901993,  134.09849548,\n",
       "         34.41183472,  -44.17867661,  -47.42227554,   98.33079529,\n",
       "        -19.15360069,  -66.43200684,  -71.21852112,   62.96285629,\n",
       "         85.69490051,  -88.9337616 ,  -93.65744781,   48.03633881,\n",
       "        -34.38342667, -117.78132629, -113.50235748,   46.10083008,\n",
       "         40.5531311 , -133.11541748, -139.9478302 ,   21.57903862,\n",
       "         12.66084671, -143.74528503, -163.44944763,  -24.26601028,\n",
       "...\n",
       "       -162.41651917,  109.53433228,   22.20999146, -174.41744995,\n",
       "        160.79048157,   24.17774773,   -0.44787917,  161.46839905,\n",
       "        152.39804077,  -24.6472435 ,  -26.98961067,  136.86140442,\n",
       "        123.44502258,  -38.5816803 ,  -47.29356384,  113.55400848,\n",
       "        103.19905853,  -73.79828644,  -74.4356308 ,   89.99250031,\n",
       "         27.04166985,  -96.04418945,  -96.95433807,   65.01609039,\n",
       "         42.20537186, -118.63440704, -119.87182617,   43.32606888,\n",
       "         36.24670029, -141.68118286, -143.25921631,   13.28354836,\n",
       "        -13.67723846, -144.02468872, -165.85238647,   -2.69380546,\n",
       "         -8.88053608,  175.54960632,  170.86585999,  -26.21516991,\n",
       "        -31.06922531,  150.24214172,  146.6063385 ,  -50.34425735,\n",
       "        -54.8768425 ,  124.99638367,  122.566185  ,  -71.43770599,\n",
       "        -73.11752319,  104.67857361,   99.90875244,  -94.84487152,\n",
       "        -98.33383942,   84.94850922,   76.45183563, -118.10199738,\n",
       "       -127.02445221,  172.70117188,   54.7125473 , -142.93258667,\n",
       "       -155.67616272,  127.55397034,   30.08288002, -168.31954956,\n",
       "        148.75520325,    3.96156836,    5.06157017,  168.09564209,\n",
       "        148.98657227,    9.12503815,  -19.28234673,  143.6544342 ,\n",
       "        124.55734253,  -41.98888016,  -39.04455185,  120.3200531 ,\n",
       "        103.43502045])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>B_Total</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>71.78 1.622 50.35 ... 8.373 69.53</div><input id='attrs-090f56e2-3565-4fe3-b35f-1197fda7bf8c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-090f56e2-3565-4fe3-b35f-1197fda7bf8c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-26821a42-9189-4158-a4c9-0ee850760fe5' class='xr-var-data-in' type='checkbox'><label for='data-26821a42-9189-4158-a4c9-0ee850760fe5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>nT</dd></dl></div><div class='xr-var-data'><pre>array([7.17840627e+01, 1.62244965e+00, 5.03496077e+01, 2.24184033e+01,\n",
       "       5.29418608e+01, 6.67909691e+00, 7.69984611e+01, 1.80113226e+01,\n",
       "       7.34167070e+01, 8.14793867e+01, 1.64306510e+01, 2.86392683e+01,\n",
       "       7.64552386e+01, 2.70364308e+01, 7.58924706e+01, 8.16803438e+00,\n",
       "       1.38156666e+01, 5.62342918e+01, 1.20111816e+02, 2.30209623e+01,\n",
       "       1.45320329e+01, 5.39567827e+01, 1.44948715e+02, 5.84519677e+01,\n",
       "       3.04511502e+01, 4.85272871e+01, 1.11054581e+02, 9.11954916e+01,\n",
       "       2.38272107e+01, 1.28881059e+02, 1.56513409e+01, 5.72391350e+00,\n",
       "       1.08558865e+02, 5.53136658e+00, 7.10702996e+01, 7.08365481e+00,\n",
       "       4.87210152e+01, 6.54538768e+00, 4.68490112e+01, 1.13853239e+01,\n",
       "       2.85369892e+01, 5.17701908e+01, 2.82086158e+01, 2.76492587e+01,\n",
       "       5.65889190e+01, 9.84172297e+01, 3.73061463e+01, 4.60654716e+01,\n",
       "       7.57773135e+01, 9.57114230e+00, 6.97887992e+00, 1.41417040e+01,\n",
       "       3.02816234e+01, 1.36956346e+01, 1.76843905e+01, 1.47243161e+01,\n",
       "       1.54067882e+01, 3.41668568e+00, 1.32551927e+01, 1.37552788e+01,\n",
       "       6.54306361e+00, 2.30805138e+00, 1.28836628e+01, 1.68294808e+01,\n",
       "       4.44070659e+00, 6.03789430e-01, 8.95621083e+00, 1.86473223e+01,\n",
       "       1.04950317e+01, 4.97953610e+01, 7.92175829e+00, 1.70492617e+01,\n",
       "       4.44776176e+01, 1.86691434e+01, 5.77411395e+01, 6.56500555e+01,\n",
       "       1.26384751e+02, 5.20489316e+01, 9.51656677e+01, 4.29101387e+01,\n",
       "...\n",
       "       2.73380667e+02, 2.64939231e+01, 1.33884798e+02, 8.29277057e+01,\n",
       "       1.77043621e+02, 2.27286708e+02, 1.03565524e+02, 7.03434765e+01,\n",
       "       2.19295483e+02, 2.11711684e+01, 5.42820203e+01, 4.80552613e+01,\n",
       "       2.17828404e+02, 3.18509832e+02, 1.44360289e+02, 3.32997545e+01,\n",
       "       3.48124541e+02, 6.07012217e+00, 1.17147399e+02, 4.86644396e+01,\n",
       "       3.79836095e+02, 1.80623003e+02, 1.14113594e+01, 4.26295674e+01,\n",
       "       1.92533051e+02, 1.20465773e+01, 6.58537263e+01, 4.46510639e+01,\n",
       "       1.44325602e+02, 2.78704583e+01, 1.02150102e+02, 1.59498227e+01,\n",
       "       4.04107060e+01, 6.17237523e+01, 9.82590392e+01, 4.87487504e+01,\n",
       "       1.07227545e+02, 4.55409791e+01, 1.21881303e+02, 5.79937470e+01,\n",
       "       1.43893229e+02, 5.69076872e+01, 2.17478566e+02, 1.15896529e+02,\n",
       "       3.54035698e+02, 2.19942640e+01, 1.77238604e+02, 1.73043903e+01,\n",
       "       2.52761661e+02, 6.76516441e+00, 2.12382008e+02, 2.37057298e+01,\n",
       "       3.50756482e+02, 1.31556620e+01, 1.69706340e+02, 2.98907671e+01,\n",
       "       1.31099545e+02, 6.24295924e+01, 7.65966418e+01, 4.49871325e+01,\n",
       "       8.44966510e+01, 3.21879634e+01, 7.87382939e+01, 5.14592893e+01,\n",
       "       8.39399971e+01, 1.22828998e+01, 4.63609513e+01, 3.23100254e+01,\n",
       "       7.07736051e+01, 4.05007078e+01, 5.27061929e+01, 2.09702128e+01,\n",
       "       7.88337350e+01, 4.35083440e+01, 1.36297944e+02, 8.37273475e+00,\n",
       "       6.95309576e+01])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-73af7793-387b-464b-8c11-3d507c23b8ed' class='xr-section-summary-in' type='checkbox'  ><label for='section-73af7793-387b-464b-8c11-3d507c23b8ed' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>Timestamp</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-5be601f1-1235-4931-a7f1-44e335dd793f' class='xr-index-data-in' type='checkbox'/><label for='index-5be601f1-1235-4931-a7f1-44e335dd793f' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2015-03-15 00:00:15&#x27;, &#x27;2015-03-15 01:22:10&#x27;,\n",
       "               &#x27;2015-03-15 01:24:03&#x27;, &#x27;2015-03-15 01:30:13&#x27;,\n",
       "               &#x27;2015-03-15 01:34:00&#x27;, &#x27;2015-03-15 02:56:01&#x27;,\n",
       "               &#x27;2015-03-15 02:58:09&#x27;, &#x27;2015-03-15 03:06:23&#x27;,\n",
       "               &#x27;2015-03-15 03:07:59&#x27;, &#x27;2015-03-15 04:28:15&#x27;,\n",
       "               ...\n",
       "               &#x27;2015-03-19 19:35:38&#x27;, &#x27;2015-03-19 19:38:27&#x27;,\n",
       "               &#x27;2015-03-19 21:00:46&#x27;, &#x27;2015-03-19 21:02:49&#x27;,\n",
       "               &#x27;2015-03-19 21:09:21&#x27;, &#x27;2015-03-19 21:11:53&#x27;,\n",
       "               &#x27;2015-03-19 22:33:50&#x27;, &#x27;2015-03-19 22:36:05&#x27;,\n",
       "               &#x27;2015-03-19 22:42:57&#x27;, &#x27;2015-03-19 22:45:33&#x27;],\n",
       "              dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;Timestamp&#x27;, length=305, freq=None))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>NE</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-42109d6d-be22-431a-bb75-c8b5636cb237' class='xr-index-data-in' type='checkbox'/><label for='index-42109d6d-be22-431a-bb75-c8b5636cb237' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([&#x27;N&#x27;, &#x27;E&#x27;], dtype=&#x27;object&#x27;, name=&#x27;NE&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-0589eba2-37d5-4db6-a4d4-a4bddaa8d72b' class='xr-section-summary-in' type='checkbox'  checked><label for='section-0589eba2-37d5-4db6-a4d4-a4bddaa8d72b' class='xr-section-summary' >Attributes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>Sources :</span></dt><dd>[&#x27;SW_OPER_AEJAPBS_2F_20150101T000000_20151231T235959_0101&#x27;, &#x27;SW_OPER_AUXAORBCNT_20131122T132146_20250622T234324_0001&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150315T000000_20150315T235959_0502&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150316T000000_20150316T235959_0502&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150317T000000_20150317T235959_0502&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150318T000000_20150318T235959_0502&#x27;, &#x27;SW_OPER_MODA_SC_1B_20150319T000000_20150319T235959_0502&#x27;]</dd><dt><span>MagneticModels :</span></dt><dd>[]</dd><dt><span>AppliedFilters :</span></dt><dd>[&#x27;Latitude &lt;= 90&#x27;, &#x27;Latitude &gt;= 0&#x27;]</dd></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:           (Timestamp: 305, NE: 2)\n",
       "Coordinates:\n",
       "  * Timestamp         (Timestamp) datetime64[ns] 2015-03-15T00:00:15 ... 2015...\n",
       "  * NE                (NE) <U1 'N' 'E'\n",
       "Data variables:\n",
       "    Spacecraft        (Timestamp) object 'A' 'A' 'A' 'A' 'A' ... 'A' 'A' 'A' 'A'\n",
       "    Latitude          (Timestamp) float64 83.5 66.16 58.53 ... 75.91 74.42 84.5\n",
       "    OrbitNumber       (Timestamp) int32 7314 7315 7315 7315 ... 7390 7390 7390\n",
       "    QDOrbitDirection  (Timestamp) int8 -1 1 1 -1 -1 1 1 -1 ... 1 -1 -1 1 1 -1 -1\n",
       "    B_NE              (Timestamp, NE) float64 23.81 -67.72 ... 38.74 -57.74\n",
       "    Longitude         (Timestamp) float64 95.92 -77.83 -78.88 ... 120.3 103.4\n",
       "    B_Total           (Timestamp) float64 71.78 1.622 50.35 ... 8.373 69.53\n",
       "Attributes:\n",
       "    Sources:         ['SW_OPER_AEJAPBS_2F_20150101T000000_20151231T235959_010...\n",
       "    MagneticModels:  []\n",
       "    AppliedFilters:  ['Latitude <= 90', 'Latitude >= 0']"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def fetch_Swarm_AEJ_disturbances(start_time, end_time):\n",
    "    request = SwarmRequest()\n",
    "    request.set_collection(\"SW_OPER_AEJAPBS_2F:GroundMagneticDisturbance\")\n",
    "    request.set_products(\n",
    "        measurements=[\"B_NE\"],\n",
    "        auxiliaries=[\"OrbitNumber\", \"QDOrbitDirection\"]\n",
    "    )\n",
    "    request.set_range_filter(\"Latitude\", 0, 90)  # Northern hemisphere only\n",
    "    data = request.get_between(start_time, end_time, asynchronous=False, show_progress=False)\n",
    "    ds = data.as_xarray()\n",
    "    # Add vector magnitude\n",
    "    ds[\"B_Total\"] = \"Timestamp\", np.sqrt((ds[\"B_NE\"].data**2).sum(axis=1))\n",
    "    ds[\"B_Total\"].attrs[\"units\"] = \"nT\"\n",
    "    return ds\n",
    "\n",
    "ds_AEJ_disturbances = fetch_Swarm_AEJ_disturbances(START_TIME, END_TIME)\n",
    "ds_AEJ_disturbances"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6daa7bd7",
   "metadata": {},
   "source": [
    "This dataset contains two samples per pass over each half of the auroral oval, estimating the ground location of the peak magnetic disturbance due to each of the EEJ and WEJ currents, and the associated strength (`B_NE`) of the North and East components of the disturbance. Let's look at an approximation of the overall strongest ground disturbances, by inspecting the maximum strength found over 90-minute windows (i.e. approximately each orbit):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "dd20b61b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:38.220161Z",
     "iopub.status.busy": "2025-06-21T21:48:38.219916Z",
     "iopub.status.idle": "2025-06-21T21:48:38.523788Z",
     "shell.execute_reply": "2025-06-21T21:48:38.523252Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABO8AAAFCCAYAAACpXPm/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxuElEQVR4nOzdd3hT5dsH8G/Spunee1BaKC3QllUEyqYMWTJUfgrKEBXEhYAMB0MRxAUKIiogKDJeFVAQkF02lE0ZZXQApaV7rzQ57x9pAqEzbdqk7fdzXb20J8855z5JTmjv3s9ziwRBEEBEREREREREREQGR6zvAIiIiIiIiIiIiKhsTN4REREREREREREZKCbviIiIiIiIiIiIDBSTd0RERERERERERAaKyTsiIiIiIiIiIiIDxeQdERERERERERGRgWLyjoiIiIiIiIiIyEAxeUdERERERERERGSgmLwjIiIiIiIiIiIyUEzeERGRQVu3bh1EIpH6y9jYGJ6enpgwYQLi4+Nr7bzz58+HSCRCSkpKrZ2jvlG9FrGxsdXaf/z48WjatKnGNpFIhPnz52t1nF27dmm9jzbGjx8PS0vLWjt+Q1LRa9G0aVOMHz++TuNR2bhxI5YtW1Yrx67qdcXGxmLw4MGwt7eHSCTC1KlTayUeXUlNTcWcOXPQqlUrWFhYwMbGBgEBAXj55Zdx+fJlfYdXJ7777juIRCIEBgaWO6Y6n1kqvXr1qvDYRERE5THWdwBERERV8csvvyAgIAD5+fk4cuQIFi9ejPDwcFy5cgUWFhb6Do+q6eTJk/D09NRqn127duH777+v1QQeVU1Fr8W2bdtgbW1d90FBmbyLjIzUa8Lsvffew+nTp7F27Vq4urrCzc1Nb7FUJicnB507d0ZOTg7ef/99tGnTBvn5+bh58ya2bt2KixcvIjg4WN9h1rq1a9cCAK5evYrTp0+jU6dOeo6IiIhIick7IiKqFwIDAxESEgIA6N27N+RyOT799FNs374dY8aM0XN0uiMIAgoKCmBmZqbvUOpE586d9R2CWl5eHszNzfUdRoPRrl07fYegV5GRkXjqqacwfPjwCsfJZDJ1VbG+/PHHH7h9+zYOHjyI3r17azw2bdo0KBQKPUWmVBf35tmzZ3Hp0iUMHjwY//77L9asWcPkHRERGQxOmyUionpJlfSJi4sDoEx6rVy5Em3btoWZmRns7Ozw3HPPITo6WmO/ffv2YdiwYfD09ISpqSmaN2+OSZMmVWl67I0bN+Dr64tOnTohKSmpwrF///03goODIZVK4evri2+//VY9FfdxIpEIb731FlatWoWWLVtCKpVi/fr1AIBjx44hLCwMVlZWMDc3R2hoKP7991+N/cs6JlD2FNemTZtiyJAh2LNnD9q3bw8zMzMEBASoq00ed+rUKXTt2hWmpqZwd3fHnDlzIJPJKn2OHj+/v78/pFIpWrZsiV9//bXMcU9OQcvLy8OMGTPg4+MDU1NT2NvbIyQkBJs2bQKgnNL6/fffq/dVfcXGxiI2NhYikQjr1q2r9Dyq5+38+fN47rnnYGdnh2bNmmnsc/XqVYSFhcHCwgJOTk546623kJeXpzHm+++/R48ePeDs7AwLCwsEBQXhiy++KPVcqabLRUREoHv37jA3N4evry8+//zzUomRjIwMTJ8+Hb6+vpBKpXB2dsagQYNw48YN9ZiioiIsXLgQAQEBkEqlcHJywoQJE5CcnFz2C/KEs2fP4plnnoG9vT1MTU3Rrl07/N///Z/GmJq8FkDp6aWHDx+GSCTCxo0bMWvWLLi5ucHS0hJDhw7Fw4cPkZ2djddffx2Ojo5wdHTEhAkTkJOTo/Xz3atXL/z777+Ii4vTiEvb504mk2HmzJlwdXWFubk5unXrhjNnzlT63Kqu8/bt29i9e7fG86J67LfffsP06dPh4eEBqVSK27dvA1BWfrVp00b9fI8YMQLXr1/XOL5qWveNGzcwYMAAWFhYwM3NDZ9//jkA5b3brVs3WFhYoEWLFurPk4qkpqYCQLnVgWKx8leGq1evQiQS4Y8//lA/du7cOYhEIrRu3Vpjn2eeeQYdOnRQf79lyxb0798fbm5uMDMzQ8uWLTF79mzk5uaWeX1XrlxB//79YWVlhbCwMACPPi9/+eUX+Pv7w8zMDCEhITh16hQEQcCXX34JHx8fWFpaok+fPurntSrWrFkDAPj8888RGhqKzZs3l7rfy6L6rN23bx8mTJgAe3t7WFhYYOjQoaX+/VGp7HOgoKAA06dPR9u2bWFjYwN7e3t06dIFf//9d5Wvh4iIGhZW3hERUb2k+qXMyckJADBp0iSsW7cO77zzDpYsWYK0tDR88sknCA0NxaVLl+Di4gIAuHPnDrp06YJXX30VNjY2iI2NxTfffINu3brhypUrkEgkZZ4vPDwcI0aMQI8ePbBx48YKq0D27NmDkSNHokePHtiyZQuKi4vx1Vdf4eHDh2WO3759O44ePYq5c+fC1dUVzs7OCA8PR79+/RAcHIw1a9ZAKpVi5cqVGDp0KDZt2oT//e9/1XreLl26hOnTp2P27NlwcXHB6tWrMXHiRDRv3hw9evQAAFy7dg1hYWFo2rQp1q1bB3Nzc6xcuRIbN26s0jnWrVuHCRMmYNiwYfj666+RmZmJ+fPno7CwUJ0EKM+0adPw22+/YeHChWjXrh1yc3MRGRmpTi58/PHHyM3NxZ9//omTJ0+q93Nzc0NCQoLWz8fIkSPxwgsvYPLkyRpJBJlMhkGDBmHSpEmYPXs2Tpw4gYULFyIuLg47duxQj7tz5w5Gjx4NHx8fmJiY4NKlS/jss89w48aNUknRxMREjBkzBtOnT8e8efOwbds2zJkzB+7u7hg7diwAIDs7G926dUNsbCxmzZqFTp06IScnB0eOHEFCQgICAgKgUCgwbNgwHD16FDNnzkRoaCji4uIwb9489OrVC2fPnq2wcvPQoUN4+umn0alTJ6xatQo2NjbYvHkz/ve//yEvL0+dcKvJa1GRDz74AL1798a6desQGxuLGTNm4MUXX4SxsTHatGmDTZs24cKFC/jggw9gZWWF7777Tqvne+XKlXj99ddx584dbNu2TePc2jx3r732Gn799VfMmDED/fr1Q2RkJEaOHIns7OwKr699+/Y4efIkRowYgWbNmuGrr75SPy+qxOacOXPQpUsXrFq1CmKxGM7Ozli8eDE++OADvPjii1i8eDFSU1Mxf/58dOnSBREREfDz81OfQyaTYeTIkZg8eTLef/99bNy4EXPmzEFWVhb++usvzJo1C56enli+fDnGjx+PwMBAjUTak7p06QIAGDt2LD744AN0794dDg4Opca1bt0abm5u2L9/P55//nkAwP79+2FmZoZr167hwYMHcHd3R3FxMcLDwzF58mT1vrdu3cKgQYMwdepUWFhY4MaNG1iyZAnOnDmDgwcPapynqKgIzzzzjPr+Ky4uVj+2c+dOXLhwAZ9//jlEIhFmzZqFwYMHY9y4cYiOjsaKFSuQmZmJadOm4dlnn8XFixfL/APH4/Lz87Fp0yZ07NgRgYGBeOWVV/Dqq6/ijz/+wLhx4yrcV2XixIno168fNm7ciHv37uGjjz5Cr169cPnyZdja2qrHVeVzoLCwEGlpaZgxYwY8PDxQVFSE/fv3Y+TIkfjll1/U44iIqBERiIiIDNgvv/wiABBOnTolyGQyITs7W9i5c6fg5OQkWFlZCYmJicLJkycFAMLXX3+tse+9e/cEMzMzYebMmWUeW6FQCDKZTIiLixMACH///bf6sXnz5gkAhOTkZOG3334TTExMhHfeeUeQy+WVxtyxY0fBy8tLKCwsVG/Lzs4WHBwchCf/6QUg2NjYCGlpaRrbO3fuLDg7OwvZ2dnqbcXFxUJgYKDg6ekpKBQKjTjLe95iYmLU27y9vQVTU1MhLi5OvS0/P1+wt7cXJk2apN72v//9TzAzMxMSExM1zh0QEFDqmE+Sy+WCu7u70L59e3WMgiAIsbGxgkQiEby9vUtd/7x589TfBwYGCsOHDy/3+IIgCG+++WaZ1xwTEyMAEH755ZdSjz15HtXzNnfu3FJjx40bJwAQvv32W43tn332mQBAOHbsWJlxyeVyQSaTCb/++qtgZGSk8Zr27NlTACCcPn1aY59WrVoJAwYMUH//ySefCACEffv2lXkOQRCETZs2CQCEv/76S2N7RESEAEBYuXJlufsKgiAEBAQI7dq1E2Qymcb2IUOGCG5ubur3eE1eC0FQvt/GjRun/v7QoUMCAGHo0KEa46ZOnSoAEN555x2N7cOHDxfs7e3LPXdFz/fgwYNLvdcEoerP3fXr1wUAwnvvvacx7vfffxcAaFxXeby9vYXBgwdrbFM9Bz169NDYnp6eLpiZmQmDBg3S2H737l1BKpUKo0ePVm9TvT8fvwaZTCY4OTkJAITz58+rt6empgpGRkbCtGnTKo33k08+EUxMTAQAAgDBx8dHmDx5snDp0iWNcS+99JLg6+ur/r5v377Ca6+9JtjZ2Qnr168XBEEQjh8/LgAQ9u7dW+a5VJ+94eHhAgCNc6iub+3ataX2AyC4uroKOTk56m3bt28XAAht27bV+MxZtmyZAEC4fPlypdf+66+/CgCEVatWCYKg/Ly2tLQUunfvXmYMj3+WqD5rR4wYoTFO9RwsXLhQva2qnwNPKi4uFmQymTBx4kShXbt2lV4PERE1PJw2S0RE9ULnzp0hkUhgZWWFIUOGwNXVFbt374aLiwt27twJkUiEl156CcXFxeovV1dXtGnTBocPH1YfJykpCZMnT4aXlxeMjY0hkUjg7e0NAKWmpwHAZ599hvHjx+Pzzz/Ht99+W2nlWG5uLs6ePYvhw4fDxMREvV01PbAsffr0gZ2dncYxTp8+jeeee06j66mRkRFefvll3L9/H1FRUVV63p7Utm1bNGnSRP29qakpWrRooZ5+DCgrs8LCwtTViqpzV6XaLyoqCg8ePMDo0aM1ql28vb0RGhpa6f5PPfUUdu/ejdmzZ+Pw4cPIz8+v6qVVy7PPPlvuY0+upTh69GgAyudH5cKFC3jmmWfg4OAAIyMjSCQSjB07FnK5HDdv3tTY39XVFU899ZTGtuDgYI3nfvfu3WjRogX69u1bblw7d+6Era0thg4dqvF+b9u2LVxdXTXe70+6ffs2bty4ob62x/cfNGgQEhIS1O+t2nothgwZovF9y5YtAQCDBw8utT0tLU1j6qw2z3dZqvrcqV7jJ98Do0aN0snadE++706ePIn8/PxSXWy9vLzQp08fHDhwQGO7SCTCoEGD1N8bGxujefPmcHNz01hr0N7eHs7OzhrvsfJ8/PHHuHv3LtauXYtJkybB0tISq1atQocOHdRTpQEgLCwM0dHRiImJQUFBAY4dO4ann34avXv3xr59+wAoq/GkUim6deum3i86OhqjR4+Gq6ur+rXr2bMngLI/e8u7N3v37q3RpEj1/hk4cKDGZ45qe1Wufc2aNTAzM8MLL7wAQPl5/fzzz+Po0aO4detWpfsDpd8roaGh8Pb21vi8AKr2OQAo1yHs2rUrLC0t1f9WrVmzpsznioiIGj4m74iIqF749ddfERERgQsXLuDBgwe4fPkyunbtCgB4+PAhBEGAi4sLJBKJxtepU6fU69kpFAr0798fW7duxcyZM3HgwAGcOXMGp06dAoAykxMbNmyAh4eH+pe6yqSnp6tjeVJZ24DS0wxVxyhr+qG7uzuAR2tUaausqXBSqVTj2lNTU+Hq6lpqXFnbnqSKq7r7f/fdd5g1axa2b9+O3r17w97eHsOHD6/yL9DaKm+Kp7GxcannShW/6hrv3r2L7t27Iz4+Ht9++y2OHj2KiIgI9TpwT76fqvLcJycnV9p99+HDh8jIyICJiUmp93tiYmKF6zeqpm7PmDGj1L5TpkwBAPX+tfVa2Nvba3yvSnKXt72goACA9s93War63JX3Pi7rfVEdT77vKlpzzt3dvdT9bm5uDlNTU41tJiYmpZ5D1XbVc1gZFxcXTJgwAatWrcLly5cRHh4OExMTvPvuu+oxqsTy/v37cezYMchkMvTp0wd9+/ZVJxn379+Prl27qqcg5+TkoHv37jh9+jQWLlyIw4cPIyIiAlu3bgVQ+rUzNzcvt1Nxdd8/5bl9+zaOHDmCwYMHQxAEZGRkICMjA8899xwAlLkmaFnK+8x78rWryufA1q1bMWrUKHh4eGDDhg04efIkIiIi8Morr1T5tSQiooaFa94REVG90LJlS3W32Sc5OjpCJBLh6NGjkEqlpR5XbYuMjMSlS5ewbt06jXWMKlrUfM+ePfjf//6H7t2748CBA+oqvfLY2dlBJBKVub5dYmJimfs8uR6TnZ0dxGJxmWu4PXjwAIDymgGof4EvLCzUuPaqNOAoj4ODQ5mxlhf/k/uWN7Yq+1tYWGDBggVYsGABHj58qK78Gjp0qEbDhrI8/lw8rqJEZ3lrYRUXFyM1NVXjF21V/Kpt27dvR25uLrZu3arxvrh48WKFcVbEyckJ9+/fr3CMo6MjHBwcsGfPnjIft7KyqnBfQLnm2siRI8sc4+/vD6Bmr0Vt0MXzXdXn7vH3sYeHh/px1fuipp5836nOV949r3rd6lqPHj3Qv39/bN++HUlJSXB2doanpydatGiB/fv3o2nTpggJCYGtrS3CwsIwZcoUnD59GqdOncKCBQvUxzl48CAePHiAw4cPq6vtAGVzlrJUtkadLq1duxaCIODPP//En3/+Werx9evXY+HChTAyMqrwOOV95jVv3lzrmDZs2AAfHx9s2bJF47l48rONiIgaD1beERFRvTdkyBAIgoD4+HiEhISU+goKCgLw6BfCJxN8P/74Y7nH9vb2VicFu3fvXmnVkYWFBUJCQrB9+3YUFRWpt+fk5GDnzp1Vuh4LCwt06tQJW7du1ajGUCgU2LBhg/qXZ0DZ0RMALl++rHGMx5sqaKt37944cOCARgJSLpdjy5Ytle7r7+8PNzc3bNq0CYIgqLfHxcXhxIkTWsXh4uKC8ePH48UXX0RUVJS686Pq9XuyWsfFxQWmpqalnovqdmj8/fffNb5XNezo1asXgLLfT4Ig4Oeff67W+QDl1L+bN2+WWsD/cUOGDEFqairkcnmZ73dV8q0s/v7+8PPzw6VLl8rcNyQkpMzkn7avRW3Q5vl+spJJparPneo1fvI98H//938azRN0pUuXLjAzM8OGDRs0tt+/fx8HDx5Ud1utLQ8fPizV9RhQ3ve3bt2Cubm5RtOFvn374uDBg9i3bx/69esHAGjRogWaNGmCuXPnQiaTaUz9rs5nb12Qy+VYv349mjVrhkOHDpX6mj59OhISErB79+5Kj/Xke+XEiROIi4tTv5e0IRKJYGJiopG4S0xMZLdZIqJGjJV3RERU73Xt2hWvv/46JkyYgLNnz6JHjx6wsLBAQkICjh07hqCgILzxxhsICAhAs2bNMHv2bAiCAHt7e+zYsUO9TlN53NzcEB4ejgEDBqBHjx7Yt28fAgMDyx3/ySefYPDgwRgwYADeffddyOVyfPnll7C0tERaWlqVrmnx4sXo168fevfujRkzZsDExAQrV65EZGQkNm3apP6lbtCgQbC3t8fEiRPxySefwNjYGOvWrcO9e/eq/gQ+4aOPPsI///yDPn36YO7cuTA3N8f333+v0Y21PGKxGJ9++ileffVVjBgxAq+99hoyMjIwf/78Kk2b7dSpE4YMGYLg4GDY2dnh+vXr+O2339ClSxd1h19VMnbJkiUYOHAgjIyMEBwcDBMTE7z00ktYu3YtmjVrhjZt2uDMmTNV7pL7OBMTE3z99dfIyclBx44d1d1mBw4cqF7Hq1+/fjAxMcGLL76ImTNnoqCgAD/88APS09O1Pp/K1KlTsWXLFgwbNgyzZ8/GU089hfz8fISHh2PIkCHo3bs3XnjhBfz+++8YNGgQ3n33XTz11FOQSCS4f/8+Dh06hGHDhmHEiBHlnuPHH3/EwIEDMWDAAIwfPx4eHh5IS0vD9evXcf78efzxxx8Aav5a6Jo2z3dQUBC2bt2KH374AR06dIBYLEZISEiVn7uWLVvipZdewrJlyyCRSNC3b19ERkbiq6++Knc6Z03Y2tri448/xgcffICxY8fixRdfRGpqKhYsWABTU1PMmzdP5+d83G+//YYff/wRo0ePRseOHWFjY4P79+9j9erVuHr1KubOnavxmoaFhWHlypVISUnBsmXLNLb/8ssvsLOz0+huGxoaCjs7O0yePBnz5s2DRCLB77//jkuXLtXqdVVm9+7dePDgAZYsWVJmki0wMBArVqzAmjVrSq3V+KSzZ8/i1VdfxfPPP4979+7hww8/hIeHh3o6ujaGDBmCrVu3YsqUKXjuuedw7949fPrpp3Bzc6u1JQSIiMjA6atTBhERUVWoOvlFRERUOnbt2rVCp06dBAsLC8HMzExo1qyZMHbsWOHs2bPqMdeuXRP69esnWFlZCXZ2dsLzzz8v3L17t9xupMnJyeptGRkZQteuXQV7e/tK49m2bZsQFBQkmJiYCE2aNBE+//xz4Z133hHs7Ow0xgEQ3nzzzTKPcfToUaFPnz7q6+ncubOwY8eOUuPOnDkjhIaGChYWFoKHh4cwb948YfXq1WV2m32y+6UgKDsg9uzZU2Pb8ePHhc6dOwtSqVRwdXUV3n//feGnn36qtNusyurVqwU/Pz/BxMREaNGihbB27Vph3LhxlXabnT17thASEiLY2dkJUqlU8PX1Fd577z0hJSVFPaawsFB49dVXBScnJ0EkEmnElJmZKbz66quCi4uLYGFhIQwdOlSIjY2t0uurMm7cOMHCwkK4fPmy0KtXL8HMzEywt7cX3njjDY0ul4IgCDt27BDatGkjmJqaCh4eHsL7778v7N69WwAgHDp0SOM5bt26dZnnevI5SU9PF959912hSZMmgkQiEZydnYXBgwcLN27cUI+RyWTCV199pT63paWlEBAQIEyaNEm4detWOa/KI5cuXRJGjRolODs7CxKJRHB1dRX69Omj7rapi9eivG6zf/zxh0Ys5d3jZb1GVX2+09LShOeee06wtbVVx6Xtc1dYWChMnz5dcHZ2FkxNTYXOnTsLJ0+eLHVd5amo2+yTz4HK6tWrheDgYMHExESwsbERhg0bJly9elVjjOr9+aTy3mPl3fePu3btmjB9+nQhJCREcHJyEoyNjQU7OzuhZ8+ewm+//VZqfHp6uiAWiwULCwuhqKhIvV3VjXfkyJGl9jlx4oTQpUsXwdzcXHBychJeffVV4fz586U6RJd3fYJQ9uelqsv0l19+qbG9sudaEJQdjU1MTISkpKRyx7zwwguCsbGxuvv2k58lqvfv3r17hZdfflmwtbVVdw5+8l7U5nPg888/F5o2bSpIpVKhZcuWws8//1xud3EiImr4RILw2JwWIiIiqhUymQxt27aFh4cH9u7dq+9wiIhIB9atW4cJEyYgIiKi3HVZiYiIaorTZomIiGrBxIkT0a9fP7i5uSExMRGrVq3C9evX8e233+o7NCIiIiIiqkeYvCMiIqoF2dnZmDFjBpKTkyGRSNC+fXvs2rVLYxF3IiIiIiKiynDaLBERERERERERkYES6zsAIiIiIiIiIiIiKhuTd0RERERERERERAaKyTsiIiIiIiIiIiIDxeQdERERERERERGRgWLyjoiIiIiIiIiIyEAxeUdERERERERERGSgmLwjIiIiIiIiIiIyUEzeERERERERERERGSgm74iIiIiIiIiIiAwUk3dEREREREREREQGisk7IiIiIiIiIiIiA8XkHRERERERERERkYEy1ncAjYVCocCDBw9gZWUFkUik73CIiIiIiIiIiEhPBEFAdnY23N3dIRZXXFvH5F0defDgAby8vPQdBhERERERERERGYh79+7B09OzwjFM3tURKysrAMoXxdraWs/R6IZMJsPevXvRv39/SCQSfYdD1CDwviLSPd5XRLrH+4pI93hfEemeId9XWVlZ8PLyUueLKsLkXR1RTZW1trZuUMk7c3NzWFtbG9xNQFRf8b4i0j3eV0S6x/uKSPd4XxHpXn24r6qytBobVhARERERERERERmoep28O3LkCIYOHQp3d3eIRCJs375d43FBEDB//ny4u7vDzMwMvXr1wtWrVzXGFBYW4u2334ajoyMsLCzwzDPP4P79+xpj0tPT8fLLL8PGxgY2NjZ4+eWXkZGRUctXR0REREREREREjV29Tt7l5uaiTZs2WLFiRZmPf/HFF/jmm2+wYsUKREREwNXVFf369UN2drZ6zNSpU7Ft2zZs3rwZx44dQ05ODoYMGQK5XK4eM3r0aFy8eBF79uzBnj17cPHiRbz88su1fn1ERERERERERNS41es17wYOHIiBAweW+ZggCFi2bBk+/PBDjBw5EgCwfv16uLi4YOPGjZg0aRIyMzOxZs0a/Pbbb+jbty8AYMOGDfDy8sL+/fsxYMAAXL9+HXv27MGpU6fQqVMnAMDPP/+MLl26ICoqCv7+/mWev7CwEIWFhervs7KyACjnW8tkMp09B/qkuo6Gcj1EhoD3FZHu8b4i0j3eV0S6x/uKSPcM+b7SJqZ6nbyrSExMDBITE9G/f3/1NqlUip49e+LEiROYNGkSzp07B5lMpjHG3d0dgYGBOHHiBAYMGICTJ0/CxsZGnbgDgM6dO8PGxgYnTpwoN3m3ePFiLFiwoNT2vXv3wtzcXIdXqn/79u3TdwhEDQ7vKyLd431FpHu8r4h0j/cVke4Z4n2Vl5dX5bENNnmXmJgIAHBxcdHY7uLigri4OPUYExMT2NnZlRqj2j8xMRHOzs6lju/s7KweU5Y5c+Zg2rRp6u9VLYD79+/foLrN7tu3D/369TPYri1E9Q3vKyLd431FpHu8r4h0j/cVke4Z8n2lmqFZFQ02eafyZMtdQRAqbcP75Jiyxld2HKlUCqlUWmq7RCIxuDdMTTXEayLSN95XRLrH+4qotAKZHPuvP0R3PyfYmGl/f/C+ItI93ldEumeI95U28dTrhhUVcXV1BYBS1XFJSUnqajxXV1cUFRUhPT29wjEPHz4sdfzk5ORSVX1ERERERPXJ76fv4q2NF/D9odv6DoWIiIjK0WCTdz4+PnB1ddWY11xUVITw8HCEhoYCADp06ACJRKIxJiEhAZGRkeoxXbp0QWZmJs6cOaMec/r0aWRmZqrHEBERERHVR9cTlFN2YlNy9RwJERERladeT5vNycnB7duP/koYExODixcvwt7eHk2aNMHUqVOxaNEi+Pn5wc/PD4sWLYK5uTlGjx4NALCxscHEiRMxffp0ODg4wN7eHjNmzEBQUJC6+2zLli3x9NNP47XXXsOPP/4IAHj99dcxZMiQcptVEBERERHVB3GpyqRdUnahniMhIiKi8tTr5N3Zs2fRu3dv9feqBhHjxo3DunXrMHPmTOTn52PKlClIT09Hp06dsHfvXlhZWan3Wbp0KYyNjTFq1Cjk5+cjLCwM69atg5GRkXrM77//jnfeeUfdlfaZZ57BihUr6ugqiYiIiIhqR1yqstNdMpN3REREBqteJ+969eoFQRDKfVwkEmH+/PmYP39+uWNMTU2xfPlyLF++vNwx9vb22LBhQ01CJSIiIiIyKHlFxeqKu+Scwio1diMiIqK612DXvCMiIiIiovKpqu4AoKhYgayCYj1GQ0REROVh8o6IiIiIqBFSrXenwqmzREREhonJOyIiIiKiRij2sco7gMk7IiIiQ8XkHRERERFRIxT3ZPIuh8k7IiIiQ8TkHRERERFRI6SaNmssVjapYOUdERGRYWLyjoiIiIioEVJV3gV62AAAkrIL9BkOERERlYPJOyIiIiKiRqZAJseDzHwAQMemdgBYeUdERGSomLwjIiIiImpk7qfnQRAAS6kxWrhYAWDyjoiIyFAxeUdERERE1MjEpiinzHo7mMPZ2hQAk3dERESGisk7IiIiIqJGJi5Nmbxr6mABJ0spACCF3WaJiIgMEpN3RERERESNjKrTrLeDOZyslMm71NwiFMsV+gyLiIiIysDkHRERERFRIxOb+qjyzt7CBEZiEQQBSMst0nNkRERE9CQm74iIiIiIGpnHK++MxCI4WJgAAJK47h0REZHBYfKOiIiIiKgRkckVuJ+eDwDwdrAAAPXUWTatICIiMjxM3hERERERNSLx6fmQKwSYSsRwLknaMXlHRERkuJi8IyIiIiJqRFSdZr3tLSAWiwBA3XE2mR1niYiIDA6Td0REREREjcjj692psPKOiIjIcDF5R0RERETUiMSmlHSadbRQb2PyjoiIyHAxeUdERERE1Iiw8o6IiKh+YfKOiIiIiKgRiVUl7+wfVd45W5kC4Jp3REREhojJOyIiIiKiRkKuEHAvLR8AK++IiIjqCybviIiIiIgaicSsAhTJFZAYieBua6berkre5RQWI6+oWF/hERERURmYvCMiIiIiaiTiUpRTZr3szWEkFqm3W5gYwUxiBIDVd0RERIaGyTsiIiIiokYiNrWk06yDhcZ2kUjEqbNEREQGisk7IiIiIqJGoqxOsypM3hERERkmJu+IiIiIiBoJVafZJyvvAMDJsiR5x46zREREBoXJOyIiIiKiRiKuZNpsE1beERER1RtM3hERERERNQKCIKiTd2VW3jF5R0REZJCqlby7c+cOPvroI7z44otISkoCAOzZswdXr17VaXBERERERKQbydmFyJfJYSQWwcPWrNTjzkzeERERGSStk3fh4eEICgrC6dOnsXXrVuTk5AAALl++jHnz5uk8QCIiIiIiqjlVp1kPWzOYGJf+NUBVeZfE5B0REZFB0Tp5N3v2bCxcuBD79u2DiYmJenvv3r1x8uRJnQZHRERERES6EVtBp1mA02aJiIgMldbJuytXrmDEiBGltjs5OSE1NVUnQRERERERkW7FVdBpFniUvEvJKYRCIdRZXERERFQxrZN3tra2SEhIKLX9woUL8PDw0ElQulRcXIyPPvoIPj4+MDMzg6+vLz755BMoFAr1GEEQMH/+fLi7u8PMzAy9evUqtX5fYWEh3n77bTg6OsLCwgLPPPMM7t+/X9eXQ0RERERULapps+VV3jlYKJN3xQoBGfmyOouLiIiIKqZ18m706NGYNWsWEhMTIRKJoFAocPz4ccyYMQNjx46tjRhrZMmSJVi1ahVWrFiB69ev44svvsCXX36J5cuXq8d88cUX+Oabb7BixQpERETA1dUV/fr1Q3Z2tnrM1KlTsW3bNmzevBnHjh1DTk4OhgwZArlcro/LIiIiIiLSyl118q7syjsTYzHszCUAOHWWiIjIkGidvPvss8/QpEkTeHh4ICcnB61atUKPHj0QGhqKjz76qDZirJGTJ09i2LBhGDx4MJo2bYrnnnsO/fv3x9mzZwEoq+6WLVuGDz/8ECNHjkRgYCDWr1+PvLw8bNy4EQCQmZmJNWvW4Ouvv0bfvn3Rrl07bNiwAVeuXMH+/fv1eXlERERERJUSBEG95l3TcirvAK57R0REZIiMtd1BIpHg999/x6efforz589DoVCgXbt28PPzq434aqxbt25YtWoVbt68iRYtWuDSpUs4duwYli1bBgCIiYlBYmIi+vfvr95HKpWiZ8+eOHHiBCZNmoRz585BJpNpjHF3d0dgYCBOnDiBAQMGlDpvYWEhCgsf/dCTlZUFAJDJZJDJGsY0BNV1NJTrITIEvK+IdI/3FRGQlluE7IJiiESAm5Wk3PvB0cIENwEkZuRCJrMp93i8r4h0j/cVke4Z8n2lTUxaJ+9UfH194evrW93d68ysWbOQmZmJgIAAGBkZQS6X47PPPsOLL74IAEhMTAQAuLi4aOzn4uKCuLg49RgTExPY2dmVGqPa/0mLFy/GggULSm3fu3cvzM3L/2tnfbRv3z59h0DU4PC+ItI93lfUmMVmA4AxbCQCDuz7r9xxRVliAGIcPXsJkgcXKz0u7ysi3eN9RaR7hnhf5eXlVXms1sm75557DiEhIZg9e7bG9i+//BJnzpzBH3/8oe0ha9WWLVuwYcMGbNy4Ea1bt8bFixcxdepUuLu7Y9y4cepxIpFIYz9BEEpte1JFY+bMmYNp06apv8/KyoKXlxf69+8Pa2vrGlyR4ZDJZNi3bx/69esHiUSi73CIGgTeV0S6x/uKCPj74gMgMhIBHvYYNKhjueMu74nC2ZQ4OHj4YtBA/3LH8b4i0j3eV0S6Z8j3lWqGZlVonbwLDw/HvHnzSm1/+umn8dVXX2l7uFr3/vvvY/bs2XjhhRcAAEFBQYiLi8PixYsxbtw4uLq6AlBW17m5uan3S0pKUlfjubq6oqioCOnp6RrVd0lJSQgNDS3zvFKpFFKptNR2iURicG+YmmqI10Skb7yviHSP9xU1ZvcylMu5NHW0rPA+cLVRzhBJzZNV6X7hfUWke7yviHTPEO8rbeLRumFFTk4OTExMyjypNlnDupKXlwexWPMyjYyMoFAoAAA+Pj5wdXXVKKEsKipCeHi4OjHXoUMHSCQSjTEJCQmIjIwsN3lHRERERGQo7qZV3GlWhQ0riIiIDI/WlXeBgYHYsmUL5s6dq7F98+bNaNWqlc4C05WhQ4eqO+S2bt0aFy5cwDfffINXXnkFgHK67NSpU7Fo0SL4+fnBz88PixYtgrm5OUaPHg0AsLGxwcSJEzF9+nQ4ODjA3t4eM2bMQFBQEPr27avPyyMiIiIiqlRVOs0CTN4REREZIq2Tdx9//DGeffZZ3LlzB3369AEAHDhwAJs2bTK49e4AYPny5fj4448xZcoUJCUlwd3dHZMmTdJIPs6cORP5+fmYMmUK0tPT0alTJ+zduxdWVlbqMUuXLoWxsTFGjRqF/Px8hIWFYd26dTAyMtLHZRERERERVVlcqpaVdzlM3hERERkKrZN3zzzzDLZv345Fixbhzz//hJmZGYKDg7F//3707NmzNmKsESsrKyxbtgzLli0rd4xIJML8+fMxf/78cseYmppi+fLlWL58ue6DJCIiIiKqJZn5MqTlFgEAvCurvLNUJu8y8mQoLJZDasw/VBMREemb1sk7ABg8eDAGDx6s61iIiIiIiBq91JxCvLTmDHr4OWLOoJY1Pt7dkqo7JyspLKQV//hvYyaBxEgEmVxAak4R3G3Nanx+IiIiqplqJe8AZVOHpKQkdeMHlSZNmtQ4KCIiIiKixurviw9wPSELd5Jy8G5fP5ibVPtHdgCP1rvztq+46g4AxGIRHC2lSMgsQHJ2IZN3REREBkDrnwRu3bqFV155BSdOnNDYLggCRCIR5HK5zoIjIiIiImps9kQmAgCK5Aqcik5FnwCXGh2vqp1mVZytlMm7JDatICIiMghaJ+/Gjx8PY2Nj7Ny5E25ubhCJRLURFxERERFRo5OcXYiIuDT194ejkmucvItNqVqnWRV2nCUiIjIsWifvLl68iHPnziEgIKA24iEiIiIiarT2XkuEIABSYzEKixU4HJWsnuFSXepOs45Vq7xj8o6IiMiwiLXdoVWrVkhJSamNWIiIiIiIGjXVlNnXuvtCYiTC3bQ8xJYk36pLteZdlSvvSjrOJucU1Oi8REREpBtaJ++WLFmCmTNn4vDhw0hNTUVWVpbGFxERERERaS8zT4aTd1IBACPbe6BjU3sAwOGopGofM6+oWL12nbc9K++IiIjqI62nzfbt2xcAEBYWprGdDSuIiIiIiKpv//WHKFYI8Hexgq+TJXr5O+HEnVQcjkrGhK4+1TqmasqsrbkENuaSKu3D5B0REZFh0Tp5d+jQodqIg4iIiIioUdtzVTlldkCgKwCgl78zFu26gVPRqSiQyWEqMdL6mOr17qrYaRZ4LHmXw+QdERGRIdA6edezZ8/aiIOIiIiIqNHKLSzGkZvJAICBJck7P2dLuNuY4kFmAU5Fp6KXv7PWx43Tcr07AHCyNAWgrLyrabMMIiIiqjmtk3cqeXl5uHv3LoqKijS2BwcH1zgoIiIiIqLG5HBUMgqLFfB2MEeAqxUAQCQSoae/EzaduYfDUcnVSt7F1qDyrkCmQE5hMaxMqzbdloiIiGqH1sm75ORkTJgwAbt37y7zca55R0RERESkHdWU2adbu2pUuvVs4YxNZ+4hvKQqT1vVqbwzMzGCldQY2YXKZhdM3hEREemX1t1mp06divT0dJw6dQpmZmbYs2cP1q9fDz8/P/zzzz+1ESMRERERUYNVIJPj4PWHAICnS6bMqnRt7gBjsQgxKbnqRJw2qrPmHcCmFURERIZE6+TdwYMHsXTpUnTs2BFisRje3t546aWX8MUXX2Dx4sW1ESMRERERUYN1/HYKcovkcLU2RRtPW43HrEwl6OBtBwBaV98VFsvxIDMfgHaVdwDgyOQdERGRwdA6eZebmwtnZ+V6G/b29khOVv4QERQUhPPnz+s2OiIiIiKiBm5PZEmX2dYuEItLN4dQrXV3OEq75N29tHwIAmApNYa9hYlW+7LyjoiIyHBonbzz9/dHVFQUAKBt27b48ccfER8fj1WrVsHNzU3nARIRERERNVTFcgX2qafMlv2zdC9/JwDAyTupKJBVfX1p1TRbbwdzrTvGOlmWJO9ymLwjIiLSN60bVkydOhUJCQkAgHnz5mHAgAH4/fffYWJignXr1uk6PiIiIiKiBut0TBoy8mSwtzBBx6Z2ZY4JcLWCi7UUD7MKERGbhu5+TlU6tqrTbFMt17sDWHlHRERkSLRO3o0ZM0b9/+3atUNsbCxu3LiBJk2awNHRUafBERERERE1ZKops/1ausDYqOxJMSKRCD1bOOH/zt7H4ajkKifvHq+80xaTd0RERIZD62mzjxMEAWZmZmjfvj0Td0REREREWlAoBPx3VZm8ezrItcKxj9a9S6ry8WtSeefM5B0REZHBqFbybs2aNQgMDISpqSlMTU0RGBiI1atX6zo2IiIiIqIG68K9dCRlF8JKaozQZg4Vju3a3BFGYhHuJOfiXlpelY6vi8q7JCbviIiI9E7r5N3HH3+Md999F0OHDsUff/yBP/74A0OHDsV7772Hjz76qDZiJCIiIiJqcFRTZvu0dIbU2KjCsTZmErRvYgsACL9ZeddZmVyB+PR8AIB3Dda8S8sthFwhaL0/ERER6Y7Wa9798MMP+Pnnn/Hiiy+qtz3zzDMIDg7G22+/jYULF+o0QCIiIiKihkYQBOwuSd4NDKx4yqxKL39nRMSm43BUMl7q7F3h2AcZ+ShWCDCViNVTYLXhYCGFWAQoBCA1txDOVqZaH4OIiIh0Q+vKO7lcjpCQkFLbO3TogOLiYp0ERURERERUFdkFMlx7kKXvMLR29UEW7qfnw1QiRo8WVWtA0bNk3Ik7KSgqVlQ4VrXenbe9BcRikdbxGYlFsLfgundERESGQOvk3UsvvYQffvih1PaffvpJoxMtEREREVFt+3BbJAZ9dxR/X4zXdyhaUTWq6NnCCeYmVZsM08rNGo6WUuQVyXE2Nq3CsTVZ706FHWeJiIgMQ5V+Upg2bZr6/0UiEVavXo29e/eic+fOAIBTp07h3r17GDt2bO1ESURERERUhnNx6QCAxbtuoF8rlyonwvTt0ZRZtyrvIxaL0LOFE/46fx+HbyYjtLljuWNjU0o6zTpqv96dipOVFNcTmLwjIiLStyr9dHPhwgWN7zt06AAAuHPnDgDAyckJTk5OuHr1qo7DIyIiIiIqW4FMjgeZyqYMiVkF+DE8Gu/1a6HnqCp3Oykbt5NyIDESoXeAs1b79vRXJu/Co5LxwaCW5Y7TSeWdZUnlXQ6Td0RERPpUpeTdoUOHajsOIiIiIiKt3EvLg/BYI9Qfj9zB/zp6wd3WTH9BVcF/Vx8CAEKbOcLGTKLVvj38HCEWAVEPs/EgI7/ca41Le7TmXXVx2iwREZFh0GrNu+LiYhgbGyMyMrK24iEiIiIiqpKYFGV1WaCHNZ5qao8CmQJf7Lmh56gqtzsyAUDVu8w+ztbcBG29bAEA4TeTyxwjVwi4q2pYUYPKO1WX2iQm74iIiPRKq+SdsbExvL29IZfLayseIiIiIqIqiS2ZGtrUwQIfD2kFkQjYfvEBLtxN13Nk5buXlofI+CyIRUC/Vi7VOkYvf+VU28NRSWU+nphVgCK5AhIjUY2qEFl5R0REZBi07jb70UcfYc6cOUhLq7jDFRERERFRbYopacrg42iBIE8bPNveEwDwyc5rEB6fT2tAVF1mn/Kxh0PJmnLa6tnCCQBw/HYqZHJFqcfjSioSvezNYSQWVTPSR8m7FCbviIiI9Errdlzfffcdbt++DXd3d3h7e8PCQnMdjfPnz+ssOCIiIiKi8sSmPKq8A4D3B/hj15UEXLibgX8uPcCwth76DK9Me0q6zD7dWvspsypBHjZwsDBBam4RzsWlo7Ovg8bjsSVTZlXPS3Wx8o6IiMgwaJ28Gz58eC2EQURERESkHfW0WUdlksrF2hRTejXDV3tvYsnuG+jfyhVmJkb6DFFDUlYBzpVM6R1QjfXuVMRiEXq0cMK2C/E4HJVcKnkXl1bzTrPAo+RddmEx8ovkBvVcEhERNSZaJ+/mzZtXG3HUqvj4eMyaNQu7d+9Gfn4+WrRogTVr1qBDhw4AAEEQsGDBAvz0009IT09Hp06d8P3336N169bqYxQWFmLGjBnYtGkT8vPzERYWhpUrV8LT01Nfl0VERETUaOUXyZGQWQBAOW1W5dXuvth05h7iM/Kx+mg03g7z01eIpfx37SEEAWjrZQs3m5p1xO1ZkrwLv5mM2QMDNB6LS1F1mq1Z8s5KagypsRiFxQqk5BTCq4bHIyIiourRes27+iY9PR1du3aFRCLB7t27ce3aNXz99dewtbVVj/niiy/wzTffYMWKFYiIiICrqyv69euH7Oxs9ZipU6di27Zt2Lx5M44dO4acnBwMGTKEzTuIiIiI9EBVdWdtagw7c4l6u6nECLNKklkrD9/Bw6wCvcRXlv9UU2ZrUHWn0qOFE0Qi4HpCVqlrVD033o41mzYrEonU1XfsOEtERKQ/WifvxGIxjIyMyv0yNEuWLIGXlxd++eUXPPXUU2jatCnCwsLQrFkzAMqqu2XLluHDDz/EyJEjERgYiPXr1yMvLw8bN24EAGRmZmLNmjX4+uuv0bdvX7Rr1w4bNmzAlStXsH//fn1eHhEREVGjpFrvzsfRAiKRZlOGocFuaN/EFvkyOb7YE6WP8ErJyCvCyehUADVb707F3sIEwZ62AIDwqGT1dkEQEKejNe8ArntHRERkCLSeNrtt2zaN72UyGS5cuID169djwYIFOgtMV/755x8MGDAAzz//PMLDw+Hh4YEpU6bgtddeAwDExMQgMTER/fv3V+8jlUrRs2dPnDhxApMmTcK5c+cgk8k0xri7uyMwMBAnTpzAgAEDSp23sLAQhYWPfsjJysoCoHy+ZDJZbV1unVJdR0O5HiJDwPuKSPd4XzVMd5KUMySa2JuV+dp+MNAfz/14Gn+dv48xT3kgyMOmrkPUsOfKA8gVAgJcLOFhY6KT92P3Zva4dC8Dh248xIi2yoRgUnYh8mVyGIlFcLYwrvF5HC1MAACJGbkax+J9RaR7vK+IdM+Q7yttYtI6eTds2LBS25577jm0bt0aW7ZswcSJE7U9ZK2Kjo7GDz/8gGnTpuGDDz7AmTNn8M4770AqlWLs2LFITFROX3BxcdHYz8XFBXFxcQCAxMREmJiYwM7OrtQY1f5PWrx4cZnJzL1798LcvGGtF7Jv3z59h0DU4PC+ItI93lcNy9HbYgBiyNLisWvX/TLHdHQUIyJFjBm/n8I7reV4okCvTm24oYy3qSQTu3bt0skxJdkAYIzDNxKx4994GImAO1nKbbYSBfbv3VPjc+SlKeM+eeEa7FIjSz3O+4pI93hfEemeId5XeXl5VR6rdfKuPJ06dVJXsxkShUKBkJAQLFq0CADQrl07XL16FT/88APGjh2rHvfkdAtBEEpte1JFY+bMmYNp06apv8/KyoKXlxf69+8Pa2vr6l6OQZHJZNi3bx/69esHiURS+Q5EVCneV0S6x/uqYfpt9RkAGejXuS0GtXErc0y7zAL0//YYorMVEHu3x0AdrDVXHTmFxXg/4jAABd4a1g3+rlY6Oa5cIeCXO4eRkS+DW2AXhHjb4a/z8cDVq2jp5YhBgzrU+Bx3Dt3B8Yd3YOvmhUGDHjVz431FpHu8r4h0z5DvK9UMzarQSfIuPz8fy5cvN8jOq25ubmjVqpXGtpYtW+Kvv/4CALi6Kn+IS0xMhJvbox/8kpKS1NV4rq6uKCoqQnp6ukb1XVJSEkJDQ8s8r1QqhVQqLbVdIpEY3BumphriNRHpG+8rIt3jfdWwxKXlAwCau1iX+7o2cZRgcs9mWLb/Fpb8dwv9A91hKqn7NZqPXUtGUbECPo4WaO1pV+kfiKtKAqB7CyfsuPQAx++ko0tzZ9zPUC7b0tTRQifvd1cb5YyR1FxZmcfjfUWke7yviHTPEO8rbeLRumGFnZ0d7O3t1V92dnawsrLC2rVr8eWXX2p7uFrXtWtXREVpLlR88+ZNeHt7AwB8fHzg6uqqUUJZVFSE8PBwdWKuQ4cOkEgkGmMSEhIQGRlZbvKOiIiIiGpHTmGxuoFC00o6qk7q0QxuNqaIz8jHmmMxdRFeKXuuKpdZGdDaVWeJO5VeLZwAAIdvJgF41GlWF80qADasICIiMgRaV94tXbpU44cOsVgMJycndOrUqdSacIbgvffeQ2hoKBYtWoRRo0bhzJkz+Omnn/DTTz8BUE6XnTp1KhYtWgQ/Pz/4+flh0aJFMDc3x+jRowEANjY2mDhxIqZPnw4HBwfY29tjxowZCAoKQt++ffV5eURERESNjqrTrL2FCWzMKv6rtZmJEWY+7Y/3tlzCykO38XyIJ5ytTOsiTABAgUyOQzeUibWna2Habo+S5F1kfBaSsgvUnWa9mbwjIiJqMLRO3vXp0wdeXl5l/tXw7t27aNKkiU4C05WOHTti27ZtmDNnDj755BP4+Phg2bJlGDNmjHrMzJkzkZ+fjylTpiA9PR2dOnXC3r17YWX1aD2SpUuXwtjYGKNGjUJ+fj7CwsKwbt06GBnV/dQLIiIiosbsUXVZ1ZqADWvjgXUn4nDpXga+/u8mljwXXJvhaTh6KwV5RXK42ZiijafuO946WUkR6GGNyPgsHLmZovVzU5XjA0ByTmGV1oQmIiIi3dN62qyPjw+Sk5NLbU9NTYWPj49OgtK1IUOG4MqVKygoKMD169dLNdYQiUSYP38+EhISUFBQgPDwcAQGBmqMMTU1xfLly5Gamoq8vDzs2LEDXl5edXkZRERERIRHlXeVTZlVEYtFmDtEuQby/527h8j4zFqL7XEFMjmWH7wFoHamzKr0auEMANh+IR7ZBcUQiQAve90k7xwtTQAAMrmAzHyZTo5JRERE2tE6eScIQpnbc3JyYGpad1MQiIiIiKhxiklRTg310WJqaAdvOzzTxh2CAHy681q5P9PqikIhYPofl3D5fiZszSWY2K32/sjdy185dfbY7RQAgJu1qc4ac0iNjdRTk5M4dZaIiEgvqjxtdtq0aQCUVWpz586Fufmjv+bJ5XKcPn0abdu21XmARERERESPU08NrWLlncqsgQH472oiTsek4b+rD2tlDTqVZQdu4d/LCZAYibDqpQ46q4QrS1svW1ibGiOroBiA7ta7U3G2kiIzX4bk7EK0cLGqfAciIiLSqSon7y5cuABAWXl35coVmJiYqB8zMTFBmzZtMGPGDN1HSERERET0GNW0WR8tk3cetmZ4vYcvlh+8jUW7rqN3gBOkxrpfv3j7hXh8d0A5XfazEUHo7Oug83M8zthIjO5+Tvj3SgIAwFtH692pOFlJcSsph00riIiI9KTKybtDhw4BACZMmIBvv/0W1tbWtRYUEREREVFZsgpkSM0tAqB95R0ATO7ZDFsi7uFuWh6+3X8L7w/w1+ladOfi0jDzz8sAgEk9fTEqpG7WSO7p/3jyTreVd+w4S0REpF9ar3n3yy+/aCTusrKysH37dty4cUOngRERERERPUlVdedoKYWltMp/h1azkBpj9sAAAMDKw3fwwbZIyOQKncR2Ly0Pr/96DkVyBfq3csGsAQE6OW5V9GrhpP5/XXWaVXGyfNRxloiIiOqe1j/xjBo1Cj169MBbb72F/Px8hISEIDY2FoIgYPPmzXj22WfL3ffy5ctaB9iqVSsYG2v/gxkRERERNTwx6imz1U9QjWjngbTcIny26zo2nbmLuNRc/DCmA2zMJdU+ZnaBDBPXRyA1twit3a2x7IW2EItrp7tsWZytTdHdzxFnY9PRtomtTo/NyjsiIiL90jorduTIEXz44YcAgG3btkEQBGRkZGD9+vVYuHBhhcm7tm3bQiQSVbm7l1gsxs2bN+Hr66ttmERERETUAMWWdJptWoOpoSKRCK9290VTBwu8u/kCTtxJxYiVx7FmfEet19EDgGK5Am9vuoCbD3PgbCXF6nEhMDep+z8+//RyCApkcthZmFQ+WAtM3hEREemX1j9VZGZmwt7eHgCwZ88ePPvsszA3N8fgwYPx/vvvV7r/6dOn4eTkVOk4QRAQGBiobXhERERE1IBVt9NsWfq2csGfb4Ri4roIRKfkYsTK41j1UgetG0x8tus6Dkclw1QixupxIXCzMatxbNVhZmIEMxPdN+Bg8o6IiEi/tE7eeXl54eTJk7C3t8eePXuwefNmAEB6ejpMTU0r3Ldnz55o3rw5bG1tq3SuHj16wMxMPz/8EBEREZHhia5mp9nytHSzxva3uuK1X8/h0r0MvLzmND4bHoRRHavWaOK3U3H45XgsAOCbUW0R7Gmrk7gMiSp5l5RdoOdIiIiIGietG1ZMnToVY8aMgaenJ9zd3dGrVy8Ayum0QUFBFe576NChKifuAGDXrl1wc3PTNkQiIiIiaqBUDStqMm32Sc5WptjyemcMCXaDTC5g5l+XsXjXdSgUFS/1cvRWMub/cxUA8P4AfwwKapg/tzpbKf9An54nQ1Gxbpp7EBERUdVpnbybMmUKTp48ibVr1+LYsWMQi5WH8PX1xcKFCyvd39fXF6mpqdpHSkRERESNWnpuETLzZQCApjVoWFEWU4kRvnuhHd4J8wMA/HgkGpM2nENuYXGZ428nZWPK7+chVwgY2c4DU3o102k8hsTWTALjkuYbqbmcOktERFTXtE7eAUBISAhGjBgBS0tL9bbBgweja9eule4bGxsLuVxendMSERERUSMWU7LenYu1tFYaQojFIkzr1wLfvtAWJsZi7Lv2EM+vOomEzHyNcWm5RXhl3VlkFxQjxNsOi58NgkhUd51l65pYLIKjJde9IyIi0pcq/dQzbdo0fPrpp7CwsMC0adMqHPvNN9/oJDAiIiIiosfF6ni9u/IMa+sBTztzTPrtLK4lZGHYiuNYPS4EwZ62KCyWY/Jv53A3LQ9e9mb48eUOkBrrvkmEoXGykiIxq4DJOyIiIj2oUvLuwoULkMlk6v8vT1X/4njt2jUkJiZWOCY4OLhKxyIiIiKixqGukncA0MHbDtumdMWr688i6mE2Rv14Et+MaosD15NwJjYNVlJjrB3XEQ4lFWkNHTvOEhER6U+VkneHDh0q8/+rKywsDIJQegFgkUgEQRAgEok4tZaIiIiINMSk5gHQbbOKinjZm+PPN7rg7U0XcDgqGVN+Pw8AMBKLsGJMe/i5WNVJHIbAidNmiYiI9Eb3i4VUwenTp+Hk5KSPUxMRERFRPaXuNFsHlXcqVqYSrB4bgs92Xccvx2MBAPOHtkLPFo3rZ1l15V0Ok3dERER1rUrJu5EjR1b5gFu3bq10TJMmTeDs7FzlYxIRERFR4yYIQp1Om32csZEY84a2RhdfBxQUK/BMG/c6Pb8hUCXvkrKYvCMiIqprVUre2djYqP9fEARs27YNNjY2CAkJAQCcO3cOGRkZWiX5iIiIiIiqKjW3CNmFxRCJgCb25nqJoX9rV72c1xA4s/KOiIhIb6qUvPvll1/U/z9r1iyMGjUKq1atgpGRsrOWXC7HlClTYG1tXemxevbsCRMTk2qGS0RERESNkarqzt3GDKaSht/d1dCwYQUREZH+aL3m3dq1a3Hs2DF14g4AjIyMMG3aNISGhuLLL7+scP8nG14UFRUhKSkJCoVCY3uTJk20DY2IiIiIGqgY9Xp3+qm6a+weT96V1XiOiIiIao/Wybvi4mJcv34d/v7+GtuvX79eKgFXkVu3buGVV17BiRMnNLaz2ywRERERPSk2tSR5V0edZkmTY0m32XyZHLlFckjFeg6IiIioEdE6eTdhwgS88soruH37Njp37gwAOHXqFD7//HNMmDChyscZP348jI2NsXPnTri5uUEkEmkbChERERE1ErEpeQDqvlkFKVlIjWFhYoTcIjmSswvhacNlcIiIiOqK1sm7r776Cq6urli6dCkSEhIAAG5ubpg5cyamT59e5eNcvHgR586dQ0BAgLYhEBEREVEjo542y8o7vXGykiI3NY/JOyIiojqmdfJOLBZj5syZmDlzJrKysgCgSo0qntSqVSukpKRovR8RERERNS6CIDyaNsvKO71xspIitiR5B1jpOxwiIqJGo0arVVhbW1crcQcAS5YswcyZM3H48GGkpqYiKytL44uIiIiICFA2ScgrkkMsAprYs2GFvqiaViRlF+g5EiIiosZF68o7Xenbty8AICwsTGM7G1YQERER0eNUU2Y97MxgYsxOCfriZPmo4ywRERHVHb0l7w4dOqSvUxMRERFRPcJOs4bB2doUAJN3REREda1Ok3eXL19GYGAgxGIxevbsWen4q1evwt/fH8bGessxEhEREZGeRZdU3rHTrH6pK+9ymLwjIiKqS3U676Bdu3ZITU2t8vguXbrg7t27tRgRERERERm6WHaaNQiqNe9YeUdERFS3tC5pe+edd9C8eXO88847GttXrFiB27dvY9myZeXuKwgCPv74Y5ibV22h4aKiIm3DIyIiIqIGJjYlDwAr7/SNyTsiIiL90Dp599dff+Gff/4ptT00NBSff/55hcm7Hj16ICoqqsrn6tKlC8zMzLQNkYiIiIgaCIVCeLTmHZN3eqVK3qXmFkGuEPQcDRERUeOhdfIuNTUVNjY2pbZbW1sjJSWlwn0PHz6s7emIiIiIqBFLzCpAYbECRmIRPO34R119srcwgUgEyBUCMvI4Q4aIiKiuaL3mXfPmzbFnz55S23fv3g1fX1+dBEVEREREBDxa766JvTkkRnW6XDM9QWIkhr25CQAgKZvJOyIiorqi9U9A06ZNw8yZMzFv3jyEh4cjPDwcc+fOxezZs/Hee+/VRow6s3jxYohEIkydOlW9TRAEzJ8/H+7u7jAzM0OvXr1w9epVjf0KCwvx9ttvw9HRERYWFnjmmWdw//79Oo6eiIiIqPGJUU2ZdajamslUu1RTZ1PYcZaIiKjOaJ28e+WVV/D1119jzZo16N27N3r37o0NGzbghx9+wGuvvVYbMepEREQEfvrpJwQHB2ts/+KLL/DNN99gxYoViIiIgKurK/r164fs7Gz1mKlTp2Lbtm3YvHkzjh07hpycHAwZMgRyubyuL4OIiIioUVF3muV6dwZB3bSCyTsiIqI6o/WadwDwxhtv4I033kBycjLMzMxgaWmp67h0KicnB2PGjMHPP/+MhQsXqrcLgoBly5bhww8/xMiRIwEA69evh4uLCzZu3IhJkyYhMzMTa9aswW+//Ya+ffsCADZs2AAvLy/s378fAwYMKPOchYWFKCx89ENNVlYWAEAmk0Emk9XWpdYp1XU0lOshMgS8r4h0j/dV/RadnAMAaGJnytfQADhaSAAADzPz4Q3eV0S6xH+viHTPkO8rbWISCYLQ4FtFjRs3Dvb29li6dCl69eqFtm3bYtmyZYiOjkazZs1w/vx5tGvXTj1+2LBhsLW1xfr163Hw4EGEhYUhLS0NdnZ26jFt2rTB8OHDsWDBgjLPOX/+/DIf27hxI8zNOe2DiIiIqCoWXTTCw3wR3mgpR4Btg/+x1eD9EyfGgQdi9HRTYGRThb7DISIiqrfy8vIwevRoZGZmwtrausKxVaq8a9++PQ4cOAA7Ozu0a9cOIpGo3LHnz5/XLtpatnnzZpw/fx4RERGlHktMTAQAuLi4aGx3cXFBXFyceoyJiYlG4k41RrV/WebMmYNp06apv8/KyoKXlxf69+9f6YtSX8hkMuzbtw/9+vWDRCLRdzhEDQLvKyLd431Vf8kVAmac2Q9AwPMDe8LLjn8A1beHJ+Jw4EEULOxdATzgfUWkQ/z3ikj3DPm+Us3QrIoqJe+GDRsGqVSq/v+KkneG5N69e3j33Xexd+9emJqaljvuyesRBKHSa6xsjFQqVT9nj5NIJAb3hqmphnhNRPrG+4pI93hf1T+JaXmQyQWYGInh7WgNI3H9+Bm0IXOxMQMApObJAGveV0S1gfcVke4Z4n2lTTxVSt7NmzdP/f/z58/XOiB9OXfuHJKSktChQwf1NrlcjiNHjmDFihWIiooCoKyuc3NzU49JSkpSV+O5urqiqKgI6enpGtV3SUlJCA0NraMrISIiImp8Yks6zXrZmzFxZyDUDSuyiwBXPQdDBiWnsBjz/7mKQUGu6BPgUvkOpKGwWI6/LzxATIYIg/QdDBEZHK27zfr6+iI1NbXU9oyMDPj6+uokKF0JCwvDlStXcPHiRfVXSEgIxowZg4sXL8LX1xeurq7Yt2+fep+ioiKEh4erE3MdOnSARCLRGJOQkIDIyEgm74iIiIhqkarTrA87zRoMZ3abpXJsO38ff567j3c3XUQK3x9VVlSswO+n49Dry8OYuTUSP94QI5XPHxE9Qetus7GxsZDL5aW2FxYW4v79+zoJSlesrKwQGBiosc3CwgIODg7q7VOnTsWiRYvg5+cHPz8/LFq0CObm5hg9ejQAwMbGBhMnTsT06dPh4OAAe3t7zJgxA0FBQerus0RERESkezEpeQCApg5M3hkKJ0vlUjTZBcUoKv0rATVip6LTAADZhcX4em8UFo8M1nNEhq1YrsDWC/H47sAt3E/PV29XCCLsvZ6EsaGWeoyOiAxNlZN3//zzj/r///vvP9jY2Ki/l8vlOHDgAHx8fHQbXR2YOXMm8vPzMWXKFKSnp6NTp07Yu3cvrKys1GOWLl0KY2NjjBo1Cvn5+QgLC8O6detgZGSkx8iJiIiIGjbVtNmmrLwzGNZmxjAxFqOoWIFsmb6jIUMhCAJOxzyanbU54h7GdPJGoIdNBXs1TnKFgB2XHuDbA7cQU1Jd7GgpxZu9myE9pxDfHbqDPVcfYmyoYc1qIyL9qnLybvjw4QCUzR3GjRun8ZhEIkHTpk3x9ddf6zS42nD48GGN70UiEebPn1/hWn6mpqZYvnw5li9fXrvBEREREZEap80aHpFIBCdLKeIz8pm8I7U7yblIySmC1FiM3v7O2HM1EZ/svIYtr3euN80Oa5tCIWDP1UQs3XcTt5JyAAD2FiaY3NMXL3duCjMTI9x+mInvDt3B6Zh0pOUWwd7CRM9RE5GhqHLyTqFQAAB8fHwQEREBR0fHWguKiIiIiBq3YrkCd9NKps0yeWdQnKyUybssGZMypKSqumvXxBZzh7bC4ZtJOBOThl1XEjE42K2SvRs2QRCw/3oSvtl3E9cTsgAANmYSvN7DF+NCm8JS+uhXcm97c3haCLifC/x3NREvPtVEX2ETkYHRumFFTEyMOnFXUFCg84CIiIiIiOIz8lGsECA1FsPN2lTf4dBjVB1ns4r0HAgZDNV6d518HOBua4bJPZsBABbtuo4CWeNcHFEQBByOSsLw74/jtV/P4npCFiylxng3zA9HZ/XGm72bayTuVNo6KItmdl1JqOuQ671v99/CgKVHcDc1r9bPlZxdyMYsVKe0Tt4pFAp8+umn8PDwgKWlJaKjowEAH3/8MdasWaPzAImIiIio8YkumTLr7WAOsZgVXoZElbzLZuUdoWS9u2hl5V1nXwcAwKQezeBuY4r4jHz8fCRan+HpRVJWAUb9eBLjf4nApfuZMJMY4Y1ezXB0Zm+8168FrE0l5e7bxl4AAJy4k4r0XGbIq6qwWI6fjtxB1MNsfPR3JARBqLVzPcjIR99vwvH0sqPIKyqutfMQPU7r5N3ChQuxbt06fPHFFzAxeTQHPygoCKtXr9ZpcERERETUOKnWu2OnWcPjZFlSecc17whAbGoekrILYWIkRrsmtgAAMxMjzB7UEgCw8vAdJGY2rhlbS/ZEISI2HVJjMV7t5oOjs3pj1tMBsKvCGnbOZkCAqxXkCgH7rj2sg2gbhoiYdOSWtMA+cjMZuyMTa+U8giBg7t+RyMyXISWnEAeuJ9XKeYiepHXy7tdff8VPP/2EMWPGaHRbDQ4Oxo0bN3QaHBERERE1TmxWYbi0mTYrCAKSswtxKjoVv5+Owy/HY1BUrKjlCKkuqaru2nrZwlTy6PfDocFuCPG2Q75MjiV7Gs/viffS8rD9YjwAYNPrnfHRkFZwLEl4V9XTrV0AAP9y6myVHbihTHRamSqnIn+y4xpyCnVfFbcnMhH7H0vY7bz8QOfnICpLlRtWqMTHx6N58+altisUCshk/PMbEREREdVcTCqbVRiqsqbNFhUrcDctF7eTchGdkoM7Sbm4k5yDO8k5yC7Q/AU6JacQ7w8IqNOYqfacKknedfK119guEokwb2hrPPP9MWy7EI+Xu3ijfRM7fYRYp34+Gg25QkC35o7Vvt6BrV2w7MBtHL+dgoy8Itias+tsZQ7dUCbUFg4PxNd7b+JuWh6W7buJj4a00tk5sgpkmPfPVQDA061dsedqIg5FJSO7QAarCqZCE+mC1pV3rVu3xtGjR0tt/+OPP9CuXTudBEVEREREjRunzRouVfLuYT4wacMF9PnqMFrO3YO+3xzB5A3n8MWeKPx1/j4u3stAdkExxCKgib05Ovkokzs/HYnG7aRsfV4C6YggCDgdo2xWoVrv7nFBnjZ4voMnAGDBjmtQKGpvHTJDkJxdiC0R9wAAU3o3q/ZxfJ0sEOBqhWJOna2S6OQcxKbmwcRIjLCWLlgwrDUA4JcTseoOv7rwxZ4bSMouhI+jBZa90BbNnCxQVKzga0R1QuvKu3nz5uHll19GfHw8FAoFtm7diqioKPz666/YuXNnbcRIRERERI1IUbEC99OVlXe+TkzeGRp3GzMAQIFchINRyertFiZGaOZsiWZOlvB1tFD/v7eDOUwlRhAEARPXn8XBG0n4aHskNr3WGSIRm17UZ/fS8pGQWQCJkajcKrMZA/yx60oiLt3LwLYL8Xi2JJnXEK09HoPCYgXaetmiSxnJTG0MDHTDjcRs7LqSgOdDvHQUYcN0sKTqrpOvPSylxujt74yBga7YHZmIj7ZH4o9JXWrc+OhcXBo2nLoLAPhsRCBMJUYY2sYdy/bfwo5LDzCyfcN9X5Nh0LrybujQodiyZQt27doFkUiEuXPn4vr169ixYwf69etXGzESERERUSNyLz0PCgEwNzGCs5V2a0VR7XO1McX8IQHo4arA/CEB2PhqJ5z+IAyRCwbgn7e6Yen/2uLtMD8MCnKDv6uVeh00kUiEBc+0hqlEjFPRafj7IteKqu9OxSinzAZ72sLMxKjMMc5Wpnirj3LZpSV7biC3FtYhMwSZ+TJsOBkHAHizd/MaJ6YHB7sCAI7dTkFmPpenqogqedfb31m9be7QVjA3McK5uHT8ce5ejY5fVKzAnK1XAADPd/BEaDNHAMCQYHcAwNFbyunNRLVJ6+QdAAwYMADh4eHIyclBXl4ejh07hv79++s6NiIiIiJqhFRTZr0dLFiZZaDGdGqCZ30UGNOpCUKbO8LF2rRKr5WXvTne7uMHAFj47zUmJeo51Xp3nZ9Y7+5JE7o2hbeDOZKyC7Hy8O26CK3ObTgVh+zCYvi7WCEswLnyHSrR3NkKLVwsIZML2M9pmeXKKpDhTMnU7bCWj553NxszvNe3BQBg8e4bSMutfnLtpyN3cPNhDhwsTPBBSRdlAGjubImWbtYoVgjYU0vdbYlUqpW8A4CioiLcv38fd+/e1fgiIiIiIqqJGHWnWXM9R0K14bXuvmjmZIGUnCJ89V+UvsOhGjgdrUyadPKpeIqo1NgIH5YkPX4+GoN7aXm1Hltdyi+SY82xGADAG72a1XiKpsrAQDcAwC52nS3XsVspKFYI8HWygPcTa6SO79oUAa5WyMiTYcnu6nU8jk7OwXcHlQnnj4e0gp2FZvOQoW2Ur9HOy3yNqHZpnby7desWunfvDjMzM3h7e8PHxwc+Pj5o2rQpfHx8aiNGIiIiImpEYlPZrKIhMzEW49PhgQCADafjcOlehn4Domq5n56H+Ix8GIlF6OBdeVfVfq1c0K25I4qKFVi063odRFh3tkTcRVpuEbzszTAk2E1nxx1ccqyjt1KQVcAq1bKopsyWVe0oMRJjYclnzZaz93AuLk2rYwuCgA+3RaKoWIHufo4Y1ta91JghQcptJ+6kIDm7UNvwiapM6+Td+PHjIRaLsXPnTpw7dw7nz5/H+fPnceHCBZw/f742YiQiIiKiRiQ2RVmV09SRybuGKrSZI0a084AgAB9tj4S8gXchbYhUVXdBHjawkFbeB1EkEuHjIa0gFgG7IxNx8k5qbYdYJ4qKFfjpSDQAYFKPZjA2qvbktlL8nC2VHU3lChy4zqmzT1IoBByOKlnvrpypyiFN7TEqRNlM4sNtkSiWK6p8/D/P3cfJ6FSYSsT4bHhQmUsDNHEwRxsvWygEYE8kq++o9mj9yXLx4kX8+OOPGDhwINq2bYs2bdpofBERERER1cSjabNM3jVkHwxqCStTY1yJz8SGU3H6Doe09Gi9u6p3VfV3tcJLnb0BAAt2XG0QSdvtF+PxILMATlZSPKfjTroikQiDg1RTZ7mm2pMux2ciJacIVlJjdGxa/rqLswe2hK25BDcSs7HuRGyVjp2aU4jPSipE3+vbAk0cyl/GYWhJheSOS0zeUe3ROnnXqlUrpKSk1EYsRERERNTIFcjkeJCZD4DTZhs6JyspZg7wBwB89V8UkrIK9BwRaeN0SZOATpU0q3jSe31bwMZMmUjZHFG/10yXKwSsCr8DAHitu4+6s7IuDSpJDIXfTEY2p85qOFhSjdijhRMkFVQ82luYYPbTAQCApftuIjGz8s+ahf9eR0aeDK3crDGxW8XLg6mmN0fEpSGh5N8vIl3TOnm3ZMkSzJw5E4cPH0ZqaiqysrI0voiIiIiIquteWh4EAbCUGsPR0qTyHaheG93JG8GeNsguLMbCfxvWOmgN2YOMfNxNy4NYBIRUYb27x9lZmOC9vsqOw1/vvVmvOw7/dzUR0cm5sDGTYHQn71o5h7+LFXwdLVBUrFCv70ZKByuZMvu4USFeaN/EFrlFcny681qFY4/cTMa2C/EQi4DFI4MqnQrtZmOGjk3tIAjAv2xcQbVE6+Rd3759cerUKYSFhcHZ2Rl2dnaws7ODra0t7Oy0++AmIiIiInqcaspsU0fzMtcXoobFSCzCZ8ODIBYB/1x6gGO3OMOnPjgdo5wyG+hhAytTidb7j+nsjebOlkjLLcJ3B27pOrw6IQgCVh5WdiEdF9oUllVY9686RCIRBgWx6+yTHmYVIDI+CyIR0MvfqdLxYrEIC0s+a/69koDwm8lljssvkuPD7VcAKF/XNl62VYpnaBtl4wp2naXaonXy7tChQzh06BAOHjyo8aXaRkRERERUXew02/gEedrg5ZJ10Ob+HYnCYrmeI6LKqJpVaLPe3eMkRmJ8PKQVAGD9iVjcTsrRWWx15citFETGZ8HcxAgTQpvW6rkGBrkCAA5HJSO3sLhWz1VfHCqpQmzjaQtHS2mV9mnlbo3xocopsPP+jkSBrPRnzbcHbuFeWj7cbUwxvb9/leMZGOgGsQi4eC8D99LyqrwfUVVpnbzr2bNnhV9ERERERNUVU9Jpls0qGpfpA/zhZCVFdEoufgqP1nc4VAn1enc+2q1397ieLZwQFuCMYoWAhf9WPI3REH1/SFl19+JTTWBnUbtT/Fu5WaOpgzkKixU4wKmzAKCeQtynClNmH/dePz+4WEsRm5qnXq9Q5dqDLPx8VPn588mwQK2qKZ2spOjSTJnM3nH5gVYxEVWF1sm7y5cvl/l15coV3Lp1C4WFhbURJxERERHVQHxGPkatOqn+hdNQxaaw8q4xsjaV4KPBLQEAKw7dxt1UVq4YqodZBYhJyYVIBIRU0OGzKj4c3BISIxEORyVjT2T9mW54NjYNZ2LSIDES4bXuvrV+vsenzu7m1FkUFstx7LZyir22yTsrU4m66nPl4Tvqf3PkCgFztl6GXCFgUJAr+rZy0TquIcElU2fZdZZqgdbJu7Zt26Jdu3alvtq2bYuAgADY2Nhg3LhxKChgtygiIiIiQ5BXVIzX1p/Fmdg0LN13E/EZhtsNTz1tlpV3jc4zbdzRtbkDCosVmPtPJARB0HdIVIZT0cr17lq5WcPGTPv17h7n62SJST2aAQA+/vtqvWlesfKwsmLr2faecLUxrZNzqpJ3h6KSkFfUuKfOno5OQ16RHC7WUrR2t9Z6/8FBbuju54iiYgXm/nMVgiDgt5OxuHQ/E1amxpg/tHW14nq6tSuMxSJcS8jCneT6NxWcDJvWybtt27bBz88PP/30Ey5evIgLFy7gp59+gr+/PzZu3Ig1a9bg4MGD+Oijj2ojXiIiIiLSgiAIeP+Py7iWkAUAKFYIWHM0Rs9RlS2/SI6ETOUfgDlttvERiUT4dFggTIzEJZVYifoOicqgmjJb3fXunvRWn+bwdbJAcnYhFu8y/I7D1x5k4eCNJIhFwKSezersvK3drdHE3hwFMgUO3Si72UJjoZoy29vfuVqNjUQiET4ZFggTYzGO3EzGmmMx+PK/KADA7IEBcLauXkLWzsIE3fwcAbD6jnRP6+TdZ599hm+//RYTJ05EUFAQgoODMXHiRCxduhRff/01xowZg+XLl2Pbtm21ES8RERERaWHFwdv490oCJEYivBPmBwDYHHEXGXlFeo6sNFXVnbWpMezMa1bRQ/WTr5MlJvdUTkNcsOMacrg4v8E5XVJ5V5P17h5nKjHC5yODAQCbI+7hxB3D7jj8Q8k6aYOD3ev0jwzsOqskCEK117t7nI+jBd4oSb4u/Pc6covkCPG2w4sdm9QovqElU2d3XH7A6mHSKa2Td1euXIG3t3ep7d7e3rhyRdlSuW3btkhIaLwfKERERESGYE9kIr7edxMA8OmwQLzX1w+t3KyRVyTHryfj9Bxdaaq1h3wcLapVTUENw5TezdHE3hyJWQVYVvL+peoplisw449L+GTHNZ0kEpKzC3EnWbne3VM6St4BymO91FmZNPlg65Uyu4AagtiUXPxb0ozgjTqsulMZVNJ19uCNJOQXGeZzVNvuJOfibloeTIzE6NrcsUbHeqNXM3g7mAMAJEYiLB4ZBLG4Zv/29GvtAhMjMW4n5SDqYXaNjkX0OK2TdwEBAfj8889RVPTor7UymQyff/45AgICAADx8fFwcdF+gUciIiIi0o0biVmY9n8XAQDjQ5vihaeaQCQSYVJJVdO6E7EG98tfDNe7IygrsRYMU6459cuJWFwvmfJN2tt05i7+PHcfa4/H4Oitmle0nY5RVt0FuFrD1ly3HVZnPR0AV2tTxKbmYdn+Wzo9tq78eOQOFIKy4qtVNdZaq6kgDxt42pkhXybH4ajG2XX24I2HAIDOzRxgoUU32LKYSoyw5Nlg2FuYYNbTAfBzsapxfNamEvTydwIA7LjErrOkO1on777//nvs3LkTnp6e6Nu3L/r16wdPT0/s3LkTP/zwAwAgOjoaU6ZM0XmwRERERFS5tNwivPbrWeQVydG1uYO6iyegXKjby94MablF+OPcPT1GWRo7zZJKb39nDAx0hVwh4MNtV6BQcPqZtjLzZfjmscrFb/bdrHH13elo5Xp3upoy+zgrUwk+HR4IAPj5aDQi4zN1fo6aSMwswJ/n7gMA3uxd91V3gObU2X8b6dRZ9ZTZkgRZTXX2dcD5j/vhVR12DR7SpqTr7OUETp0lndE6eRcaGorY2Fh88sknCA4ORmBgID755BPExMSgc+fOAICXX34Z77//vs6DJSIiIqKKyeQKTPn9HO6l5aOJvTlWvNgexkaPfuQzNhLjtZJfUn46Eo1iuUJfoZYSm5IHAPB1YvKOgLlDW8HCxAjn72bgq71RXP9OS8sP3EJ6ngw+jhYwkxjh4r0MHKphtZaq8q6zr+6TdwDQr5ULBge7Qa4QMOuvywb1+bT6aDRkcgFP+dijg3ftXH9VqJJ3B28kGez04tqSmS9DRGw6AKBPgOHO9Ovb0hlmEiPEpebhioEloan+0jp5BwCWlpaYPHkyvvnmGyxduhSTJk2ClVXNS0yJiIiIqGY+3XkNp6LTYGFihNXjQmBnUXpq2/MdvGBvYYL76fkGVb2hnjbLyjsC4GZjhvf6tQAArDx8B10WHcDCnddwLy1Pz5EZvujkHKw7EQsAmP9Ma4wNVa5ZXpPqu9ScQtx8mAMAeMpHN51myzJ/aGvYmElw9UEWVh8zjM7Y6blF+P30XQDAm72b6zWWNp428LA1Q16RHIejGlfX2aO3kiFXCGjubIkmJWvVGSJzE2P0aalsprHzsuH8G0v1W7WSdwBw7do17NmzB//884/GFxERERHpx++n4/DryTiIRMC3L7RDi3LW7zEzMcL40KYAgFXh0Xqd1pNdIMOB6w+xYMdVJGcXAuCad/TIxG4+WDQiCL6OFsguLMbqYzHo+eUhvLHhHCJi0zglrRyLdt1AsUJAb38n9GzhhEk9msHCxAiR8VnYe+1htY55JkY5ZdbfxQr2ZfxRQFecrKTqqf5L991UT6evqaJiBX49GYvvDtzCzssPcO1BVpXX/fzlRCzyZXK0drdGD7+aNUmoKZFIhIGBysYVja3r7MHrNe8yW1dUXWd3XnrAaf+kE1qv8BgdHY0RI0bgypUrEIlE6n8wVR3B5PLGVbpLREREZAhOR6di3t9XAQAz+vujb6uKpxSN7eKNVeF3cD0hC0dupaBnC92sH1SZomIFLtxNx/HbKTh+JxUX72VA/tgvNv4uVrAxk9RJLGT4RCIRRndqghc6eiH8ZrK68cLuyETsjkxEkIcNXunWFIOD3GFiXO26hAbl2K0U7L/+EEZiET4c3AoAYG9hggldfbDi0G0s3XcT/Vq6aN1V83RJ8q5TLU2ZfdxzHTzx98UHOHY7BXO2XsHG1zrVqAN1cnYh3thwDmfj0ks95mFrBl8nCzRzsoSvkwV8HZX/dbMxhUgkQk5hMdaXVDG+2bu5QXTCHhTshtXHYnDg+kMUyOQwlRjpO6RaJ1cIOHxTWWlYH5J3vfydYCk1xoPMAly4l67XqdbUMGidvHv33Xfh4+OD/fv3w9fXF2fOnEFqaiqmT5+Or776qjZiJCIiIqIK3E/Pwxu/n0exQsCQYDdM6VX5Yuq25iZ4oWMTrD0eg1WH79Ra8k6hEHA9MUuZrLudijMxach/Yp0mbwdzdG3uiK7NHNGjhX6rWsgwicUi9A5wRu8AZ0QlZuOX4zHYeiEeV+Iz8d6WS1i86wbGdvHG6E7etVoVZuiK5Qp8uvMaAODlzt5o7mypfuy17r5YfyIWNxKzsTsyEYOD3bQ69qlo5Xp3nWpxyqyKSCTCohFBGLDsCE5Gp+L/zt7D/zo2qdaxLt/PwKTfziEhswBWpsbo19IFsam5uJOci8x8GeIz8hGfkV+qG6+ZxAi+ThaQGouRmS+Dr5MFBrR21cXl1VhbT1u42ZgiIbMAR24mo7+BxFWbLt3PQFpuEaxMjdHB207f4VTKVGKE/q1csPVCPHZcSmDyjmpM6+TdyZMncfDgQTg5OUEsFkMsFqNbt25YvHgx3nnnHVy4cKE24iQiIiKiMuQVFePV9WeRlluEQA9rfPlcmypXhrza3Qe/nozFyehUXLqXgTZetjqJqahYge0X4hF+Kxkn76QiLbdI43FHSxOENnNE1+YOCG3mCC97w127iAyPv6sVPn82GO8P8MfG03fx66k4JGUX4qu9N7H84G2MbO+BCV19yp023pBtOXsPUQ+zYWMmwdS+fhqP2ZhLMLG7D5btv4Wl+2/i6UBXGFWx+i4jrwhRD7MBAE/VQqfZsjRxMMf0/i2w8N/r+Ozf6+jt7wxna1OtjrH9Qjxm/XUZhcUKNHOywM9jQ+DrpExoCoKAtNwiRKfkIjo5B9HJyoRedEoO7qbmIV8mx9UHWepjTe7ZrMrPV20Ti0UYGOiGtcdjsDsysVEk71RTZnu0cILEqH5U2Q5p44atF+Lx75UEfDyklcG8f6h+0jp5J5fLYWmp/MBzdHTEgwcP4O/vD29vb0RFRek8wJpavHgxtm7dihs3bsDMzAyhoaFYsmQJ/P391WMEQcCCBQvw008/IT09HZ06dcL333+P1q1bq8cUFhZixowZ2LRpE/Lz8xEWFoaVK1fC09NTH5dFREREBIVCwPT/u4QbidlwtJTip5dDYGZS9elT7rZmeKatO7aej8eq8Dv44aUOOolp6pYL2HUlUb3NwsQInXwdENrMAd38HOHvYmUQU8+ofnOwlOLtMD9M6tkM/155gDXHYhAZn4VNZ+5h05l76OLrgBHtPfB0oCusTRv+VOysAhm+3nsTAPBeXz/YmpeuQHylmw9+OR6L20k52HHpAYa386jSsU/HpEEQgObOlnCykuo07oqMD22Kfy49wOX7mZj3z9Uqf0bJFQKW7LmBn45EA1BOs1z2QluN94FIJIKDpRQOllJ0bKqZkJTJFbiblofoZGViT2IkxnPtDev3vsHBrlh7PAb7rz1EYbEcUuOGPXX24A1l8i6sHkyZVenW3Ak2ZhIkZxfidEwqQpuxspyqT+uUdWBgIC5fvgwA6NSpE7744gscP34cn3zyCXx9fXUeYE2Fh4fjzTffxKlTp7Bv3z4UFxejf//+yM19tPDpF198gW+++QYrVqxAREQEXF1d0a9fP2RnZ6vHTJ06Fdu2bcPmzZtx7Ngx5OTkYMiQIVzjj4iIiPRm+cHb2B2ZCImRCD++3B7utmZaH2NyT+UU2z1XExGdnKOTmHZdUcb0Tpgf/pzcBRfn9cfa8R3xandfBLhaM3FHOmViLMaIdp7Y8VY3/N+kLni6tSvEIuBkdCpm/nkZIQv3440N57AnMhEFsob7s/uKg7eRlluEZk4WGNPZu8wx1qYSvN5D+TvbtwduoViuqNKxT0eXrHdXR1V3KsZGYnw+MhjGYhF2RyZiT2Ripftk5skwYV2EOnH3Zu9m+HlsiFYJXImRGM2cLNGvlQsm9WyGV7r5aL1GYG1r52UHV2tTZBcW4+jNlMp3qMcSMvNxLSELIhHqbH1WXTAxFuPpkqpIdp2lmtK68u6jjz5SJ74WLlyIIUOGoHv37nBwcMCWLVt0HmBN7dmzR+P7X375Bc7Ozjh37hx69OgBQRCwbNkyfPjhhxg5ciQAYP369XBxccHGjRsxadIkZGZmYs2aNfjtt9/Qt29fAMCGDRvg5eWF/fv3Y8CAAaXOW1hYiMLCQvX3WVnKkmuZTAaZTFZbl1unVNfRUK6HyBDwviLSvYZ6X/139SGW7ldW2SwY2grB7lbVukYfe1P09nfEoagU/Bh+GwuHta58p3LseSKm5zuUVPUo5JApGm7SpDEy1PuqnacVlr8QjPvpfvj7UgL+uZSA6JRcdYMLK1NjPN3aBUODXfFUU/sGM40tLjUPvxyPAQDMebpFhffc6I4eWH00GjEpufjz7F08277y6rtT0crkUEgTmzp/zf2czPBat6b44UgM5v4diY5NrGFdTlOb20k5mPz7RcSl5cFMIsbnIwIxKMgVCnkx6sNHkLb3Vf9Wzvj11F38ezkePf0a7ppq+68qk7ZtPW1gLRUb3OdORQYGOmPL2XvYfSUBHw1sUW+m/DYkhvrvFaBdTCJBB/3V09LSYGdnVy/+inr79m34+fnhypUrCAwMRHR0NJo1a4bz58+jXbt26nHDhg2Dra0t1q9fj4MHDyIsLEx9nSpt2rTB8OHDsWDBglLnmT9/fpnbN27cCHNzrutCRERE1fcgF1gaaYQihQg9XRUY6VO16pny3MkCvrtqDCORgHnt5bCpxnr/8bnAMlVMbgqMbFqzmIh0QRCA+DzgXLIY51JFyCx69PuKjURAO0cBIY4KeFoA9eBXmXKtviHGlXQxWtoqMLll5ffegXgR/rlrBAepgA/bylFRPiGvGPggwggCRPikQ3G1Ph9qSqYAvrhkhKQCEUKdFfhfs9LXGJkmwq+3xSiUi2AvFTDRXw5Pi7qPtS6pPrvNjAQsDJGjoTZc/vmGGJHpYgz2kqO/Z43TF3VKLgBzzxkhRybC5JZytLStX/FT7crLy8Po0aORmZkJa2vrCsdqXXlXFnv7+pHlFwQB06ZNQ7du3RAYGAgASExUZvFdXFw0xrq4uCAuLk49xsTERCNxpxqj2v9Jc+bMwbRp09TfZ2VlwcvLC/3796/0RakvZDIZ9u3bh379+kEiafjriBDVBd5XRLrX0O4rhULAcz+dRpEiC6HN7LHq5fYw1sFf8o/9fAbn72bgvnlzvNi/hVb7puYUYuSq0yhSFKBrMwesermdTmIiw1Uf7yu5QsDZuHTsuJyA3ZEPkVlQjMMJIhxOEMPX0RxDgt3wTLAbvB1q/w/tCoUAmUKAVAfZlpPRqbhy8hyMxCJ8/XI3+D3WYbY8vYvkOLH0KFJyipDnGoz/hZS/ntuBG0kQIi7Cx8EcLw7vVuN4q8stMA1j1pzFiSQxpgx5Sj2FVxAE/BAeg9WnbkMQgKea2uG7F9rAoR52Hdb2vlIoBGz+6giSsgsRZ+GPt3r51ouCGm0UyuSYffYQAAVeH9oVrdzq3+/S5xTX8fuZe0gy9cL0QYH6DqfRMeR/r1QzNKuiysm7V155pUrj1q5dW+WT17W33noLly9fxrFjx0o99uSHnCAIlX7wVTRGKpVCKi29mKtEIjG4N0xNNcRrItI33ldEutdQ7qttF+7jSnwWLKXG+PaF9jAz1c3i8W/0ao7Xfj2LTWfu462wFlVeH6qoWIG3t1zGg8wC+DhaYOWYDjBrBM0BSKk+3VcSAN1auKBbCxd8MlyO8Khk/H3xAfZff4jolDx8d/AOlh+6g29GtcGIdrXXnEChEPDahgicik7F7KcDMC60abUTLnKFgEW7lVPVx3RqglYedpXsoSSRSDClV3N8svMafgiPwfMdm5Tb8ODc3UwAQOdmDnp9rbv6uWBMpyb4/fRdfPzPdex+tzvkCgHv/3lZ3SBnXBdvfDSkVb2fmqjNfTUutCm+/C8K3x28g9vJufjiuTawlOqkRscgHI9OR75MAVdrUwR72dfL5OSwdp74/cw97LuehMUicYNvLmKoDPHfK23iqfKn2rp163Do0CFkZGQgPT293C9D9fbbb+Off/7BoUOHNDrEuroqF5B8soIuKSlJXY3n6uqKoqKiUtf3+BgiIiKi2pZfJMcXe6IAAG/0aqbTro9hAc7wc7ZEdmExNp6+W6V9BEHA3L8jERGbDitTY/w8NgQ25ob1gzFRWaTGRujf2hXfj2mPsx/1xVfPt0EnH3sIAjD376t4mFVQa+f+/cxdHI5KRoFMgfk7ruG1X88hPbeoWsf64+w93EjMhrWpMab21a5idnSnJnCxliI+Ix//F3Gv3HGnY1TNKhyqFaMuzRoYABdrKWJScjHv76t49ocT6gY5n48MwoJhgfU+caetKb2a4ZNhrSExEmHXlUQMW3EMt5OyK9+xnlB1me0d4FwvE3cAEOJd0lykoBhHGnhzEao9Vf5kmzx5MjIzMxEdHY3evXtjzZo12LZtW6kvQyMIAt566y1s3boVBw8ehI+Pj8bjPj4+cHV1xb59+9TbioqKEB4ejtDQUABAhw4dIJFINMYkJCQgMjJSPYaIiIiotq05Fo2EzAJ42JphYjefynfQglgsUnehXHssBoXFla/uvv5ELDZH3INYBHz3Yjs0r8J0PSJDY2UqwXMdPLHxtc5o42mD7IJizP07slbOlZCZjyW7bwAA+rdygYmRGPuvP8TAb4/i5J1UrY6VXSDDV3uVyfx3+7aAvZbTRE0lRnird3MAwIpDt8vsxJtVIENkvLLyrpOv/pdKsjaVYOHwIADAlpLEpaOlFJtf74wXnmqi5+j0QyQSYWyXptgyqQtcrU1xJzkXz6w4jp2XH+g7tBoTBEGdvAsLcNZzNNUnFoswONgNABrE60L6UeXk3cqVK5GQkIBZs2Zhx44d8PLywqhRo/Dff/9BBz0vas2bb76JDRs2YOPGjbCyskJiYiISExORn58PQPlhN3XqVCxatAjbtm1DZGQkxo8fD3Nzc4wePRoAYGNjg4kTJ2L69Ok4cOAALly4gJdeeglBQUHq7rNEREREtSkpuwA/HL4DAJj5tD9MJbqfdjOsrQfcbEyRlF2IbefjKxx77FYKPv33OgBgzsCW6O1ff3+xIgIAI7EInz8bDGOxCP9dfYg9kQk6Pb4gCPhoWyRyCovRvoktfnipA7ZOCYWvowUSswowevUpfLM3CsXyqjV7+f7QHaTkFMHX0QIvd/auVkyjOnrB3cYUD7MKy6y4PRebDoUAeDuYw83GrFrn0LV+rVzUiZBgTxvseLsrOnjrP7Gob+2b2GHnO93QxdcBeUVyvLXxAj7ZcQ2yKr6fDNGtpBzcT8+HibEYoc31X/lZE0NK3rP7rj1EflE9aH1MBkermmKpVIoXX3wR+/btw7Vr19C6dWtMmTIF3t7eyMnJqa0Ya+SHH35AZmYmevXqBTc3N/XXli1b1GNmzpyJqVOnYsqUKQgJCUF8fDz27t0LKysr9ZilS5di+PDhGDVqFLp27Qpzc3Ps2LEDRkacr05ERES1b+m+W8gtkqONpw2GBrvXyjlMjMXqir6fjkRDrij7D7QxKbmY8vs5yBUCnuvgiVe767YKkEhfWrpZY3LPZgCAj/++isx8mc6O/e+VBBy4kaSc4vlsMIzEIgR62GDH293wfAdPCALw3cHbeOGnU4jPyK/wWHdT87D2WAwA4MPBLWFSzcYXUmMjvB3mBwBYefhOqaTCqRhlNaCqOYShWPa/tvj91U74v0ldDCapaAgcLaX4beJT6vfw2uMxGP3zKSTV4jTw2qSquuvi6wBzk/q9jl9bL1t42pkhr0iOHZdYfUfaq/aCACKRCCKRCIIgQKEw3Gy+IAhlfo0fP149RiQSYf78+UhISEBBQQHCw8PV3WhVTE1NsXz5cqSmpiIvL09dfUhERERU26ISs7ElQlkV89GQVhCLa2/dnxeeagJrU2NEp+Ri37XEUo9nFcjw6voIZBUoq4c+GxFYb9chIirLW32aw9fRAsnZhVi867pOjpmRV4T5/1wFAEzp1RwtXB4VCVhIjfHl823w7QttYSk1xtm4dAxcdqTCyr/Fu6+jSK5Adz9H9KnhdMLnOnjCy94MKTmF+O1UrMZjp6MNZ727x0mMxOja3LFWKpDrO2MjMWYPDMCPL3eAldQYEbHpGLz8GM6UrF1Yn6inzLas/5XdIpEIYzopK2QX7b6O5OxCPUdE9Y1WybvCwkJs2rQJ/fr1g7+/P65cuYIVK1bg7t27sLTkGidEREREteGzXdehEICBga7o2LR2K2AspcYY26UpAOCH8GiN5VHkCgHvbLqAO8m5cLMxxaqXO7BrHjU4phIjLB6pXFdtc8Q9nLhT8wXmP/v3OlJyitDc2RJTejcrc8ywth74951uaONpg6yCYkzecB4fbrtSai26U9Gp2B2ZCLEI+GhwqxonzyVGYrzTR1l9tyo8GjmFxQCAnMJiXDGg9e5IOwNau+Lvt7rC38UKydmFePHnU1h9NNqgl7x6XGaeDOfilA0jG8qyDK9290ErN2tk5Mnw0fYr9ea1IMNQ5eTdlClT4ObmhiVLlmDIkCG4f/8+/vjjDwwaNAhicePq6ENERERUVw5HJeHIzWRIjESYPTCgTs45vmtTSI3FuHQvA6eiH1VrfLHnBg5HJcNUIsbPY0PgbGVaJ/EQ1bVOvg4Y00nZAOGDraUTaNo4disFf5y7D5EIWPJscIUJb28HC/wxORSTeiqbx/x++i6GrTiOmw+V3UPlCgGf7rwGQNkt1t/VqtxjaWNEOw/4OFogLbcI60/EAgDOxaVDrhDgaWcGTztznZyH6pavkyW2vRmKYW3dIVcIWPjvdby16QJySxK0hiz8VjLkCgEtXCzhZd8w3n8SIzG+er6Nel3NnZd1u64mNWxVzrqtWrUK1tbW8PHxQXh4OF577TWMHDmy1BcRERER6UaxXIFFJdP2xnVpCm8Hizo5r6OlFM+HeAIAVoUrm2T8de4+fjwSDQD48rk2CPSwqZNYiPRl1sAAuFhLEZuah2X7b1XrGPlFcnyw7QoAYGxnb3Twtqt0HxNjMeYMbIlfX3kKjpZSRD3MxjMrjmHj6bv489w9XH2QBStTY7zXt0W1YiqLsZEY75asfffTkWhkFchwOlq13p1hTZkl7ZibGGPZ/9piwTOtYSwW4d/LCRj2/XHcTjLMNetVDl5/CADoXY+7zJallbs13uqj7PI89+9ITp+lKqty8m7s2LHo3bs3bG1tYWNjU+4XEVVMEAScjU3DrD8v4/0/Lqn/kkpERPSk/zt7Hzcf5sDWXIK3S6a11ZXXuzeDWASE30zGxtN3MWerMgHxdp/mGNqmdhpmEBkSa1MJFg5XTp/9+Wg0IkumkGpj6f6buJuWBzcbU7z/tHaVsz1aOGH3u93Ro4UTCmQKfLDtCj7cFgkAeDfMDw6WUq3jqcjQNu5o7myJzHwZ1h6LwemSNdI4Zbb+E4lEGBfaFFsmdYaLtRS3k3IwbMUx/H2x4q7i+pJfJEf4zWQAQJ8GMmX2cVN6NUdLN2uk58nw8fZITp+lKqlyy5Z169bVYhhEDV9mngxbL9zHpjN3cfPho790/XX+PkaFeOG9fi3gYs3pR0REpJRdIMM3+6IAKH9RtzGX1On5mziYY1CQG3ZeTlBXDvVv5aLTah8iQ9evlQsGB7nh3ysJmPXXZfz9ZlcYG1Wt/uHK/UysPqqsVl04PBCWUu27ZTpZSbFufEesPhaNL/ZEoVghoKmDuXpdSl0yEoswta8f3tp4AWuOxiC/ZKpwF19W3jUUHbztsfPt7nh703mcik7Du5svYu+1h/h0WCDsLUz0HR4EQcDuyER89u91pOfJYGcuqVK1an1jYizGV88HY9iK49hzNRH/XknAkFrqIt/QxGfkw93GtFE2yuJidUS1SBAEnItLw7T/u4inFu3Hgh3XcPNhDkwlYjzfwRNPt3aFQlAuhtzry8P4Zm+UepFgIiJq3FaF30FKThF8HC3UHerq2uSejxbWD3C1wtL/ta3VTrdEhmj+M61hYybB1QdZWHMspkr7yOQKzPrrMhSCsqItrKVLtc8vFovweo9m+OuNUIwK8cSK0e1hYlw7v8YNCnRDgKsVsguLUawQ4G5jCk87s1o5F+mHk5UUGyZ2wrthfjAqmUbbf+kR7L/2UK9x3XqYjZfWnMaU388jPiMfHrZm+H50+yony+ub1u42eLO3avrsVaTkcPpsZY7dSkG/b8Kx8vAdfYeiFw3zTiDSs8x8GdafiMXTy47i2R9OYuv5eBQWKxDgaoVPhrXGmQ/74svn22DVyx3w1xtd0MHbDvkyOb47eBs9vziE307GQiZX6CSWomIFzsamISmrQCfHIyKi2hefkY/VR5VJgjkDA2rtF/XKBHrY4MWnvNDCxRI/jw2BRTUqh4jqOycrKT4c3BIA8M2+m4hNya10n9VHY3AtIQu25hLMG9pKJ3G08bLFF7W83qRYLMLUx6prO/k6NMoKl4bO2EiM9/q1wPYpXeHnbImUnEK8+utZvP/HJWQXyOo0luwCGT779xoGfnsUx2+nwsRYjHfC/LB/Wk+ENnes01jq2pu9myPA1QppuUWY9/dVfYdj0HZfScAr6yKQVyTHqehUFOvod+X6hD+BEemIIAi4cC8DG0/fxc7LD1AgU36gmErEGBLsjtGdmqCdl22pH4A6eNvjz8ld8N/Vh1iy5wZiUnLx8d9XsfZ4LGY97Y8BrV21/qEpITMfh6OScehGEo7fTkFukRz2FiZYP+EpBHlybUqqHrlCwKJd15FXVIzXuvvC18lS3yERNVhf7rmBwmIFOvnYo1+r6lfs6MLikcF6PT+RIXi+gyf+vhiP47dTMWfrFWx8rVO5P5/FpORi2f6bAICPB7eCo47XpqttA1q7INDDGpHxWejWwJMnjV2Qpw12vN0N3+y7iZ+PRuOPc/dx4k4qvnwuuNYTZ4IgYNuFeCzefUPdtKFvSxfMHdIKTRwaRnfZyiinz7bBsO+P498rCRh0OQGDg930HZbB2RKhXHdXIQCDg9zwzf/aNNiKzIoweUdUQ8VyBTZH3MOGU3G4kfio+UQLF0uMfqoJRrT3hI1ZxesUiUQiPB3oirCWzth85i6W7b+FmJRcTN5wHu2b2OLDwS3Rwbv8xYJlcgXOx6XjUFQyDkclacQBAMZiEdJyi/Diz6ewZlwIOnHtEqqGL/bcUE8X2hJxD8PbeeCdPn5o6lg33S+JGouL9zKw/eIDiETAx0NaseqFyACIRCIsGhGEAcuO4GR0Kv7v7D38r2OTUuMEQcCcrZdRWKxAdz9HjGzvoYdoa0YkEmHNuI44disFI9rVv/hJO6YSI3wwqCX6tnTBjD8u4W5aHkavPo3xoU0x6+kAmJkY6fyckfGZmPfPVZyLSwcA+DhaYO7QVujdAJtTVCbQwwZv9mqG7w7exsd/R6Kzr73Om9HUZz+G38Hi3TcAAC909MJnI4Jg1EiX72DyjqgG7qbm4d0tF3DhbgYAQGqsqrLzQvsmdlr/wiUxEuPlLk0xvJ0Hfj4SjZ+PxuD83Qw8+8NJPN3aFTOf9ldXOyVlFeDwzWSERyXjyK1kZBc8WitPJALaetmit78zevs7w9vRHK+tP4vTMWkYu/YMfnipPfoE6LeSg+qXvy/G48cjykW3Oza1Q0RsOraej8ffFx9gRDsPvN2nObwdmMQjqilBEPDZv9cAACPaedTq9Dgi0o63gwWm9WuBRbtu4LN/r6O3vzOcn2g29n9n7+FUdBrMJEZYNCKo3ibfXaxN8WwHT32HQXXoKR977H63Oxbtuo7fT9/FuhOxCL+ZjK+eb6OzphHpuUX4am8UNp65C0EAzE2M8HYfP7zSrSmkxrpPEtYXb/Xxw95rD3EjMRtz/7mK70e313dIeicIAr74Lwo/lKxvN7lnM8x62r/efqbqApN3RNWgKvOe+/dV5BQWw8rUGFP7tsBz7T110g3QylSCaf39MaazN5buu4n/O3sPe64mYt/1hxgY6IrY1FxExmdp7GNnLkHPFk7oHeCM7n5OpTpGrX/lKby18Tz2X0/C67+ew9ej2mBYW/41lSoXGZ+JmX9eBqD8h3P2wABcupeBZftv4lBUMv48dx/bLsTj2fYeeLuPH7zsG8dUB6La8N/VRETEpsNUIsb7A/z1HQ4RPeGVrj7YcSkBV0oqh354qYP6saSsAnz273UAwPT+LfjvIdU7FlJjfDYiCP1bu2LWn5cRk5KL51edwKSezTC1r1+1E2xyhYDNEXfx5X9RyMhTrqk3tI07PhgUADcbNkTRmD57OQGDgxIwKKjxTp+VKwR8/HckNp6+CwD/396dx0VZrn0A/80MM8MMDMMOssoqxqYi7olWructUStbND1aaS4n9T2VWbYfzUqzXk9mJy3LLI+ZS7kkZaK54obgBioKsssOAzMD87x/DEwhpoAjM+Dv+/nM55l5nmceriGunLnmvu8L80aENWqgdbdi8Y6ohcqq9Xh1cyp+TM4BAPTq7Iyl46Lh42T+N2geDrZ4d2wUJg8IwOId5/DruQL8dCrXdDzKR41BXdwxqIsbon0cbzqE2FYqwYrxMXhhQzI2n8zB7PUnUV5Tiwl9LNPBkNqHa5VaTP36GLS1Bgzq4mYqJkT7OuKLv/fCicwSLPslHYlphfjv0av44Xg2Ho7xwYzBwa360HKtUouU7DKkXi3DhcJK9A10wbhY37v6Wza6e+hqDaapIc/eG8gPNERWyEYixrtjI/HQ8v3YkZqHnal5GB7hCQB4fetplNfUItpHjb/3D7BwpEStFxfqhp/nDMSbW0/jhxPZWLHnInafLcCSR2/cMEUQBJTX1KK4SofiKi2KKnUortKhqMq4PXixCGdyjQMPunio8MZD4egbxGV8/izCW43pg4Lwf7svYMHmVPQJdGkyGONuoKs1YM5/T2LbqVyIRMDC0ZF4vFfTJQruRizeEbVA0uVizP7uJLJLqyERizDngRA8Nyj4js+7D/VQYdWkWBy8WITd5/IR5umAgaFucFO1bD0EqUSMpY92g4NCiq8OXsGCzakor9Zj+qAgFkeoCX2dAdO/OY7s0moEuNrho8e6N/lb7+7nhDWTe+HYlRIs+yUN+9Kv4bukLHx/7Coe6emLmfcFw9vxxgWIooZCXXYZTl01bnPKGndF3nIyB9tScvHew1EsZFCH99XBy7hSpIGbSo6p/IaZyGqFe6kxdWAgPtlzEa9tSUXfIBccvFiEHal5sBGLsGhM1F27JhN1HGqFFEvHdcPQcE+8sikF5/MrEP/v/Xiomxf0dUKjIl2JRgd9nXDT66lsbfC/Q0Ixvo//XdlsoDlm3heMXafzcT6/Aq9tScXyu2z6rEZXi2lrj2NvWiGkEhGWjevOBh5/wuIdUTPU1hnw8a/pWP7bBRgEwM9ZiY8e64bufuZZ/6G5+ga53Pa3VGKxCG8+FA4HWymW/3YB7/98HuXVeswbEdZuCniCIGBzfce3OUNC/7I4RLfn7Z/O4EhGMezlNvjPUzE3bbwS4++Er6f0xtHLxVj2Szp+v3AN3x7JxPfHsvBoT19M7NcZeWU1SMkuQ8rVMqRklyG7tPqG1wp0tUOkjxruKjm+OngF+9KvYeiHe/HWqHDEd/NuN3+nRC1RUqXDx7+mAwD+OTQUdnK+RSOyZv+4PwQ7UvOQca0Kr29JxYGLRQCAqXGBuMfLwcLREZnP8AhP9OzshFc2peDn0/n44Xj2X55rL7eBs50MznYyuNRvne1l8FDZ4qFuXu2u83Jbk9tI8MEj0Yj/ZD9+qp8+O+IumT5bptHj718ewfHMUiikEqycEIOBoW6WDsuq8J0h0S1c35RibA8fvDkqHPbt+IOVSCTCP4d1gVohxb+2n8XKvZdQXqPHO/HW372noLwG8zel4JezBQCA45kl+H5av7tyWPmdtD4pE18dvAIA+HBcNwS7q5r1vJ6dnbH26d44klGMZb+k4cDFInxzOBPf1K9Zcb1AVztEeKsR6a1GpI8a4V4OUNn+USQcF+uH/92QjOSsUsxZn4xdp/PxTnwEu3BRh/Px7nSU19QizFOFh2N8LR0OEd2CrVSCRWMi8dhnh7D5pHEplUBXO8y6L8TCkRGZn6u9HJ+Oj8GuM/lIuVoGR6UUrvbyPwp19jI4KWWwld69TSfMJdJHjefigrD8N2P32d53wfTZgvIaPLX6CM7lVcDB1gZf/L2X2ZqkdCTtt/pAdIfdqCnFwtGReDDay9Khmc0zAwPhoLDByz+k4NsjWSivqcWHj3aDzMb6hrILgoAfT+XitS2pKNXoIZOI4aCwwaXCKvz9yySse7o3R6qYybErJXh1cyoAYO6QUAy5p+WdiXsFOGPdM31w6FIRPkxIw5HLxejsYizURXmrEeGtRri3Axxsb97gJdjdHhun9cWKPRfx0a/p2JGah6TLxVg0JqpVcRFZo0uFlfi6vlj+6t/usfovUYjIqE+gCx7v5Ydvjxi/oFo0JpLFC+qwRCIRhoV7Yli4p6VD6fBm3R+MXWfykJZfiTe2nsbHj3e3dEh3TGaRBuNXHUZmsXHZkK+n9EKYJ0cv3wg/6ZLVMxgEaPR1UEolELfRB5qyaj0WbE7F1jZoSmFp42L9oLKV4vnvTmDbqVxU1tTi0/ExUMis581nUaUWC7akYntKHgAg3MsBSx/tBolYhEc+PYDkrFI8981xrJrYE1KuoXFb8spqMG3tMejrBAwP98TMwcG3db0+gS5YP7Uv6gxCqwsSNhIxZt0fgsFh7pj735NIy6/EM18dxSMxPnjtwXsajdSj23Mmpxz7L1zDo7G+N50mTeajqzXgrZ/OoNYgYHAXNwwIcbV0SETUAi+PDEOpRoduvo7oHcgF+Ino9jVMnx39yQFsTc7ByMhOpsY4N6KvMyCntBpZxdW4WqJBVokGWcXVKKvWQywCxCIRRCIRxCJAIhbVP77uvsh4X2ojQhdPB3TzcURYJ9Ud/Wx1Pq8CE1YdRkGFFn7OSqyd0ht+Lh3v87a5sHhHbUqjq0VRpQ5l1XqUaHQo0ehRVr8t1ehRqtGhtP5YmaZ+W62HQQDEIsBRKWu0joLTn9dTsJPBxU4OJzupaduaduaWakphSSMjO8FOboOpXx9FYlohJqw6jFWTYq3iw/vO1Dy8sikFRVU62IhFmHlfMGYMDjb9Q7J6Uiye+M9h7E0rxAsbkrH00W5tVuTtaGr0dZi69hgKK7To4qHCkkejzfa7NEf+RHirsXXmAHyYkIbP9l3ChmNXceBiET54JLrFa0EaDALO5VXg0KUiHLxUhAsFlZg+KAiP9Lw7pyvW6Ovw0a/p+GzvJdQZBPyUkou1U3qxMHqHXSioxPPfncDpnHJIxCLMH9nV0iERUQs52EqxYnyMpcMgog4mysfR1Bjn1c2pCHC1Q6lGh6ySamQVa3C1pBpZJRpcLdYgr7wGhpv3C2kVmY0YEV4OiPZ1RLf6m5+zstXrT+tqDcgurUZmsQaXr1VhaUIayqr16OKhwtdTesHdwdbMr6BjYfGObouuDsgprUaZtgpFVToUVepQVKlFcZUO1yrrW4U37K/SokZvaPXPMgiobz+ua/ZzpJI/fcsgavotg1gsMn0bYXwMZJdUW7QphaXEhbph7ZTe+PuXSTh6pQSPf3YIayb3anFHW3Mp1ejwxtbTpnVkGopJ17en7+7nhBXje+DpNUex+WQOXOzlePVvXdnUoIUEQcCrm1ORnFUKtUKKz56KscppyLZSCV4e2RX3d/XA/244iaziajz+n0OY3D8ALw7v8pfTlQwGAWkFFTh4sQiHLhXhcEYxSjX6Rue88P0pXCisxEvDwu6qAvCRjGLM23gKl65VATC+UUvOKsXkL5OwZnIvKGXW93fQ3gmCgHVHMvH2T2dQozfASSnF+w9HI8SjeWtLEhERUcf3/AMhSDiTj/SCSgxbtvem59pKxfBxUsLHSQFfJyV8nRVwtpPDIAgQBAEGATAIAgyGP+7XGQQIDfvrt1XaWqTmlCM5qxRl1XoczyzF8fq13wHASSk1FfOifR3RzccRTvVr8hkMAgoqtPUj/zTILDaOAGx4nFdeA+G6ImN3P0d8MSkWjsqOva6fOfAdObXKoUtFmPJlEqp0NsCRfS16rsxGDCelFE5KGdQK49ZRKYVj/dap4b5CCic741ZlK0WFVm8s3lXqUFTfkryhPfmfbw3H6gxCfcvyln8N0RGaUrRGz87OWP9sXzy1+jDO5JZj7IoDeG5QEB6M9mrT38Xuc/mYtzEFBRVaiEXAtLggPP9AyF+OpBzUxR3vPxKFOeuTser3DLip5JgWF9Rm8XYEXx64jO+PXYVYBPz7iR7wd7GzdEg31SvAGTueH4h/bTuLb49kYvX+DCSmFWDpo90Q7esIg0FAekGlcWTdxSIczihCyXXFOqVMgtjOzugT6IJSjQ4r917CysRLyCiswrLHunX4olVFjR6Ld57D2kPGtZrcVXK8HR8Bb0cFHv/PISRdLsEzXx3FqomxXMPJjIqrdHhp4ykknMkHANwb4ooPHomGB79tJiIioj+R20iw5NFoPPbZIehqDfCuL8z5OCng69x462YvN+vgBUEQcLlIg5NZJUjOKsOJrFKczSlHiUaPPecLsed8oelcfxclJGIRrpZUQ1d788E6CqkEvs7G1xHu5YBpg4I6/Htuc+FviVrFXm6DKl0dAOPoNhc7OVzsjVNXGzoPudjL4Gr3x/2Gc5QySav+x6KQSeCuat6HG4NBQHmNHjV6A+rqv2EQBBjv13/7UGdo+o1DnSBArZAiyM2+xfF1FPd4OWDDtH4Y/7lx4dCXf0jB2z+dwYNRXhjXyxfdfR3v2Ki28ho93v7xDDYcuwoACHSzw5JHops1+nF0dx8UVerwzrazeHfHObjYye7aKZAtdeDiNbyz7SwAYP7Iru1mzS17uQ0WjYnE0Hs88NLGU7hYWIUxKw6gf7ArUrPLmozSVUgl6NnZCX2DXNAn0AWR3upG63h07eSAF78/hV1n8vHIpwexamIsPNUds6Cy+1w+XtmUityyGgDAY7G+eHlkV9NU+TWTe2HC54ex/0IRnlt7DCsn9LTKRjbtzb70Qsz9bzIKK7SQScR4cXgXTO4fcFeN9CQiIqLmi/JxxMnXhkIiFrXpMk4ikQgBrnYIcLXD6O4+AABtbR3O5lYgOasUJ7NKkZxVikvXqnClSGN6nkQsQie1LfyclaYRgL7OSuPNSQlXexlnSLUSi3fUKiEe9vhl9gAc3b8HYx4cAZnMuoa5isUiDr29DQGudtj2jwH479EsfJeUhUuFVVh/NAvrj2Yh1MMe42L9MKa7t2mItDnsSy/ES9+fQk5ZDUQiYEr/APxz2F9Pg7yRp+8NRGGlFisTL2HeDylwUsrwADuS3lRWsQYzvjmOOoOA0d29MWVAgKVDarHBYe74efZALNiSip9O5WJvmvGbQFup2DSyrk+gM6J8HG+66G58d2/4OCkw9etjOJ1TjlH//h2fPxWLSB/1Xz7nThEEAXnlNTibW46zuRW4fK0KIR72iAt1R6iHfavf9BRVavHWT2ewpX46up+zEu+OiUS/4MYF2x5+Tlg9KRYTvziC384XYta3x7H8iR5sCNNK2to6vL/zPD7/PQOAsYvyR491Q7hX2/9tERERUftiLV+gym0kprXvJtbvK9PokZJdBpHI+L7SU23L94t3CIt31CpyGwn8XZQ4bQNWzjsoR6UMzw4MwjP3BiLpcgm+S8rE9pRcpOVX4u2fzmDxjnMYFuGJx2J90TfQpUUjR/R1Blwp0uBiYSUuFlYi5WoZdqQaO8n6uyjx/sPR6BXg3Kq45w0Pw7UKHTYev4oZ645j3TO9EePfumt1dBpdLZ79+hhKNHpE+aixaExku81nJzsZlj/RA2NjCpCeX4Eefk6I8nFs8Zudnp2dsXlGf0z+MgnpBZV4dOVBfDiu2007fN2ual0d0vIrcC7PWKg7m1uOc3kVKKvWNzl34fZz8HSwRVyoG+K6uKF/sGuzGssIgoCtyTl488czKK7SQSwyFrvnPBD6l52lewe64POnYjF5TRJ+Pp2Puf9NxrJx3Tp08547IT2/Av/47iTO5pYDACb08cf8kV2tqqM3ERERUWuoldJ2M2unvWPxjohuSiQSoVeAM3oFOOP1B8OxNTkH65MykZpdjh+Tc/Bjcg58nRUY19MXD8f4NppmWF6jx6XCKlwoMBbpLtZvrxRpUHuDlkhP9fXHvBFht7XugUgkwrtjI1Gi0WH3uQJM/vIoNkzri1AuBN+IIAh48ftTOJtbDld7GT4dH9Mh1jUb3MUdg7u439Y1fJ2V2Di9H2auO4G9aYWYtvYYXhoehmlxgbdd3CzT6HHkcjHO1RfozuaV4/K1qht2CJOIRQhys0OYpwM6uyhxKrsMBy8WIa+8xjQSViIWobuvo6mYF+GlblJIzymtxqubU7H7XAEAIMxThcVjoxDt63jLeAeEuOLT8T0w9etj+DE5BzKJGO8/HMVpns0gCALWHrqCd7adhbbWAGc7Gd5/OAr3d+VoYCIiIiJqGRbviKjZ1AopJvTxx4Q+/kjNLsN3SZnYciIHWcXV+GBXGpYmpGFAiBtq6wy4UFCJggrtX15LKZMgyM0ewe72CHKzQ/9gV7N19pVKxPj3Ez3w5OeHcDyzFE+tOoKN0/vB21Fhluu3Z4IgYE9aIZb9ko7krFJIJSKsGB8DL/5uGnGwlWL1xJ5466cz+OrgFSzeeQ6XCivxr9GRLR7NV6WtxS9n8/Fjcg4S0wrrG+k05mInQ9dODgjzVBm3nVQIdrdv0qSlRl+HIxnFSEwrRGJaIS4UVOLolRIcvVKCJQlpcLaTYWCIq2lU3s+n87F4xzlUamshk4gx675gTI0LatFruC/MA//3eHfMWHcCG49fha1UjHfiI9rtKM22cK1Si5e+P4Vf6wumA0Pd8MEjUc1et5WIiIiI6M9YvCOiVonwVuMd70i8MvIebE/JxfqkLBy5XGxab6yBu0peX6AzFumC3I0FO08H2zv64V8hk2D1pFg8/OlBXCioxIRVh/H9tH5wNuM6fe2JIAjYm34NHyak4WRWKQDjmnD/io9EbGdOK74RG4kYb42KQJCbPd788TQ2HLuKK8UarBwfc8v1HrW1dUg8X4ityTn49WwBqvV1pmNBbnaI9nFEWCcVwjwd0LWTA9xU8mbFZCuVYGCoGwaGumEBgKslGuxNu4bEtALsv1CE4iodNp/Mweb6Ne0axPg7YfHYSAS7t24E6vCITlj6qAGz15/EN4czIbeRYMH/dLXaAl6dQcCVoiqcz6vAubwKnMstQ3auGL9UnYJKIYNKbgO7+tsf9yVQ2dbfl9lAZWsDW6mkcbOj+kZHDQ2OGpodGQRjoySDIOB8XgXmb0rFtUpjU4p5I8IwqV9njlYkIiIiolZj8Y6IbotCJsHYGB+MjfHBhYJK/HauAE52MgS72yPQzQ4Otrdej+tOcVTK8NXkXhi74gAuFVZh8pdJWPdM77uqHbkgCNiXfg3LfknD8cxSAMai3YQ+/nh2YFCzi0Z3s4n9OsPPRYlZ607gSEYx4j/Zj9WTYpt0pa4zCDh4sQhbk7OxMzUP5TW1pmP+Lko8FO2Fh6K9EGLGKdw+Tko80dsPT/T2g77OgONXSkyj8k7nlEMpk+Cl4WGY0Mf/totHo7p5Q1trwIvfn8Lq/RmwlYrxwrAuFi/gFVZo64t0xqnI5/MqkF5QgRq94bozxUgtyWuzuEI97PHRY93RtZNDm/1MIiIiIuqY7p5PsER0xwXXj6qzJl6OCnw9pRce/vQgTmaV4rm1x/H5xJ4dvguSIAjYf6EIH/6ShmNXSgAAchsxxvfxx9S4QE7fa6HBXdyx8bl+mPxlEq4UaTD63/uxYnwM+gW54HhmCbaezMG2lDxcq/xjqriHgxz/E2Us2EX5qO94kUsqEaN3oAt6B7rgxeFhKK7SQSGVmLUxwqM9faGtNWDB5lR8sucibKUS/OP+ELNd/3p1BgGlGh1Kq/Uo1ehQUqVHYaUWafnGIt35vAoUVelu+Fy5jRihHip08VQhxE2JjLSzCOxyDzR6A6q0tajU1qFSW1t/vxaVNbWo0hkfV9TUQlt7ffGvMZEIEItEEJu2xvtSGzFGd/fGS8PDOsQ6kkRERERkeSzeEVGHF+yuwqqJsXjy80NITCtE3Hu/obufEyJ91IjyViPcW92sjp3tgSAIOHCxCMt+SUPSZWPRTmYjxpO9/fBcXBDcHVi0a60unipsntEfz359FCcySzFx9RF4ONgiu7TadI6jUoqRkZ3wYJQXegU4W7Qz652aIj6hjz+0+jq8s+0sliakQW4jxtS4oGY/v7xGj6xiDa6WVCO/vAYlVXqUVutQqtGjRKNDiaahUKdrNHrxr4hEQGcXO3SpL9SFeRq3/i52pt+/Xq/H9rIzGNnPH1Jp83JdX2eAttZgKs6JRICkvkgnErHTOhERERG1HRbviOiuEOPvhBVPxmDGuuPIKatBTkoutqXkmo4HuNoh0luNKB81onwcEe7lADt5+/pf5IGL17Dsl3QcySgGYCzaPdHLD88NCoIHi3Zm4aaS49tn+uDF709ha3IOskurYSeTYGi4Jx6K9sKAENcOP6oTAJ6+NxDaWgPe//k8Fu04B7mNGJP6BwAwNui4WlKNqyUaU5Euq6R+W6xpVkHueipbGzgqpXBSyuCklCHIzd5UpAvxsL8jU+GlEvFd8d+SiIiIiKxf+/pkSkR0GwaHuePQ/PuRcrUMp66WISW7FKeuluFqSTUyrlUh41oVtiYbF/oXiYBgN3vT6LxgdxUclVI42ErhoLCBylZq1lFVgiBAW2tAaZUOxVrgclEV6iCGrtY4+kerN0BXV1e/NT7W1hmg1ddBV2dA4vlCHG4o2knEeLyXL54bFAxPNYt25mYrleCjx7rh/q7ukErEGNzF3axTU9uLGYODUaOvw//tvoA3fjyD749fRU5pDYr/Yhrrn7nYyeDjpICn2hbOdjI4KmVwVBiLc45KKZzsZHBSSuGolEGtkLKIRkRERER3NRbviOiu4mArRf9gV/QPdjXtK67SISW7DClXS+uLemXILatBekEl0gsq8cPx7BteSyW3gYNCCpWtcatW/FHcc7CVwl5ug2p9nWkdrSptnXGrM663pfnTelsaXR1qDUL9lW2A4/tb/NpkEjEe6+WL5wYFoZNa0ZpfDzWTSCTCqG7elg7D4uYOCUWNvg7/2ZeB1Oxy0361QgofJwV8nZTGrfMfW29HRbsb1UpEREREZEl899wCn3zyCd5//33k5uYiPDwcy5Ytw7333mvpsIjoNjnbyRAX6oa4UDfTvoKKGqRmG0fonbpaVj/dT4/y6lpU6+sAABXaWlRoWz4F8FZsRAJsZVLYSsWQScSQSyWQ24ghsxH/aSupP2Y8x91Bjid7+8PLkUU7ajsikQjzR3bFfWEeKK/Rw8dJAR8nZYdZQ5KIiIiIyBqweNdM69evx+zZs/HJJ5+gf//+WLlyJUaMGIEzZ87Az8/P0uERkZm5q2xxX5gt7gvzaHJMV2tARY0eZdV6lNfUory64b6xuFdef6xKWwuFVAI7uQ3s5Dawl0uglNnAvv6xnVwCO1nDMRso5RLIRAJ+3rkDI0cOa/bC+kSWJBKJ0DfIxdJhEBERERF1WCzeNdPSpUsxZcoUPP300wCAZcuW4eeff8aKFSuwaNEiC0dHRG1JZiOGi70cLvZys19br9eb/ZpERERERETUfrF41ww6nQ7Hjh3DvHnzGu0fOnQoDhw4cMPnaLVaaLVa0+PycuNaQHq9vsN8OG94HR3l9RBZA+YVkfkxr4jMj3lFZH7MKyLzs+a8aklMLN41w7Vr11BXVwcPj8bT5zw8PJCXl3fD5yxatAhvvvlmk/27du2CUqm8I3FaSkJCgqVDIOpwmFdE5se8IjI/5hWR+TGviMzPGvNKo9E0+1wW71pAJBI1eiwIQpN9DV5++WXMnTvX9Li8vBy+vr4YOnQoHBwc7micbUWv1yMhIQFDhgzh2lxEZsK8IjI/5hWR+TGviMyPeUVkftacVw0zNJuDxbtmcHV1hUQiaTLKrqCgoMlovAZyuRxyedP1sKRSqdX9wdyujviaiCyNeUVkfswrIvNjXhGZH/OKyPysMa9aEo/4DsbRYchkMsTExDQZZpmQkIB+/fpZKCoiIiIiIiIiIuroOPKumebOnYsJEyagZ8+e6Nu3Lz777DNkZmZi2rRplg6NiIiIiIiIiIg6KBbvmmncuHEoKirCW2+9hdzcXERERGD79u3w9/e3dGhERERERERERNRBsXjXAtOnT8f06dNb9VxBEAC0bEFCa6fX66HRaFBeXm51c8eJ2ivmFZH5Ma+IzI95RWR+zCsi87PmvGqoDzXUi26Gxbs2UlFRAQDw9fW1cCRERERERERERGQNKioqoFarb3qOSGhOiY9um8FgQE5ODlQqFUQikaXDMYvy8nL4+voiKysLDg4Olg6HqENgXhGZH/OKyPyYV0Tmx7wiMj9rzitBEFBRUQEvLy+IxTfvJ8uRd21ELBbDx8fH0mHcEQ4ODlaXBETtHfOKyPyYV0Tmx7wiMj/mFZH5WWte3WrEXYObl/aIiIiIiIiIiIjIYli8IyIiIiIiIiIislIs3lGryeVyvP7665DL5ZYOhajDYF4RmR/zisj8mFdE5se8IjK/jpJXbFhBRERERERERERkpTjyjoiIiIiIiIiIyEqxeEdERERERERERGSlWLwjIiIiIiIiIiKyUizeERERERERERERWSkW74iIiIiIiIiIiKwUi3d0S3v37sWDDz4ILy8viEQibN68udHxSZMmQSQSNbr16dPHMsEStRO3yisAOHv2LB566CGo1WqoVCr06dMHmZmZbR8sUTtxq7y6/t+qhtv7779vmYCJ2oFb5VVlZSVmzpwJHx8fKBQKdO3aFStWrLBMsETtxK3yKj8/H5MmTYKXlxeUSiWGDx+O9PR0ywRL1A4sWrQIsbGxUKlUcHd3R3x8PM6fP9/oHEEQ8MYbb8DLywsKhQKDBg3C6dOnLRRxy7F4R7dUVVWF6OhoLF++/C/PGT58OHJzc0237du3t2GERO3PrfLq4sWLGDBgAMLCwrBnzx4kJydjwYIFsLW1beNIidqPW+XVn/+dys3NxerVqyESiTB27Ng2jpSo/bhVXs2ZMwc7d+7E2rVrcfbsWcyZMwezZs3Cli1b2jhSovbjZnklCALi4+Nx6dIlbNmyBSdOnIC/vz8eeOABVFVVWSBaIuuXmJiIGTNm4NChQ0hISEBtbS2GDh3aKGfee+89LF26FMuXL0dSUhI8PT0xZMgQVFRUWDDy5hMJgiBYOghqP0QiETZt2oT4+HjTvkmTJqG0tPSGI4eI6NZulFePPfYYpFIpvv76a8sFRtSO3SivrhcfH4+Kigr8+uuvbRcYUTt2o7yKiIjAuHHjsGDBAtO+mJgYjBw5Em+//bYFoiRqX67Pq7S0NHTp0gWpqakIDw8HANTV1cHd3R2LFy/G008/bcFoidqHwsJCuLu7IzExEQMHDoQgCPDy8sLs2bPx0ksvAQC0Wi08PDywePFiTJ061cIR3xpH3pFZ7NmzB+7u7ggNDcUzzzyDgoICS4dE1G4ZDAZs27YNoaGhGDZsGNzd3dG7d28WyInMKD8/H9u2bcOUKVMsHQpRuzZgwABs3boV2dnZEAQBv/32G9LS0jBs2DBLh0bULmm1WgBoNNtCIpFAJpPh999/t1RYRO1KWVkZAMDZ2RkAkJGRgby8PAwdOtR0jlwuR1xcHA4cOGCRGFuKxTu6bSNGjMA333yD3bt3Y8mSJUhKSsJ9991n+oeHiFqmoKAAlZWVePfddzF8+HDs2rULo0ePxpgxY5CYmGjp8Ig6hDVr1kClUmHMmDGWDoWoXfv4449xzz33wMfHBzKZDMOHD8cnn3yCAQMGWDo0onYpLCwM/v7+ePnll1FSUgKdTod3330XeXl5yM3NtXR4RFZPEATMnTsXAwYMQEREBAAgLy8PAODh4dHoXA8PD9Mxa2dj6QCo/Rs3bpzpfkREBHr27Al/f39s27aNH4qIWsFgMAAARo0ahTlz5gAAunXrhgMHDuDTTz9FXFycJcMj6hBWr16NJ598kutIEt2mjz/+GIcOHcLWrVvh7++PvXv3Yvr06ejUqRMeeOABS4dH1O5IpVJs3LgRU6ZMgbOzMyQSCR544AGMGDHC0qERtQszZ87EqVOnbjhSVSQSNXosCEKTfdaKxTsyu06dOsHf358dkYhaydXVFTY2Nrjnnnsa7e/atSunSxCZwb59+3D+/HmsX7/e0qEQtWvV1dWYP38+Nm3ahL/97W8AgKioKJw8eRIffPABi3dErRQTE4OTJ0+irKwMOp0Obm5u6N27N3r27Gnp0Iis2qxZs7B161bs3bsXPj4+pv2enp4AjCPwOnXqZNpfUFDQZDSeteK0WTK7oqIiZGVlNUoKImo+mUyG2NjYJu3N09LS4O/vb6GoiDqOVatWISYmBtHR0ZYOhahd0+v10Ov1EIsbf6SQSCSmUeRE1HpqtRpubm5IT0/H0aNHMWrUKEuHRGSVBEHAzJkz8cMPP2D37t0ICAhodDwgIACenp5ISEgw7dPpdEhMTES/fv3aOtxW4cg7uqXKykpcuHDB9DgjIwMnT56Es7MznJ2d8cYbb2Ds2LHo1KkTLl++jPnz58PV1RWjR4+2YNRE1u1meeXn54cXXngB48aNw8CBAzF48GDs3LkTP/74I/bs2WO5oIms3K3yCgDKy8uxYcMGLFmyxFJhErUrt8qruLg4vPDCC1AoFPD390diYiK++uorLF261IJRE1m3W+XVhg0b4ObmBj8/P6SkpOD5559HfHx8o8X2iegPM2bMwLp167BlyxaoVCrTOnZqtRoKhQIikQizZ8/GwoULERISgpCQECxcuBBKpRJPPPGEhaNvJoHoFn777TcBQJPbxIkTBY1GIwwdOlRwc3MTpFKp4OfnJ0ycOFHIzMy0dNhEVu1medVg1apVQnBwsGBraytER0cLmzdvtlzARO1Ac/Jq5cqVgkKhEEpLSy0XKFE7cqu8ys3NFSZNmiR4eXkJtra2QpcuXYQlS5YIBoPBsoETWbFb5dVHH30k+Pj4mD5fvfrqq4JWq7Vs0ERW7Eb5BED44osvTOcYDAbh9ddfFzw9PQW5XC4MHDhQSElJsVzQLSQSBEFogxohERERERERERERtRDXvCMiIiIiIiIiIrJSLN4RERERERERERFZKRbviIiIiIiIiIiIrBSLd0RERERERERERFaKxTsiIiIiIiIiIiIrxeIdERERERERERGRlWLxjoiIiIiIiIiIyEqxeEdERERERERERG1q0aJFiI2NhUqlgru7O+Lj43H+/PlG5wiCgDfeeANeXl5QKBQYNGgQTp8+3eiczz77DIMGDYKDgwNEIhFKS0ub/KzOnTtDJBI1us2bN++m8e3ZswcikQhOTk6oqalpdOzIkSOm67QFFu+IiIiIiIiIiKhNJSYmYsaMGTh06BASEhJQW1uLoUOHoqqqynTOe++9h6VLl2L58uVISkqCp6cnhgwZgoqKCtM5Go0Gw4cPx/z582/689566y3k5uaabq+++mqz4lSpVNi0aVOjfatXr4afn18LXu2N6XS6Zp3H4h0REREREREREbWpnTt3YtKkSQgPD0d0dDS++OILZGZm4tixYwCMo+6WLVuGV155BWPGjEFERATWrFkDjUaDdevWma4ze/ZszJs3D3369Lnpz1OpVPD09DTd7O3tmxXnxIkTsXr1atPj6upqfPfdd5g4cWKj84qKivD444/Dx8cHSqUSkZGR+PbbbxudM2jQIMycORNz586Fq6srhgwZ0qwYWLwjIiIiIiIiIiKLKisrAwA4OzsDADIyMpCXl4ehQ4eazpHL5YiLi8OBAwdafP3FixfDxcUF3bp1w7/+9a9mj3qbMGEC9u3bh8zMTADAxo0b0blzZ/To0aPReTU1NYiJicFPP/2E1NRUPPvss5gwYQIOHz7c6Lw1a9bAxsYG+/fvx8qVK5sVg02zziIiIiIiIiIiIroDBEHA3LlzMWDAAERERAAA8vLyAAAeHh6NzvXw8MCVK1dadP3nn38ePXr0gJOTE44cOYKXX34ZGRkZ+Pzzz2/5XHd3d4wYMQJffvklXnvtNaxevRqTJ09ucp63tzf++c9/mh7PmjULO3fuxIYNG9C7d2/T/uDgYLz33nstip/FOyIiIiIiIiIispiZM2fi1KlT+P3335scu74phCAILW4UMWfOHNP9qKgoODk54eGHHzaNxgsPDzcVBO+9917s2LGj0fMnT56M559/HuPHj8fBgwexYcMG7Nu3r9E5dXV1ePfdd7F+/XpkZ2dDq9VCq9XCzs6u0Xk9e/ZsUewAi3dERERERERERGQhs2bNwtatW7F37174+PiY9nt6egIwjsDr1KmTaX9BQUGT0Xgt1bA+3oULF+Di4oLt27dDr9cDABQKRZPzR44cialTp2LKlCl48MEH4eLi0uScJUuW4MMPP8SyZcsQGRkJOzs7zJ49u8n03OuLec3BNe+IiIiIiIiIiKhNCYKAmTNn4ocffsDu3bsREBDQ6HhAQAA8PT2RkJBg2qfT6ZCYmIh+/frd1s8+ceIEAJiKgv7+/ggODkZwcDC8vb2bnC+RSDBhwgTs2bPnhlNmAWDfvn0YNWoUxo8fj+joaAQGBiI9Pf224mzAkXdERERERERERNSmZsyYgXXr1mHLli1QqVSmNe7UajUUCgVEIhFmz56NhQsXIiQkBCEhIVi4cCGUSiWeeOIJ03Xy8vKQl5eHCxcuAABSUlKgUqng5+cHZ2dnHDx4EIcOHcLgwYOhVquRlJSEOXPm4KGHHoKfn1+z43377bfxwgsv3HDUHWBcy27jxo04cOAAnJycsHTpUuTl5aFr16638VsyYvGOiIiIiIiIiIja1IoVKwAAgwYNarT/iy++wKRJkwAAL774IqqrqzF9+nSUlJSgd+/e2LVrF1Qqlen8Tz/9FG+++abp8cCBAxtdRy6XY/369XjzzTeh1Wrh7++PZ555Bi+++GKL4pXJZHB1df3L4wsWLEBGRgaGDRsGpVKJZ599FvHx8aYuurdDJAiCcNtXISIiIiIiIiIiIrPjmndERERERERERERWisU7IiIiIiIiIiIiK8XiHRERERERERERkZVi8Y6IiIiIiIiIiMhKsXhHRERERERERERkpVi8IyIiIiIiIiIislIs3hEREREREREREVkpFu+IiIiIiIiIiIisFIt3REREREREREREVorFOyIiIiIiIiIiIivF4h0REREREREREZGV+n8HW7qPiWNQkAAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1500x300 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def plot_Swarm_ground_disturbance(ds_AEJ_disturbances):\n",
    "    fig, ax = plt.subplots(figsize=(15, 3))\n",
    "    ds_resample = ds_AEJ_disturbances.resample({'Timestamp':'90Min'}).max()\n",
    "    ds_resample[\"B_Total\"].plot.line(x=\"Timestamp\", ax=ax)\n",
    "    fig.suptitle(\"Peak ground disturbance estimated from Swarm Alpha\")\n",
    "    ax.set_ylabel(\"Magnetic disturbance\\n[nT]\")\n",
    "    ax.set_xlabel(\"\")\n",
    "    ax.grid()\n",
    "    return fig, ax\n",
    "\n",
    "fig_Sw_ground, ax_Sw_ground = plot_Swarm_ground_disturbance(ds_AEJ_disturbances)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6de61f73",
   "metadata": {},
   "source": [
    "## Ground observatory data (INTERMAGNET)\n",
    "\n",
    "> We acknowledge usage of INTERMAGNET data  \n",
    "> See <https://intermagnet.github.io/data_conditions.html> for more\n",
    "\n",
    "As well as access to Swarm data, VirES also provides access to ground observatory data from INTERMAGNET. We can fetch data from the minute resolution dataset (`SW_OPER_AUX_OBSM2_`), specifying desired observatories according to their [3-letter IAGA codes](https://www.intermagnet.org/imos/imomap-eng.php). These data have been rotated from the geodetic reference frame to the geocentric frame (NEC).\n",
    "\n",
    "We'll select three observatories in Sweden: Abisko (ABK), Lycksele (LYC) and Uppsala (UPS), which form a chain across about 10 degrees of latitude along a similar longitude."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "f07cc6f8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:38.526074Z",
     "iopub.status.busy": "2025-06-21T21:48:38.525708Z",
     "iopub.status.idle": "2025-06-21T21:48:40.753880Z",
     "shell.execute_reply": "2025-06-21T21:48:40.753268Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body[data-theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block !important;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-index-preview {\n",
       "  grid-column: 2 / 5;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data,\n",
       ".xr-index-data-in:checked ~ .xr-index-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-index-name div,\n",
       ".xr-index-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2,\n",
       ".xr-no-icon {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:    (Timestamp: 7200, IAGA_code: 3, NEC: 3)\n",
       "Coordinates:\n",
       "  * Timestamp  (Timestamp) datetime64[ns] 2015-03-15 ... 2015-03-19T23:59:00\n",
       "    Latitude   (IAGA_code) float64 68.23 64.46 59.74\n",
       "    Longitude  (IAGA_code) float64 18.82 18.75 17.35\n",
       "    Radius     (IAGA_code) float64 6.36e+06 6.361e+06 6.362e+06\n",
       "  * NEC        (NEC) &lt;U1 &#x27;N&#x27; &#x27;E&#x27; &#x27;C&#x27;\n",
       "  * IAGA_code  (IAGA_code) &lt;U3 &#x27;ABK&#x27; &#x27;LYC&#x27; &#x27;UPS&#x27;\n",
       "Data variables:\n",
       "    B_NEC      (IAGA_code, Timestamp, NEC) float64 1.102e+04 ... 4.907e+04\n",
       "Attributes:\n",
       "    Sources:         [&#x27;SW_OPER_AUX_OBSM2__20150315T000000_20150315T235959_010...\n",
       "    MagneticModels:  []\n",
       "    AppliedFilters:  []</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-6aa6bc9e-dfc1-4abb-ad58-167a1e5f28c3' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-6aa6bc9e-dfc1-4abb-ad58-167a1e5f28c3' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>Timestamp</span>: 7200</li><li><span class='xr-has-index'>IAGA_code</span>: 3</li><li><span class='xr-has-index'>NEC</span>: 3</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-269da2ed-1554-4f5f-8ab0-5e1c3d72285a' class='xr-section-summary-in' type='checkbox'  checked><label for='section-269da2ed-1554-4f5f-8ab0-5e1c3d72285a' class='xr-section-summary' >Coordinates: <span>(6)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>Timestamp</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2015-03-15 ... 2015-03-19T23:59:00</div><input id='attrs-d699415c-7bb2-4501-b03e-13a2aff7a336' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d699415c-7bb2-4501-b03e-13a2aff7a336' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-77dbe0aa-3048-4ca0-9966-555c565bfa3e' class='xr-var-data-in' type='checkbox'><label for='data-77dbe0aa-3048-4ca0-9966-555c565bfa3e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>description :</span></dt><dd>Date and time</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;2015-03-15T00:00:00.000000000&#x27;, &#x27;2015-03-15T00:01:00.000000000&#x27;,\n",
       "       &#x27;2015-03-15T00:02:00.000000000&#x27;, ..., &#x27;2015-03-19T23:57:00.000000000&#x27;,\n",
       "       &#x27;2015-03-19T23:58:00.000000000&#x27;, &#x27;2015-03-19T23:59:00.000000000&#x27;],\n",
       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Latitude</span></div><div class='xr-var-dims'>(IAGA_code)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>68.23 64.46 59.74</div><input id='attrs-8bad1f97-b4e9-4b0c-b28d-89e391514159' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8bad1f97-b4e9-4b0c-b28d-89e391514159' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-55dbf195-87e6-41a3-b2d5-0394472123d2' class='xr-var-data-in' type='checkbox'><label for='data-55dbf195-87e6-41a3-b2d5-0394472123d2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>deg</dd><dt><span>description :</span></dt><dd>Geocentric latitude</dd></dl></div><div class='xr-var-data'><pre>array([68.2257541 , 64.46262031, 59.7357513 ])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Longitude</span></div><div class='xr-var-dims'>(IAGA_code)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>18.82 18.75 17.35</div><input id='attrs-11d15baf-94ce-44de-997f-67f41759e128' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-11d15baf-94ce-44de-997f-67f41759e128' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-18f7ab8f-7cc4-4d03-afec-8026e7784082' class='xr-var-data-in' type='checkbox'><label for='data-18f7ab8f-7cc4-4d03-afec-8026e7784082' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>deg</dd><dt><span>description :</span></dt><dd>Longitude</dd></dl></div><div class='xr-var-data'><pre>array([18.823, 18.748, 17.353])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Radius</span></div><div class='xr-var-dims'>(IAGA_code)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>6.36e+06 6.361e+06 6.362e+06</div><input id='attrs-1fb3fac9-4b84-49be-ac82-fa6f376d6151' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1fb3fac9-4b84-49be-ac82-fa6f376d6151' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1bc8c331-ce5d-462a-800e-e80e749384fe' class='xr-var-data-in' type='checkbox'><label for='data-1bc8c331-ce5d-462a-800e-e80e749384fe' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>m</dd><dt><span>description :</span></dt><dd>Radius</dd></dl></div><div class='xr-var-data'><pre>array([6360061.90983027, 6360980.06949018, 6362213.505813  ])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>NEC</span></div><div class='xr-var-dims'>(NEC)</div><div class='xr-var-dtype'>&lt;U1</div><div class='xr-var-preview xr-preview'>&#x27;N&#x27; &#x27;E&#x27; &#x27;C&#x27;</div><input id='attrs-b5c58f77-23e7-4d58-ba20-43d035eb0a81' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b5c58f77-23e7-4d58-ba20-43d035eb0a81' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-67b03ff3-f82e-4371-9876-49b13d50072b' class='xr-var-data-in' type='checkbox'><label for='data-67b03ff3-f82e-4371-9876-49b13d50072b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd></dd><dt><span>description :</span></dt><dd>NEC frame - North, East, Centre (down)</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;N&#x27;, &#x27;E&#x27;, &#x27;C&#x27;], dtype=&#x27;&lt;U1&#x27;)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>IAGA_code</span></div><div class='xr-var-dims'>(IAGA_code)</div><div class='xr-var-dtype'>&lt;U3</div><div class='xr-var-preview xr-preview'>&#x27;ABK&#x27; &#x27;LYC&#x27; &#x27;UPS&#x27;</div><input id='attrs-81aec0e4-29f8-459f-a2c3-540752b02670' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-81aec0e4-29f8-459f-a2c3-540752b02670' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e3bd555a-1b24-4b40-a986-4fe3cb7d1f6b' class='xr-var-data-in' type='checkbox'><label for='data-e3bd555a-1b24-4b40-a986-4fe3cb7d1f6b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>-</dd><dt><span>description :</span></dt><dd>IAGA three letter observatory identification code associated with datum</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;ABK&#x27;, &#x27;LYC&#x27;, &#x27;UPS&#x27;], dtype=&#x27;&lt;U3&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-399e26d3-18a3-489f-8eee-196fb73c63d5' class='xr-section-summary-in' type='checkbox'  checked><label for='section-399e26d3-18a3-489f-8eee-196fb73c63d5' class='xr-section-summary' >Data variables: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>B_NEC</span></div><div class='xr-var-dims'>(IAGA_code, Timestamp, NEC)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.102e+04 1.665e+03 ... 4.907e+04</div><input id='attrs-0622dcf7-d503-4d8c-a068-a2dd8f36f3bb' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0622dcf7-d503-4d8c-a068-a2dd8f36f3bb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-34d0abf1-344e-4038-b0e0-605739cf555f' class='xr-var-data-in' type='checkbox'><label for='data-34d0abf1-344e-4038-b0e0-605739cf555f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>nT</dd><dt><span>description :</span></dt><dd>Geocentric-north, east, and geocentric-down component of magnetic field.  NaN values are used as placeholders for missing data.</dd></dl></div><div class='xr-var-data'><pre>array([[[11016.75848275,  1665.3       , 51847.66615676],\n",
       "        [11000.4666046 ,  1660.2       , 51844.12854366],\n",
       "        [11010.86680771,  1647.2       , 51844.05254842],\n",
       "        ...,\n",
       "        [10864.50955225,  1680.5       , 51912.0149187 ],\n",
       "        [10861.23079579,  1698.9       , 51902.80732639],\n",
       "        [10855.83704211,  1713.        , 51900.09486971]],\n",
       "\n",
       "       [[12873.51433125,  1559.3       , 50525.93508925],\n",
       "        [12866.61513685,  1557.5       , 50525.61710084],\n",
       "        [12866.1127921 ,  1556.3       , 50526.51579419],\n",
       "        ...,\n",
       "        [12819.26729597,  1570.        , 50467.19345867],\n",
       "        [12821.26624631,  1572.        , 50467.59867164],\n",
       "        [12826.16414392,  1573.5       , 50468.41144402]],\n",
       "\n",
       "       [[15011.42412901,  1450.4       , 49070.92795524],\n",
       "        [15010.52530046,  1450.        , 49070.52532982],\n",
       "        [15009.92559492,  1450.        , 49070.42357882],\n",
       "        ...,\n",
       "        [14973.73217103,  1458.        , 49068.11791908],\n",
       "        [14973.83129489,  1457.7       , 49068.4182097 ],\n",
       "        [14974.9309983 ,  1457.9       , 49068.52142021]]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-6209b0fb-ba91-4a91-8e81-3e76223c0185' class='xr-section-summary-in' type='checkbox'  ><label for='section-6209b0fb-ba91-4a91-8e81-3e76223c0185' class='xr-section-summary' >Indexes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>Timestamp</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-7a9ac547-3b15-41bd-806b-f1a4d6b140d6' class='xr-index-data-in' type='checkbox'/><label for='index-7a9ac547-3b15-41bd-806b-f1a4d6b140d6' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2015-03-15 00:00:00&#x27;, &#x27;2015-03-15 00:01:00&#x27;,\n",
       "               &#x27;2015-03-15 00:02:00&#x27;, &#x27;2015-03-15 00:03:00&#x27;,\n",
       "               &#x27;2015-03-15 00:04:00&#x27;, &#x27;2015-03-15 00:05:00&#x27;,\n",
       "               &#x27;2015-03-15 00:06:00&#x27;, &#x27;2015-03-15 00:07:00&#x27;,\n",
       "               &#x27;2015-03-15 00:08:00&#x27;, &#x27;2015-03-15 00:09:00&#x27;,\n",
       "               ...\n",
       "               &#x27;2015-03-19 23:50:00&#x27;, &#x27;2015-03-19 23:51:00&#x27;,\n",
       "               &#x27;2015-03-19 23:52:00&#x27;, &#x27;2015-03-19 23:53:00&#x27;,\n",
       "               &#x27;2015-03-19 23:54:00&#x27;, &#x27;2015-03-19 23:55:00&#x27;,\n",
       "               &#x27;2015-03-19 23:56:00&#x27;, &#x27;2015-03-19 23:57:00&#x27;,\n",
       "               &#x27;2015-03-19 23:58:00&#x27;, &#x27;2015-03-19 23:59:00&#x27;],\n",
       "              dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;Timestamp&#x27;, length=7200, freq=None))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>NEC</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-c42edc65-7952-43ef-8897-efc69198fbe9' class='xr-index-data-in' type='checkbox'/><label for='index-c42edc65-7952-43ef-8897-efc69198fbe9' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([&#x27;N&#x27;, &#x27;E&#x27;, &#x27;C&#x27;], dtype=&#x27;object&#x27;, name=&#x27;NEC&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>IAGA_code</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-bd0df865-7770-4ed6-9a1f-5813b4cabe3b' class='xr-index-data-in' type='checkbox'/><label for='index-bd0df865-7770-4ed6-9a1f-5813b4cabe3b' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([&#x27;ABK&#x27;, &#x27;LYC&#x27;, &#x27;UPS&#x27;], dtype=&#x27;object&#x27;, name=&#x27;IAGA_code&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-e09ce4cb-a192-413b-b610-663b7f731f19' class='xr-section-summary-in' type='checkbox'  checked><label for='section-e09ce4cb-a192-413b-b610-663b7f731f19' class='xr-section-summary' >Attributes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>Sources :</span></dt><dd>[&#x27;SW_OPER_AUX_OBSM2__20150315T000000_20150315T235959_0108&#x27;, &#x27;SW_OPER_AUX_OBSM2__20150316T000000_20150316T235959_0108&#x27;, &#x27;SW_OPER_AUX_OBSM2__20150317T000000_20150317T235959_0108&#x27;, &#x27;SW_OPER_AUX_OBSM2__20150318T000000_20150318T235959_0108&#x27;, &#x27;SW_OPER_AUX_OBSM2__20150319T000000_20150319T235959_0108&#x27;]</dd><dt><span>MagneticModels :</span></dt><dd>[]</dd><dt><span>AppliedFilters :</span></dt><dd>[]</dd></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:    (Timestamp: 7200, IAGA_code: 3, NEC: 3)\n",
       "Coordinates:\n",
       "  * Timestamp  (Timestamp) datetime64[ns] 2015-03-15 ... 2015-03-19T23:59:00\n",
       "    Latitude   (IAGA_code) float64 68.23 64.46 59.74\n",
       "    Longitude  (IAGA_code) float64 18.82 18.75 17.35\n",
       "    Radius     (IAGA_code) float64 6.36e+06 6.361e+06 6.362e+06\n",
       "  * NEC        (NEC) <U1 'N' 'E' 'C'\n",
       "  * IAGA_code  (IAGA_code) <U3 'ABK' 'LYC' 'UPS'\n",
       "Data variables:\n",
       "    B_NEC      (IAGA_code, Timestamp, NEC) float64 1.102e+04 ... 4.907e+04\n",
       "Attributes:\n",
       "    Sources:         ['SW_OPER_AUX_OBSM2__20150315T000000_20150315T235959_010...\n",
       "    MagneticModels:  []\n",
       "    AppliedFilters:  []"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def fetch_ground_obs(IAGA_codes, start_time, end_time):\n",
    "    request = SwarmRequest()\n",
    "    request.set_collection(*[f\"SW_OPER_AUX_OBSM2_:{c}\" for c in IAGA_codes], verbose=False)\n",
    "    request.set_products(\n",
    "        measurements=[\"B_NEC\", \"IAGA_code\"],\n",
    "    )\n",
    "    data = request.get_between(start_time, end_time, asynchronous=False, show_progress=False)\n",
    "    ds = data.as_xarray(reshape=True)\n",
    "    return ds\n",
    "\n",
    "ds_ground_obs = fetch_ground_obs([\"ABK\", \"LYC\", \"UPS\"], START_TIME, END_TIME)\n",
    "ds_ground_obs"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cb69d536",
   "metadata": {},
   "source": [
    "By specifiying `reshape=True` when loading the xarray object, a multi-dimensional dataset is formed with a new `IAGA_code` axis. Here we show the three vector components from each observatory:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "0137d8c8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:40.756313Z",
     "iopub.status.busy": "2025-06-21T21:48:40.755893Z",
     "iopub.status.idle": "2025-06-21T21:48:42.413644Z",
     "shell.execute_reply": "2025-06-21T21:48:42.413042Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAN6CAYAAAB44JHTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU5f4H8M+wDYswbLIp4I4iiKgpi7kWi4hZ5hI1inXRriW/Uiu1LK1Ic8lKb2VmWkpp1+3mhvtGIiqKigtuICggKPs2DHB+f4xzmDM7CMwMfN+v19w7c84zZ54hOZzveZ7n++UxDMOAEEIIIYQQQgghLcJI1x0ghBBCCCGEEELaMgq8CSGEEEIIIYSQFkSBNyGEEEIIIYQQ0oIo8CaEEEIIIYQQQloQBd6EEEIIIYQQQkgLosCbEEIIIYQQQghpQRR4E0IIIYQQQgghLYgCb0IIIYQQQgghpAVR4E0IIYQQQgghhLQgCrwJeQaZmZng8XhITU3VdVcIIaRV0HmPENKW0TmOtBQKvEmziY6Oxvjx4xW2nzlzBsbGxggLC1P6vpqaGqxYsQIDBgyAlZUVBAIB/Pz88MknnyAnJ6fRx2vPQkJCYGxsjLNnzyrsi46OBo/HYx8ODg4ICwvDlStXOO14PB52797NvhaLxZgyZQpcXV0V2hLS3tF5TzeUXRhv3rwZVlZWuHPnDqdtTk4O7Ozs8N133wEA8vLyMHv2bHTr1g18Ph/u7u6IjIzE0aNHW/MrEGIQ6BynGydOnACPx0NxcbHCvv79+2Px4sXs6y5durDXdpaWlvDx8cG6devY/XV1dVi6dCl69+4NCwsL2NvbIyAgABs3bmyFb0JkUeBNWtyvv/6K2bNnIzExEVlZWZx9IpEIL774Ir766itER0fj1KlTSElJwfLly/HkyROsWbOmUcdrz7KyspCUlIR3330XGzZsUNomLCwMubm5yM3NxdGjR2FiYoKxY8eqPGZlZSXGjRuH8+fPIzExEf369Wup7hPSptB5r/UJhUKEhoZi2rRpqK+vZ7fPmDED/v7+iI2NRWZmJgYOHIhjx45h+fLluHr1KhISEjBy5Ei88847Ouw9IYaFznH65fPPP0dubi6uXLmC8ePH4+2338a2bdsAAIsXL8a3336LL774AtevX8fx48cRExODoqIiHfe6HWIIaSbTpk1jXnrpJc628vJyxtramrl58yYzefJkZsmSJZz9S5cuZYyMjJiLFy8qPWZ9fX2jjqdJWloaM2bMGMba2prp0KEDM3ToUObOnTsMwzBMXV0ds2TJEqZTp06MmZkZ4+fnxxw4cIDz/uTkZKZ///4Mn89nBg4cyOzcuZMBwFy6dIltc+3aNSY8PJyxsrJinJycmDfeeIMpKChoVD+bYvHixcyUKVOYGzduMNbW1kx5eTlnv7L/PqdOnWIAMPn5+ew2AMyuXbuYoqIiJjg4mPH19WVycnJavP+EGCI670m09nkvIyNDoQ8MwzD5+fmMk5MTs2LFCoZhGGbjxo2MjY0Nk5mZyTAMw4SHhzOdOnVSOD8yDMMUFRW1WH8JMVR0jpNo7XPc8ePHGQBKz0t+fn7MZ599xr729PRkVq9ezWnTs2dPZsqUKWz7xYsXt1hfifZoxJu0qG3btsHLywteXl544403sHHjRjAMw+7/888/8eKLL8Lf31/p+3k8XqOOp87Dhw8xbNgwmJub49ixY0hJScGbb76J2tpaAMB3332HVatWYeXKlbhy5QpCQ0Mxbtw43L59GwBQUVGBsWPHwsvLCykpKVi8eDHmzZvH+Yzc3FwMHz4c/fv3x4ULF5CQkIBHjx5h0qRJKvuVlZWFDh06qH28/fbbar8bwzDYuHEj3njjDfTu3Ru9evXCX3/9pfY95eXliI+PR48ePeDg4MDZl5eXh+HDh6O+vh4nT56Eq6ur2mMRQhrQea91znvKdOzYEevWrcOiRYtw+PBhvP/++/juu+/g6emJwsJCJCQk4J133oGVlZXCe21tbRv9eYS0R3SO0905Tlvm5uYQi8UAABcXFxw7dgwFBQUt9nlESzoM+kkbo+yuaFBQEPPtt98yDMMwYrGYcXR0ZA4fPszuNzc3Z2JjYznvGT9+PGNlZcVYWVkxgYGBjTqeOgsWLGC6du3K1NTUKN3v5ubGxMXFcbY999xzzKxZsxiGYZh169Yx9vb2TEVFBbv/xx9/5NwVXbRoERMSEsI5RnZ2NgOASU9PV/q5YrGYuX37ttrHo0eP1H63Q4cOMR07dmTEYjHDMAyzevVqJjg4mNNm2rRpjLGxMfuzBcC4uroyKSkpnHYAGDMzM6Z3796c70oIUUTnPd2c91SNeEtNnTqVMTIyYsaNG8duS05OZgAwO3fuVHlcQggXneN0c45r6oi3WCxmNm7cyABgfvjhB4ZhJKP1ffr0YYyMjBhfX19m5syZzP79+1V+Nmk5NOJNWkx6ejrOnTuHKVOmAABMTEwwefJk/Prrr5x28nc+f/jhB6SmpuLNN99EZWVlo4+nSmpqKp5//nmYmpoq7CstLUVOTg6Cg4M524ODg3Hjxg0AwI0bN+Dn5wdLS0t2f2BgIKd9SkoKjh8/zrmj2bt3bwDA3bt3lfbLxMQEPXr0UPtwcnJS+902bNiAyZMnw8TEBADw2muvITk5Genp6Zx2I0eORGpqKlJTU5GcnIyQkBCEh4fj/v37nHaRkZG4desWJzkHIUQzOu+13nlPnUWLFqG+vh6LFi1itzFPR9Dkf/aEEO3ROU4/znHyPvroI3To0AEWFhZ455138MEHH2DmzJkAAG9vb6SlpeHs2bOYPn06Hj16hMjISPzrX/9qts8n2jHRdQdI27VhwwbU1taiU6dO7DaGYWBqaoqioiLY2dmhZ8+euHnzJud90mnN9vb2jT6eOhYWFhr7LP+HgmEYdhujxbSn+vp6REZG4uuvv1bYp2q6dlZWFry9vdUe94033sBPP/2kdF9hYSF2794NsViMH3/8kd1eV1eHX3/9ldMXKysr9OjRg309cOBACAQCrF+/Hl9++SXn88aNG4c333wTdXV1CtOuCCHK0XmPq6XOe5pIb0JK/x8AevbsCR6Phxs3bijN0kwI0YzOcVwtdY6zsbEBAJSUlCgsgykuLoZAIOBs++CDDxAdHQ1LS0u4uroqfGcjIyM899xzeO655/D+++9jy5YtEAqF+Pjjj9G1a1e1/STNhwJv0iJqa2vx+++/Y9WqVQgJCeHsmzBhAuLj4/Huu+/itddewyeffIJLly6pXAvUmOOp069fP/z2228Qi8UKd0ZtbGzg5uaGxMREDBs2jN1+5swZDB48GIDkjuHmzZtRVVXFnujly3YNGDAAO3bsQJcuXTgXfOq4ublprBUpPQErEx8fj86dO3NKgAHA0aNHsXTpUsTFxansC4/Hg5GREaqqqhT2TZ06FcbGxmyG4A8//FDjdyGkPaPzXuud95rC3t4eoaGh+M9//oPY2FiFdd7FxcW0zpsQNegc13rnuJ49e8LIyAjnz5+Hp6cnuz03NxcPHz6El5cXp72joyNnYEUT6U2BiooKrd9DmoFOJriTNkl2HdCuXbsYMzMzpri4WKHdwoULmf79+zMMwzBVVVVMcHAwY2try3z77bdMSkoKc+/ePSYhIYEZPHgwM2DAgEYdT53Hjx8zDg4OzCuvvMKcP3+euXXrFvP7778zN2/eZBhGsi7axsaG2bp1K3Pz5k3mo48+YkxNTZlbt24xDMMwZWVljKOjI/Paa68x165dY/bt28f06NGDsw7o4cOHTMeOHZlXX32VSU5OZu7evcscPHiQmT59OlNbW9von6k2/Pz8mI8++khhe2lpKcPn85ndu3czDCP57xMWFsbk5uYyubm5zPXr15lZs2YxPB6POX78OPs+PM1qLvXHH38wxsbGzNKlS1uk/4QYMjrv6ea8J13jvXXrVubSpUuch0gkUrkG/N69e4yLiwvj7e3NbN++nbl16xZz/fp15rvvvmN69+7dIn0lxJDROU435ziGYZh///vfjIeHB7Nr1y7m3r17TGJiIjN8+HDG19eXzenDMMqzmsuaMGEC88033zBnz55lMjMzmePHjzMBAQFMr169OMchLY8Cb9JsZE/OY8eOZcaMGaO0XUpKCgOATepVXV3NLFu2jPHz82MsLCwYPp/P9O7dm3n//feZrKysRh9PncuXLzMhISGMpaUlY21tzTz//PPM3bt3GYbhlpwwNTVVWnIiKSmJ8fPzY8zMzJj+/fszO3bsULi4u3XrFvPyyy8ztra2jIWFBdO7d2/mvffeUyif0RwuXLjAAGDOnTundH9kZCQTGRnJMIzkvw8A9mFtbc0899xzzPbt2znvkQ+8GYZhtm3bxpiYmCgkKCGkvaPznkRrnvcYpiHwVvbIyMhQm3wtJyeHeeeddxhPT0/GzMyM6dSpEzNu3DjODUhCiASd4yRa+xzHMJKf4eeff8706dOHsbCwYDw9PZno6GgmNzeX005T4P3zzz8zI0eOZDp27MiYmZkxHh4eTHR0NFtmkbQeHsNoma+fEEIIIYQQQgghjUZZzQkhhBBCCCGEkBZEgTdpM95++21OqQfZx9tvv63r7hFCSLOj8x4hpC2jcxxpS2iqOWkz8vPzUVpaqnSfjY1Ns9ZLJIQQfUDnPUJIW0bnONKW0Ig3aTOcnJzQo0cPpQ86MRNC2iI67xF9c+rUKURGRsLNzQ08Hk+h1GV0dDR4PB7nERAQwGmTl5cHoVAIFxcXWFlZYcCAAdi+fTunTVFREYRCIQQCAQQCAYRCIYqLizltsrKyEBkZCSsrKzg6OiI2NhY1NTUt8bVJC6FzHGlLKPAmhBBCCCHNoqKiAn5+fli7dq3KNmFhYcjNzWUf+/fv5+wXCoVIT0/H33//jatXr+KVV17B5MmTcenSJbZNVFQUUlNTkZCQgISEBKSmpkIoFLL76+rqEBERgYqKCiQmJmLr1q3YsWMH5s6d2/xfmhBCtEBTzQkhhBBCSLPj8XjYtWsXxo8fz26Ljo5GcXGxwki4rA4dOuDHH3/kBNIODg5Yvnw53nrrLdy4cQPe3t44e/YshgwZAgA4e/YsAgMDcfPmTXh5eeHAgQMYO3YssrOz4ebmBgDYunUroqOjkZ+fDxsbmxb5zoQQooqJrjvQltTX1yMnJwfW1tbg8Xi67g4hpBkwDIOysjK4ubnByIgmCQF0riOkrWqt892JEyfg5OQEW1tbDB8+HHFxcZxpw0OHDsW2bdsQEREBW1tb/PXXXxCJRBgxYgQAICkpCQKBgA26ASAgIAACgQBnzpyBl5cXkpKS4OPjwwbdABAaGgqRSISUlBSMHDlSq77S+Y6QtkdX13YUeDejnJwcuLu767obhJAWkJ2djc6dO+u6G3qBznWEtG0teb4LDw/HxIkT4enpiYyMDCxatAijRo1CSkoK+Hw+AGDbtm2YPHkyHBwcYGJiAktLS+zatQvdu3cHIFkDrmx9r5OTE/Ly8tg2zs7OnP12dnYwMzNj2ygjEokgEonY1w8fPoS3t/czf29CiP5p7Ws7CrybkbW1NQDJf0SawkRI21BaWgp3d3f295vQuY6Qtqo1zneTJ09mn/v4+GDQoEHw9PTEvn378MorrwAAPvnkExQVFeHIkSNwdHTE7t27MXHiRJw+fRq+vr4AoHT0mWEYznZt2shbunQplixZorCdzneEtB26urajwLsZSU/kNjY2dHImpI2hKYYN6FxHSNvWmuc7V1dXeHp64vbt2wCAu3fvYu3atUhLS0Pfvn0BAH5+fjh9+jT+85//4KeffoKLiwsePXqkcKyCggJ2lNvFxQXJycmc/UVFRRCLxQoj4bIWLFiAOXPmsK+lF+h0viOk7WntaztasEgIIYQQQnTiyZMnyM7OhqurKwCgsrISABTWXRobG6O+vh4AEBgYiJKSEpw7d47dn5ycjJKSEgQFBbFt0tLSkJuby7Y5dOgQ+Hw+Bg4cqLI/fD6fDbIp2CaENCca8SaEEEIIIc2ivLwcd+7cYV9nZGQgNTUV9vb2sLe3x+LFizFhwgS4uroiMzMTCxcuhKOjI15++WUAQO/evdGjRw/MnDkTK1euhIODA3bv3o3Dhw9j7969AIA+ffogLCwMMTExWLduHQBgxowZGDt2LLy8vAAAISEh8Pb2hlAoxIoVK1BYWIh58+YhJiaGgmlCiE7QiDchhBBCCGkWFy5cgL+/P/z9/QEAc+bMgb+/Pz799FMYGxvj6tWreOmll9CrVy9MmzYNvXr1QlJSErvW0tTUFPv370fHjh0RGRmJfv364ffff8dvv/2GMWPGsJ8THx8PX19fhISEICQkBP369cPmzZvZ/cbGxti3bx/Mzc0RHByMSZMmYfz48Vi5cmXr/kAIIeQpquPdjEpLSyEQCFBSUkJ3UwlpI+j3WhH9TAhpm+h3WxH9TAhpe3T1e00j3oQQQgghhBBCSAuiwJsQQgghhBBCCGlBFHgTQgghhBBCCCEtiAJvQppBcWUNKF0CIaStK6sWQ1xXr+tuEEKITpRUiVFXT9d7pGko8CbkGR24mov+nx/GV/tv6LorhBDSYp6Ui+C7+BBCV5/SdVcIIaTVZRdWwm/JIbz60xldd4UYKAq8CXlGX+6TBNzrT2fouCeEENJyjqcXAADuPa7QcU8IIaT1/X05BwBwKatYtx0hBosCb0KeUW09TbskhLR98cn3dd0FQgghxGBR4E3IM3pUKtJ1FwghpMXlFFfpuguEEEKIwaLAmxBCCCEaUf5IQgghpOko8CaEEEKIRhR3E0IIIU1HgTchz8iIp+seEEJIy6OSiYQQQkjTUeBNyDMa0tVB110ghJBWQHcZCSGEkKaiwJsQQgghGpnQ9B5CCCGkySjwJoQQQohGjtZm7PO7BeU67AkhhLQuhmFQWVOr624QA0eBNyGEEEI0mjTInX0+etVJXMgs1GFvCCGk9fx7y0X85/hdXXeDGDgKvAkhhBCikbmJMef1L6czdNQTQghpXQnX8nTdBdIGUOBNCCGEEI2M5NZ404UoIYQQoj0KvAl5RgxVtyWEtAPGdMVACCGENBn9GSWEEEIIIc3i1KlTiIyMhJubG3g8Hnbv3s3ZHx0dDR6Px3kEBAQoHCcpKQmjRo2ClZUVbG1tMWLECFRVVbH7i4qKIBQKIRAIIBAIIBQKUVxczDlGVlYWIiMjYWVlBUdHR8TGxqKmpqYlvjYhhGhEgTchhBBCNDp7l5KpEc0qKirg5+eHtWvXqmwTFhaG3Nxc9rF//37O/qSkJISFhSEkJATnzp3D+fPn8e6778LIqOGyNSoqCqmpqUhISEBCQgJSU1MhFArZ/XV1dYiIiEBFRQUSExOxdetW7NixA3Pnzm3+L00IIVow0XUHCCGEEKL/tl3I1nUXiAEIDw9HeHi42jZ8Ph8uLi4q97///vuIjY3F/Pnz2W09e/Zkn9+4cQMJCQk4e/YshgwZAgBYv349AgMDkZ6eDi8vLxw6dAjXr19HdnY23NzcAACrVq1CdHQ04uLiYGNj8yxfkxBCGo1GvAkhhBBCSKs5ceIEnJyc0KtXL8TExCA/P5/dl5+fj+TkZDg5OSEoKAjOzs4YPnw4EhMT2TZJSUkQCARs0A0AAQEBEAgEOHPmDNvGx8eHDboBIDQ0FCKRCCkpKSr7JhKJUFpaynkQQkhzoMCbkGZUUCbSdRcIIYQQvRUeHo74+HgcO3YMq1atwvnz5zFq1CiIRJK/n/fu3QMALF68GDExMUhISMCAAQMwevRo3L59GwCQl5cHJycnhWM7OTkhLy+PbePs7MzZb2dnBzMzM7aNMkuXLmXXjQsEAri7u6tsSwghjUGBNyHNKDnjia67QAghhOityZMnIyIiAj4+PoiMjMSBAwdw69Yt7Nu3DwBQX18PAJg5cyamT58Of39/rF69Gl5eXvj111/Z4/B4PIVjMwzD2a5NG3kLFixASUkJ+8jOpiUWhJDmQWu8CXlGjEw1MR5U/zEnhBBCCJerqys8PT3Z0WxXV1cAgLe3N6ddnz59kJWVBQBwcXHBo0ePFI5VUFDAjnK7uLggOTmZs7+oqAhisVhhJFwWn88Hn89v+hcihBAVaMSbkGak5iY6aec0ldhZvHgxevfuDSsrK9jZ2eGFF15QuGgcMWKEQhmeKVOmcNpQiR1CiCF58uQJsrOz2YC7S5cucHNzQ3p6OqfdrVu34OnpCQAIDAxESUkJzp07x+5PTk5GSUkJgoKC2DZpaWnIzc1l2xw6dAh8Ph8DBw5s6a9F2jhxXb2uu0AMEAXehDyjclEt+9zIwALv+noGs+JTsOLgTV13pc3TVGKnV69eWLt2La5evYrExER06dIFISEhKCgo4LSLiYnhlOFZt24dZz+V2CGE6FJ5eTlSU1ORmpoKAMjIyEBqaiqysrJQXl6OefPmISkpCZmZmThx4gQiIyPh6OiIl19+GYBkevgHH3yA77//Htu3b8edO3ewaNEi3Lx5E2+99RYAyeh3WFgYYmJicPbsWZw9exYxMTEYO3YsvLy8AAAhISHw9vaGUCjEpUuXcPToUcybNw8xMTGU0Zw8s18TM3TdBWKAaKo5Ic8gp7gK13IaMp6qWzemjy5mFWH/VUmSmQ9Ce+u4N22bphI7UVFRnNfffPMNNmzYgCtXrmD06NHsdktLS5VleKjEDiFE1y5cuICRI0eyr+fMmQMAmDZtGn788UdcvXoVv//+O4qLi+Hq6oqRI0di27ZtsLa2Zt/z3nvvobq6Gu+//z4KCwvh5+eHw4cPo3v37myb+Ph4xMbGIiQkBAAwbtw4zo1NY2Nj7Nu3D7NmzUJwcDAsLCwQFRWFlStXtvSPgLQDuy49xMzh3TU3JEQGBd6EPINP/3eN89qwwm5AVEtTpfRRTU0Nfv75ZwgEAvj5+XH2xcfHY8uWLXB2dkZ4eDg+++wz9oJVU4kdLy8vjSV2ZC+YCSGksUaMGAFGNvmJnIMHD2p1nPnz53PqeMuzt7fHli1b1B7Dw8MDe/fu1erzCGmMunrV/8YJUYUCb0KewZEb3OQuhjbiXa/m4oi0vr1792LKlCmorKyEq6srDh8+DEdHR3b/66+/jq5du8LFxQVpaWlYsGABLl++jMOHDwNouRI7IpGILfUDgOraEkIIadfq6PqJNAEF3oQ0I0Nb473tPJVJ0ScjR45EamoqHj9+jPXr12PSpElITk5mg+mYmBi2rY+PD3r27IlBgwbh4sWLGDBgAICWKbGzdOlSLFmy5Jm+GyGEENJW0Ig3aQpKrkZIMzKwAW/8c+cx+7ye/ojonJWVFXr06IGAgABs2LABJiYm2LBhg8r2AwYMgKmpKVuGR9sSO/Ij25pK7FBdW0IIIaRBbR1dM5HGo8CbkGZkaHW8zU2N2ec0bUr/MAzDmeIt79q1axCLxWwZnpYqscPn82FjY8N5EEIIIe2VoQ20EP1AU80JaUaGdiK24jecAurqGcjE4aSZlZeX486dO+xraYkde3t7ODg4IC4uDuPGjYOrqyuePHmCH374AQ8ePMDEiRMBAHfv3kV8fDzGjBkDR0dHXL9+HXPnzoW/vz+Cg4MBcEvsSMuMzZgxQ2WJnRUrVqCwsJBK7BCtvOLfCTsvPdR1NwghROcM7XqP6Aca8SakiZRlbTW05Grj+zdktq6lqeYt6sKFC/D394e/vz8ASYkdf39/fPrppzA2NsbNmzcxYcIE9OrVC2PHjkVBQQFOnz6Nvn37AgDMzMxw9OhRhIaGwsvLiy2jc+TIERgbN9wxiY+Ph6+vL0JCQhASEoJ+/fph8+bN7H5piR1zc3MEBwdj0qRJGD9+PJXYIRp1srPQdRcIIUQvGNoMR6IfaMSbkCaqqVMsxWVop2HHDnz2eR2tV2pRmkrs7Ny5U+373d3dcfLkSY2fQyV2SEuh1SiEECJhYOMsRE/QiDchTSRWEqga2onYSCYNe2091fQmhKjGgCJvQggBDG+ghegHCrwJaSJxrWKgamRokbcMKo1BCFGHRrwJIYSQpqPAm5AmEiubam5ocbfMhTRlNSeEqJNXUq3rLjyTYzcf4V+/nYeotk7XXSGEGDhDy+lD9INOA+9Tp04hMjISbm5u4PF42L17N2f/zp07ERoaCkdHR/B4PKSmpiocY8SIEeDxeJzHlClTOG2KioogFAohEAggEAggFApRXFzMaZOVlYXIyEhYWVnB0dERsbGxqKmpaeZvTNoSkZIRb0ObiSkbbH+x9zpKKsU67I1yR64/wvSN52hEnhAdM/SM5m9uuoAjN/Ix9Ovjuu4KIYSQdkingXdFRQX8/Pywdu1alfuDg4OxbNkytceJiYlBbm4u+5CW0ZGKiopCamoqEhISkJCQgNTUVAiFQnZ/XV0dIiIiUFFRgcTERGzduhU7duzA3Llzn/1Lkjbr5K0ChW2GFBqWi2qxYOdV9vX+q3lYsueaDnukqLauHv/6/QKOpxcgav1ZXXeHENIGFJSJdN0FQoiBq6dZgqQJdJrVPDw8HOHh4Sr3S4PjzMxMtcextLSEi4uL0n03btxAQkICzp49iyFDhgAA1q9fj8DAQKSnp8PLywuHDh3C9evXkZ2dDTc3SXmlVatWITo6GnFxcVTblii16UymwjZDOhH/mpihsG3npYf4ZnL/1u+MCqfvPGafJ2cU6rAnhBBCCCEShnS9R/RHm1jjHR8fD0dHR/Tt2xfz5s1DWVkZuy8pKQkCgYANugEgICAAAoEAZ86cYdv4+PiwQTcAhIaGQiQSISUlReXnikQilJaWch6k/ahVssbbkM7Dtpamuu6CRjnFVbruAiGEEEIIR2dbS113gRggg6/j/frrr6Nr165wcXFBWloaFixYgMuXL+Pw4cMAgLy8PDg5OSm8z8nJCXl5eWwbZ2dnzn47OzuYmZmxbZRZunQplixZ0ozfhhgSc1NjhW0GFHejRtkadT1TVl2r6y4QQlSwNjf4SwhCCNGopEox/42rwFwHPSGGzuD/asbExLDPfXx80LNnTwwaNAgXL17EgAEDACjPPMgwDGe7Nm3kLViwAHPmzGFfl5aWwt3dvUnfgxiel/07YemBm5xtjAENeSurQ65vbj1qmL3SvaOVDntCCJFHN8YIIe3BS2sTFbbRVHPSFG1iqrmsAQMGwNTUFLdv3wYAuLi44NGjRwrtCgoK2FFuFxcXhZHtoqIiiMVihZFwWXw+HzY2NpwHaT9MjBV/fQzpPFxcpZi130jPqmPsvNiQRTm0rySPw5I91/DWpvOopyznhOicIcyckdfDqYOuu0AIMSCZTyoVttElCGmKNhd4X7t2DWKxGK6urgCAwMBAlJSU4Ny5c2yb5ORklJSUICgoiG2TlpaG3Nxcts2hQ4fA5/MxcODA1v0CxGAoXeNtQJPNz959orAtxFt5kkJ9sOdKDsqqxdj4TyaO3szHpewiXXeJkHbPEGtiG9LMJEOkqVRsdHS0QhnYgIAApcdiGAbh4eFKj0OlYoku0Yg3aQqdTjUvLy/HnTt32NcZGRlITU2Fvb09PDw8UFhYiKysLOTk5AAA0tPTAUhGqF1cXHD37l3Ex8djzJgxcHR0xPXr1zF37lz4+/sjODgYANCnTx+EhYUhJiaGLTM2Y8YMjB07Fl5eXgCAkJAQeHt7QygUYsWKFSgsLMS8efMQExNDo9hEpVoltzsN6Tzs7SbA5QclnG0d9HjNZnZhFdYeazhf1NQa0A+bkDbKEH8LDek8bYikpWKnT5+OCRMmKG0TFhaGjRs3sq/NzMyUtvv2229VLvmLiorCgwcPkJCQAEBybScUCrFnzx4ADaViO3bsiMTERDx58gTTpk0DwzBYs2bNs3xFQug8QppEp1fZFy5cwMiRI9nX0vXS06ZNw6ZNm/D3339j+vTp7P4pU6YAAD777DMsXrwYZmZmOHr0KL777juUl5fD3d0dERER+Oyzz2Bs3JD4Kj4+HrGxsQgJCQEAjBs3jlM73NjYGPv27cOsWbMQHBwMCwsLREVFYeXKlS36/YlhEysZ8TakqUd8E8UJL8Zqchq0NmU/33Wn7rHPDWl2ASFtFWN4M83pzNHCNJWKBSRL9VSVgZW6fPkyvvnmG5w/f56dxShFpWKJrkwN9MTvSfdpxJs0iU4D7xEjRqid8hUdHY3o6GiV+93d3XHy5EmNn2Nvb48tW7aobePh4YG9e/dqPBYhUrVKkpMZ0hTG2nrFK2axkm26kvG4Qu1+HvTnJgEh7dWt/DI818Ve193Q6F5BOftc07mFtLwTJ07AyckJtra2GD58OOLi4jgVaCorK/Haa69h7dq1SgN0TaVivby8NJaKlR34IURbXi7WAGiqOWka/Z1XSoieUxakGtJpWNmNA31KlCQSq+9LtQGuLSWkramsMYzfw68TbmpuRFpFeHg4Jk6cCE9PT2RkZGDRokUYNWoUUlJSwOfzAQDvv/8+goKC8NJLLyk9RkuWihWJRBCJROzr0tLSRn9H0nYZPZ0ZqGRSHiEaUeBNSBOJlawxVhbM6lpeSTVu5JViRK+OnLVyIiVB9vUc/bnAkE/a1NGaj4Kyhouh9afuYaSX4oUXIaT1OFnzdd0FrRhC+cT2YvLkyexzHx8fDBo0CJ6enti3bx9eeeUV/P333zh27BguXbqk9jgtVSp26dKlWLJkiTZfhbRD0iV5hjTDkeiPNpfVnJDWomyq9jt/XNRBT9QLWnYU0zeeR0Ia9w6/smzE9x5XoKRS3FpdU6tKzO2fbNANAA+Lq1qzO4QQJeoMJLEFTQvVX66urvD09GTLwB47dgx3796Fra0tTExMYGIiGSOaMGECRowYAaBlS8UuWLAAJSUl7CM7O7s5viYxUI9Kqzmvpfds6JxCmoICb0KaSFnyL30kvS4+dbuAs13VVO7HFSKl21tbhUgSeFuYGivdTyu8CdEd66cVEAwl8DaUfrZHT548QXZ2NptAbf78+bhy5QpSU1PZBwCsXr2azYTekqVi+Xw+bGxsOA/SflXJLadhp5rTKYU0AU01J6SJDK2clfyFp7Kp5gBgZqwf9+MqRLUAADtLU1SVKI7OKyvnRghpHbaWpiirrkWdgYz6yI5OdTSQ6fGGSl2pWHt7eyxevBgTJkyAq6srMjMzsXDhQjg6OuLll18G0FAyVp6Hhwe6du0KgErFktZjJLcswejpJRJNNSdNoR9X2ITosbp6BpuTMnH7URlnu6GMeEvJrz9XNtUcAG7JfU9dqayRBN62lsrru+rjenpC2gtDW+cou8a7q6OVDnvS9l24cAH+/v7w9/cHICkV6+/vj08//RTGxsa4evUqXnrpJfTq1QvTpk1Dr169kJSUBGtr60Z9Tnx8PHx9fRESEoKQkBD069cPmzdvZvdLS8Wam5sjODgYkyZNwvjx46lULGkU+XQA0ooqBnLqI3qGRrxJu1YtrkNCWh6G9+oIOyvlAd4vp+9h6YGbsDA1xo0vwtjtlx8Ut1Ivm0dRZQ3ntaoR7z/PZWF0H9Xr31pLxdPpXbaWpjruCSFEPsA2tMy+sjN+aJlKy9JUKvbgwYONPqay41GpWKILtMabPAsa8Sbt2ud7r+O9bakQ/pqsss2JdMnaaPlkX/efVLZo35qD7MVKjdwVsrR02CBPO/h0aph2171jB1SLdV8iqFI61VzFDRFDm3FAiCGTXdnhbMOHkRHv6XbDuPikNd6EkKY4c/cx57URj0a8SdNR4E3atT2pOQCAtIeqy2gpm5JtKNMrrzwoYZ/Ll9ORBt4fhvXG3tnPo7eLZJrfulP30HtRgs5rektHvO1UjHirGrEnhDS/1Oxi9vnPwkEwMrBRH2VVKAghRJOPdlxln389wZcNvA3l3Ef0CwXepF3T5rSZW1KtsM1QasIWykwvP5dRiPKno8hAQ+BqZiI5DXTryF33GLTsaCv0ULXyamlyNRrxJkTXyqobygx262jVcPFpIL+GlBOCEPKszE2N2ZuOFHeTpqDAu51iGAa7Lj1A5uMKXXdF78kG3rVPgz1Viclay92Ccmw7n6Vx+uT3R29zXvt8dhAPi6sgrqtnA2/+08Cbb8It2/W4vAal1bqp6f2wuArbLkhqpzrZmCttQ4E3Ia2HJ5NhqL4eBjfqI3uuNJQ+E0L0C8M0nAvpPEKaggLvduqHE3fx/rbLGLHyBD7fc13X3TEY0mD1yI1HOu3H6FUn8dGOq9h2Plttu0tZxQrbgpcdw6hVJ9ibB9IR73tKbsL8cures3e2kapq6hC87Bj7OruwEhcXvYjXBntg16wgdjst2SSk9cgu+bCxMMH1XMnynPjk+7rqUqPIlh+k9d6EEG35e9hyXkvvQabrSQUYYlgo8G6nVhxMZ5//+k8G0h6WqGlNpKRJxxbsvKqhZev45nC62v0mRsrz92YXVqHs6VRuad3uyzJrOKW2pzx4tg42wcwtKZzXZsZGsLcyw9JXfOHvYaf2vfX1DFYeTMfFrKKW7CIh7Y40WO1ka8EZ/T54Tbc3IbUlu8abZp0TQrQ1zs+N81p6LpReQxHSGBR4t1Me9pac17oIsAyRNLM5T01BmqKKGpX7moPsaM3jctWfxTAMZ5RHFb6p6tNAjpL17c8i43EFrueoTmQHAKduFXBev/9iL62PP2/7Zaw9fgev/HCmSf0jhCgnPZdIZ8gYmjqZaLueRrwJIVpaffgW+5wBg062FgAAU2MqTEgazzD/gpJnllXILYWVeOexipZtmzbZyaXZvgGgWiwZNZEvLSarpe+C5hRXaWzz6o9n0HXBfq2Oxzc21tyomYxceQJjvj+t9OYEwzCYvvEcZ9vXE3xhLDdqf/C9YQCUZzvfefEh+1w2kRwh5NlIcyrI/z4aCoFMkkaaak4I0UbawxKUyl3TWfGNn/6/iS66RAwcBd7tUGWNYkDysn8nHfSk8XRR4ko2iZc29a15LXxdekvFuqKSSjGbefjCfe2nWktHsI7NHQ4AeDO4K2d/cyWSkx3pzilRvHmQXybC8XTuaHdljeJn2z4NuIsqxWpvnPx04m5Tu0oIkSMNVlUtX9F3A2TWaVJSJEKINu4/4Q5SMUxDYkm6gUeaggLvdujgtTyFbSsOpiNbbhS8pf2elIlvDt/Suib2oWt58PnsIHZebL5p8XUyn/3NIeXrpaWj3JLndQpToeWZGrfsr9W7f1xS2Lb22G34fX4IvosPIVdJUKtOQzmxDshcFoFPI73x1tCG4Lu56mWP+f60wraCMhHyyyTT2ZX9M5BfEgEAAouGke5MmT+K8jcIMihjPyHNRlqOy8RAp1fKBtt0wUwI0QYjV3SWxwNMjCTXTHQeIU1BgXc79P62y+zzd0Z2Z58/v/x4q/WBYRh8+r9r+P7obU5myK/230DkmkSlI8szNqegpq4ec/66rLCvqWSD6u+P3VF680E2oNud+hBTfz2n0EbWsgM3mq1/yshPc//gv5ex8lDDGqSI7xO1PpaJEU/p1NFPIvqwz5tjloH8mso52y7j+6O38VzcEQyOO4rH5SIs/vuawvvclQTe5qYNU+Pf3HSefS4faOuqFBohbVEtO+JtmJcNshfJdTTiTQjRgnxsPdLLCdJTIAXepClogUI7ciGzEK/+lMS+HtzFHjbmiutkG4NhGE6GW6nCihr8cvoeXh3YGd06dkB9PYMdFx9g75VcrI3y59SMll0T/fPT8lWHrj9SyCQpq8v8fZzXQ7raY8u/hnBGm8tFtWAYBtaN+I7PLz+OzGURnG1VMtOdt5zN0niM3ak5+HaKv9af+az+K5cYr7ARyd1UJUri8XgwMzFCTW39M41455ZU4VxGocIx0h+VIf1www2XQV8eUfp+a3P1pyjZYDtLbkpYS888IKQ9qX265EaaUKgD3wTlolo839NRl93SmmyiSUquRgjRxp7LOZzXtpZm7OAHLVkhTUGBtx47c/cxCitqcK+gAidvFWDj9OeaHChX1tTibbkyTdtmBihkM39++TFkF1YhOqgLFo/rC0BykZJbWo2a2noUVUqCOleBOQKXSmotvxHggU/H9sXne69hnF8nDO5qj493XcWBtDxs/CcTaUtCMW5tIq49XeP7w4m7eHdkD/YzpWuoZaeci8R1YBgGvyfdx2dKRkLlJWcUoufHB5D40UhM+PEMHpWK2H3H5g5Ht44dkJpdjE92X8W3k/1RWi1Wmfla/mZCtZrAs5OtBR5qkexMXylbQy3Ffxp4z4q/iLWv+SsdfdZE+m+kqVwFFhrbMAyDHRcfYt5/uTMhjt3Mf6bPJoQ0ED8NVqUzZKYGeuKHE3fRvWMHXXZLa7KjUxR3E0I02XouC4evK5ZLNKY13uQZUOCtZ6rFdei9KEHpvn9tuoC/3g5U+35p8CobON4tKMfoVSc57TZOfw48Ho8zbReQ1HcGgE1nMjF7VA+cvFWgcWr3lrNZ7EjwlrNZuPfVGBxIk6wjrxLXIWjZUU4g/OOJu/hRJvFVbR0DhmE4pbE+2H4FH2y/ovZzlRn6teJ0+VFy3/2Fb04qtJH1uLwGHa35ACQ3BdSdXDdOfw4hq081up+GgG9ijDLU4nJ2Md7ekoJ9sc/ruktKpWYXKwTdUrcflaGns7XSfYQQ7dU9rYMtnWounVEim3xSn3GmmtMFMyFEg/k7ryrdLr35WM+onvVJiCoUeOuRgjIRnotTPuUWAM5lFqL/54eQNH80LMwUS0DV1TPovpBbQurPmACcvs1NBjZxYGeM6NURADCyt5PKzxuoYvqvJt3k+iAbdCujac20Kpc/C4GZsRFCvz2lUB7tWciuL1dXNgwAW8+xNT3f0xGnb7d8+Te+zDR0VZnUW9KEAZ1V7vtuSn/839ZUAMCaY3dUttt7JRfvv0iBNyHP6thNyd8RaelJ6bWmoYSw3BFvQ+k1IUTfyObFqatnDDbhJNENCrz1iDYBaHGlGH0+VT4iHtTdQWHba+vPKmxb/mo/9g5dB74JMpaOAY/Hw6Ldadh89n4je936XvHvhGUT+rHrk099OBIMw2D+jqvYdiEbZiZGWBTRByn3i7A7NUfD0RT9fTkHXR2t0MXBCo7WZirbhXg7N7p0WLW4Dv+9kI0XvJ21mkatTFOC/QP/9zxu5pVyEutpIht4i+saf6GqTb1xdVZN8lO5b4RXww0jdVPKvzt6G++/2OuZ+kEIAYorubkjeJCc/AwlhpXOwgJoxJsQ0nRGMoF3TnE1PBwavwyPtF8UeOuJClEtbuQ21Dne8e8gmJsaISEtT+2Inqwzd5+o3f/pWG+E+7ooTIuRvv5ivA++GO8DhmHQ65MDENcx2PHvIAzwsEU9A4Xs18WVNej/+WGt+tZUX473wRhfV9hZmuKnk/fQ29UaI70UR+l5PB6+frUfvn61H7sttK8LJ/A+/eFINnN7cA8HxP8rQCFJGwDEn72PnBJJiat9sUNV9m1t1IBGX8B9tf8Gfk+6j/1X8/DnjIBGvVfqUWl1o9r/LByIPq42cBWYc7ZPGNAZI3t3VPk+VYnXtNWYJG+NJVtSTN7rQzwQn6w5CR4hRHv93W1x+vZjvDpQMhNF+udA23KQuiTfR1Uj3lU1dRDV1sHWUvUNV0JI+2Yscw391m/ncXjOcB32hhgaCrz1gKi2Dp/+ryGB2KqJfhjoaQcA6O1iA3NTYwzytENFTS3e3HShSZ8x5Tl3vClTm1kdHo+H23FjONuUzaRp6YsT+ezi/x7RXUVL5ZxszDGqtxOO3czHm8Fd4W5viS9e6ostZ7Pw8RhvAEBXRys2M7a9lRkKK2rYoBuAygRsgCQwVVb2TNad/DL8kZyNd0f1gL2VGX5PkswoSLqn/iaJOjWNXFMZ8HQmhPx/L3UjygB3xLspOvBb9vQS83xXrD+dwdmWtGAUzIyNKPAmpJlJbwAnPb3By041ZyQVBcxNjeBkY67q7TpVK3eD9HF5Dapq6hSWbA368jAqaupw+bMQtTf3CCHtl+wg1O38ch32hBgiqrejY5PWJcHrkwTsuNiQXTyinyv73NiIh3dG9sCQbg4Y1dsZmcsicOvLcHb/yol+WP5qPzg9TQYGAHe/GoM7ceE4t3A0Rnp1xM5ZQVg2oWEkuDktfzrCbGFqzKn9HDu6Z6OPNbSHIzKXReDcwtG4HReu+Q1a+DX6OWQui8CnkZJAWxjYBQffHwZvNxsA3JGQPq6Ka4Fly2Dd/CIM3RytAACJH43U6vM/2nEVv/6Tgbd+O6+5sZYaO+1bNhN+yicv4GX/TkheOFrj+2qaML1cVksnXRroaa+wzVVgAVO5GwZLD9xQKDVGCGkaaRUH6Uyp07cLMGzFcQz+6qguu6VWjZLKFHP/m6qwreJplYdrOSUt3aU27dSpU4iMjISbmxt4PB52797N2R8dHQ0ej8d5BAQ0zAArLCzE7Nmz4eXlBUtLS3h4eCA2NhYlJdz/LkVFRRAKhRAIBBAIBBAKhSguLua0ycrKQmRkJKysrODo6IjY2FjU1LTcbCzS9snP/iSkMSjw1rFzGYUK2+QzjcszMzFC5rIIZC6LwKsDO2PSIHec+/gFfDelP3bNCoKxEQ8mxpLRh43TB2OAh11LdR+TBrnj7ldjcOOLMPzr+W5YNNYbi8Z6Y86LvfDleB+l7/GUWQ9zadGLcLLmY/mEftjyryEAJCPVrVWDWXYgxEzDZ5qbGuPYvBHIXBaBznaS76BpjXfK/SIAkszbzaVWSUA7SkmSvG8m+eHge8M42xw68LF6cn84azEyJbv0oSm2X3yguRGA917oieG9Gqa8r5rop9WNDW9XG85r6c0e+f+O607ew7AVitnuW5umi9HFixejd+/esLKygp2dHV544QUkJydz2ohEIsyePRuOjo6wsrLCuHHj8OAB9+dMF6OkNUhn+8jOENJXygLv/VfzlLSUkK5fb22p2cXoMn8fVhy8qZPPby4VFRXw8/PD2rVrVbYJCwtDbm4u+9i/vyEpa05ODnJycrBy5UpcvXoVmzZtQkJCAt566y3OMaKiopCamoqEhAQkJCQgNTUVQqGQ3V9XV4eIiAhUVFQgMTERW7duxY4dOzB37tzm/9Kk3TCmLObkGdBUcx1SdjFg+gzZEV/q3+lZutNksnf/3pKZzt5HLjCS+tfQrnDswEd/D1vYWZnh3McvtHgfVZFdo803UX/DQxl1F2iy09CNeDzUNyGhz828Uuy/kouZw7vD6unUbflpkwCwYdogdF3AzSb/ipqs4C0t6e4TrDt5T6u2fyRn4e3h3XHyliRrcqiPi1bT1D0cLDHnxV745vAtAMC/h0uWIpjo6d1o6cXo9OnTMWHCBIX9vXr1wtq1a9GtWzdUVVVh9erVCAkJwZ07d9Cxo+TGxHvvvYc9e/Zg69atcHBwwNy5czF27FikpKTA2Fjy7zcqKgoPHjxAQoIkCeOMGTMgFAqxZ88eAA0Xox07dkRiYiKePHmCadOmgWEYrFmzppV+GsTQKcs9Ul/PcBIP6YKy8j7aLM+Rnf2kq+vq8f/5BwDwn+N38d4LvVrtBnRzCw8PR3i4+llrfD4fLi4uSvf5+Phgx44d7Ovu3bsjLi4Ob7zxBmpra2FiYoIbN24gISEBZ8+exZAhkpv269evR2BgINLT0+Hl5YVDhw7h+vXryM7OhpubGwBg1apViI6ORlxcHGxslF+jEKKO7DnuWa7ZSftEgbcOfbH3usK2ll4X25r6u9ticBd7VIprkfZQMnrq6WCJlwd01pvvGTXEAysOpiOgm73SZGKd7SzwoKgKFipmIai7QPtq/w32uTGPh8fl6suqKRP75yXcelSOvNJqLH9VsiZb2VRzfasjqSybvipV4jpOsiNVP2tlYkf3RF83G1iYGrPrNfV1Gpimi9GoqCjO62+++QYbNmzAlStXMHr0aJSUlGDDhg3YvHkzXnhBcrNqy5YtcHd3x5EjRxAaGkoXo6TVSHNiyKpjGBjpaLQYAMpFtYhck4jgHg74crwvu13ZTW55svcz9eEMIqqtN9jAWxsnTpyAk5MTbG1tMXz4cMTFxcHJSXV505KSEtjY2MDERHLtkJSUBIFAwJ7nACAgIAACgQBnzpyBl5cXkpKS4OPjw57nACA0NBQikQgpKSkYOVK7JWOEqKJppiQh8vQj+mmnlJXuer6n6izThsbYiIe/3g4EAGQXVqKjNR98EyO9ChLfHt4dAz3t0K+zAJ/JJLiT8utsiwdFVXh7uPLEbuq+ya6LDzkNG5sULbuwErceSRJ3XHnQsLatpddOq7P0wA2IxPVYPK6vyjbKpsIDwJCu9ujWsQP+PMdNfCauq8dfF7LZ140NnEf3cea8VvXvSx9G47RVU1ODn3/+GQKBAH5+khsuKSkpEIvFCAkJYdu5ubnBx8cHZ86cQWhoKF2MkhZn+fQGV183G5y+/Zizr66eQSPumzW7YzfzkfG4AhmPK7iBtxbnzNr6hjb68DdKXFuPP1KzsDv1IdYLB0Fg2XaSvYWHh2PixInw9PRERkYGFi1ahFGjRiElJQV8Pl+h/ZMnT/DFF19g5syZ7La8vDylgbqTkxPy8vLYNs7O3L8PdnZ2MDMzY9soIxKJIBI13CgvLX22ZVek7eLr8oRHDBLdqtEzX6hYF23o3O0tYW5qrBcXNLKMjXgI6OYASzMTpSPe+67mAgBMVEwnUvV9KmtqUSaqZV8b8biJ2rQhLX0m/zmqAltZ64QDG/VZ2vhq/w2sO3kPm85kIk/Nus6HKup3mxobIU7Jv29LMxN8FNa72foJAP4etgrbqjRkoNcHe/fuRYcOHWBubo7Vq1fj8OHDcHR0BCC5iDQzM4OdHTdng7OzM+dCsyUuRkUiEUpLSzkP0j59N8UfgPIbZLqujy07+iTbF+mIt7oSibruu/wN1Zq6eizcdRXnMgrx48m7OupVy5g8eTIiIiLg4+ODyMhIHDhwALdu3cK+fYrlPUtLSxEREQFvb2989tlnnH3K/v7KLzXQpo28pUuXsjkyBAIB3N3dG/P1SDtCU81JY1HgrQdmDOsGAPgkog+VMNGhs2pKfKk6uaoanR2+4gTntRGPB5FY+8Bbfj247Mdoymr+z/xRCO2rfO1cY8jX/f75VMOabXWj7hsSM5Ruf1BUqXRqfr/OAozu44xvJ0uSAzaHuS96KWyrkLkRoq9GjhyJ1NRUnDlzBmFhYZg0aRLy8/PVvqcpF5qNvRilC1Fi+3TEtaujJLGksgRDyvJPtCZz04ZLGtkbbdLA29JM9eiU7Oi9Lu4Py5emPHLjEfv8cjMm59RHrq6u8PT0xO3btznby8rKEBYWhg4dOmDXrl0wNW24PnJxccGjR4/kD4WCggL2xqKLi4vCzcSioiKIxWKFm4+yFixYgJKSEvaRnZ2tsi1pPxw7KM7GMDGiMIo0jlb/YuRHOrR5EM2kFwGvD/HAzS/COInJSOu7W1Chcp+xFifX2FE92OcFZdz13OK6+kaNuMqPjl/Lafidkp0SCQCrJ0umIv/+5mCsjfJHJ1sLrT9HnTG+rir3hX17CtM3nlO6T1X978wnlSoCPsn/j/fvBP9mysA/tKejwjZpqSB9ZmVlhR49eiAgIAAbNmyAiYkJNmzYAEByEVlTU4OioiLOe/Lz8zkXmi1xMUoXou1Hfmk15v33MjIec8+H0sBQmoRyuJfisqimJJBsTrIXwdL+MgzDTjW3VDEt9PajMszcnMK+1sUYVqXc+enjXWns8yQ1N4XbgidPniA7Oxuurg1/c0pLSxESEgIzMzP8/fffMDfn3ggODAxESUkJzp1r+DuUnJyMkpISBAUFsW3S0tKQm5vLtjl06BD4fD4GDlQ9K4zP58PGxobzIOS/T5dOyurW0UoHPSGGTKvA29bWFnZ2dlo/7O3tce+edhmN2ytRbR37h9bWwkwvp2G3N8qmJ0tpM51IXXAurmNQJXdhpW7KuLogvfbpiPfe2UNxfN4IvOwvyV4+rFdHjO3npvJ9jSWb8ExeRU0djqcXKL3Q7usmaNTntNalujYJlvQNwzDsWsOBAwfC1NQUhw8fZvfn5uYiLS2Nc6HZEhejdCHaNtwtKGerB6gy+Kuj2J7yACNXnmC3MQyD6qczdvhPR5VHeikuadD1iPed/DL2eVVNHS5kFuK5uKPY+bS0oYWKEe/rcqUTdfEt/kjO0tzIQJSXlyM1NRWpqakAgIyMDKSmpiIrKwvl5eWYN28ekpKSkJmZiRMnTiAyMhKOjo54+eWXAUhGukNCQlBRUYENGzagtLQUeXl5yMvLQ12d5G9jnz59EBYWhpiYGJw9exZnz55FTEwMxo4dCy8vyYynkJAQeHt7QygU4tKlSzh69CjmzZuHmJgYOoeRRvkorDe6OjYE2SHekpvU3Rwp8CaNo3Vyte3bt8Pe3l5jO4ZhMGbMmGfqVHtQUikGIJnSZm1OOe70wabowfhi33W8NtgdE35M4uzTZjqRpuSWG//hTsGuFNfBRsWb1AXe0tEbCzNjzh+C5vayfyds/CdTbRtRbb3CxWxjk8i5alFTvDmIanU74l1eXo47dxpKMEkvRu3t7eHg4IC4uDiMGzcOrq6uePLkCX744Qc8ePAAEydOBAAIBAK89dZbmDt3LhwcHGBvb4958+bB19eXzXIuezG6bt06AJJyYqouRlesWIHCwkK6GG0nRq86CQDY8+5Q+HbW/gaZ7Awc86ejxsoSFaq7WdcaFu9pqBSyZM81HLkhWabx5znJDA1LM+3+1upivfd3R29rbmQgLly4wEnSOGfOHADAtGnT8OOPP+Lq1av4/fffUVxcDFdXV4wcORLbtm2DtbU1AEkiyeTkZABAjx49OMfOyMhAly5dAADx8fGIjY1lE06OGzeOUzvc2NgY+/btw6xZsxAcHAwLCwtERUVh5cqVLfbdSdvkYGXGed3bxRqHrj/SyU06Yti0+ivk6emJYcOGwcHBQauDduvWjbMWhyh6VCoZxerYgW8wmZbbOoGlKVZO9FO6T5va0CYaIu+jN7lrdcVyI7CPSqvhZM0Hj8dTGB2XJR3xbukyFv0622psk5ZTgue6cG/IaTuy/FwXOzjbmGN+ePMmVpNyt7dAdmFDojdNa+NbmrqL0Z9++gk3b97Eb7/9hsePH8PBwQHPPfccTp8+jb59GzLIr169GiYmJpg0aRKqqqowevRobNq0ia3hDdDFaFtRLqpFXR3TItmsb+aVNirw3nQmk31u/nSqubJToq5HvGVJg25ZfBMjfD3BFx/tuApAEmAbG/EUbhjoesq8oRsxYgSnLrq8gwcPPtP7pezt7bFlyxa1bTw8PLB3716NxyJEHYV8PjRDlTSRVoF3RobyZEmqpKWlaW7UzhWUS7JCO9koJmsg+kebElfaBOeyZEeGd116gPe3XcbUQE+890IvvPDNSU5ba5m659I13qoyrbcmZTW3NWVvj+jnigNXc7E2agCcW3C0+9OxfRHz+wX2tS7LsAGaLyZ37typ8Rjm5uZYs2YN1qxZo7INXYwaPoZhELj0KMqqa3FtSSis+M07K+qD7Vfwsn8npTcLjY14CiO+yw7cZJ9Ll93wlKyE1veA1dzUGC/178QG3pU1tbA2N4Vc2gzUtfLI/Se7r2psI65r23W9CdFnqiY96niSDzFAWp/FR40aheLi4hbsSvuy74okuVHaQ0pEZwhKq8Ua22g7jVFKdmR4eUI6AOD3pPvY9I/ija4+rpIpwAzDsCO3+pBNU9kIl6oR79jRPQEAa1/zx80vwls06AaA0b2d8O3k/uxrXQfepO26/agMaQ9Lmu14otp6lFVLsvDfzi9vtuPK6vHxAaXbNU2zluYiUXafMV8uqaS+4ZsYgW9ixPZdOrNIfsS7Naeal1aLseWs8vXd37/mzz4vr9b/qgyEtBXyN8krRNxZiNmFlQCAvVdyWq1PpG3Q+sr9xIkTqKmpacm+tCvJGW07S6mhWzTWm/P6QZHy2tSAJKAc5GmHVwZ0UtlmcFfF/AiyAarsNayyYPZcZiEA7gWhvtaPlP1eH4Y1lPUa8DR5HY/HU1tPt7kYGfEw3r8T/J5OqaXAm9wtKEd+qeoa9E1RUCbCi6tPYeyaRDwpbwg8SyrF7L+5/NJqzP7zEqdk4eNyEV7/5Sx2XXqgcMxymdJ3InEdGIbRauptYy1PuKmxjfQCU56yZKATfjyjs1FvbYJlvqkReDwepE0TrklugCtMNW/FYSx1ZQ7H+bmxS4oqVeT9yC6sRGp2cYv8+yCkvZI/nRjJne92XXoIACiq1DwoQ4gsyuqlI6F9XbAhMQPTAj113RWixFtDu+KLvQ2Jej4e00dl2zkv9sKcF3upPZ6NkgR6suWtckoaggF1S4dk1ylrWlPeHAZ52uHC/SKV+5Vd7NU8zTobHdQFs0b0gKvAHOl55RjeS7H8UGuQBgiGmNW8rautq8fyg+kQBnjCVWCO4ioxHpVWo7OdJQQWz7a2ubiyBmXVtagS1+GH43fg00mAL/fdAABkLosAwzA4kJaHTrYW8HO3VXusmtp69PpEMkJ8dO5wWPNNUFlTh47WfDwXd4RtdzOvDME9+LhbUI7Rq06il3MHHHp/OL5OSMeeyznYczkHmcsiAEjq3f9z5wn+ufMEL/t3xo3cUmxIzEBXRyu4yMwGmfzzWYX+vD28OxyszDDA0w69nDugXFSLFQnp2HnpIf741xAE9XBEUUUNLMyMYW5qjJraeux+eqEo64cTd/FhmOocC7V19fjltPIKJarOU+L6evCNVNfLbiyGYfD53uvwcrbGlMEeuJZTgi/2Xke/zraYNaI7fj51D7fzy7FAi1wR0vXpUp/+7xqmBnZhZxdItcY9uoS0PKRmF2OC3A1bO0tTzsW8dElS4u0CTH7Og9O2XFSL55cfZ19L/20RQp5NY26+MQxDVYmI1hoVeJeVlSnUUpRHWXG1I73L7diB1ngbgmdNgKds3fOqQ+nY/NaQRh1HLLMYsTVGvHs6d1AbeCsjDXCl9byl5c50JTW7GACw7Xw2wnxU1yYnLaeoogbz/nsZ7vaWeDO4K/48n4UfT9xl9/98SjG4ux0X3uQ1rfX1DPp/fpizbXdqw5TALvP3Kbznk4g+uJRdjH1XchX2yZJmBlfmvW2p+Pfw7vj86U27W48k08TvPVacLp4i83ulrD/q/HTyrsp9Ub8kN+pY6kxcl4RLWcVK98mPAEmduvUYI7w6Ntt65JjfL7CJ0no6W2PCj2cAAGfvFeJydjGSMySzgQ5fV6xfL09aCk2e9IaMVFOmmtfXM7iVX4Zujh0w97+XsedyDjrZWmD91EEQ19WjpEqML/ddx9cT+sHfww5vb5HUDT/4dNQdAA783/N4+Yd/lB7/ox1XOYE3wzDw+Ux9kjJCSNM0JvBOuvcEQd0dW7A3pC1p1F/GXr16qazdLa313RinTp1CZGQk3NzcwOPxsHv3bs7+nTt3IjQ0FI6OjuDxeGxNSFkikQizZ8+Go6MjrKysMG7cODx4wJ26V1RUBKFQCIFAAIFAAKFQqLBePSsrC5GRkbCysoKjoyNiY2NbdGr91vOS8iZlaqaZkbZD2Wjr6duPlbY1VnFB+8OJOzh3r5B9bdoKa7w13cVV9qdJJBd464vj6QU4fjMfQ746gkQVP3vSMpbsuYajN/Ox6Uwmhq04zgm6Ven58QEINzQ+iPx411V0W7i/0e/7ct8NjUG3JgVlIjbolsorqeYErz0W7seha3k4l1EIffDfC9kYu+Y07ihZS64q6AagJLWaRMzvF7DyUHrzdA7c7OTSoFsquZE/Q76J4kj8KSV1zZsSeK84lI6wb0+j1ycHsOey5CbPw+IqjPn+NF76zz+Y+us53HpUzkn4CAAZjyvY531cbfDFSz4AgNmjuGW0rOTKNv4mk2le6vajMoVthJDGk4+7GTWFwx418/Il0rY1asRb21re2qqoqICfnx+mT5+OCRMmKN0fHByMiRMnIiYmRukx3nvvPezZswdbt26Fg4MD5s6di7FjxyIlJYUtsRMVFYUHDx4gISEBgKSurVAoxJ49ewAAdXV1iIiIQMeOHZGYmIgnT55g2rRpYBhGbfbg5rDz4gMsVDONmbQNympbq8qUrmoKuTQBGyBJbKSPZeielIvw99OLztZYx90YwT0cMH3TeQDAGxuSaVpmKykX1XJGmxvj9O3H6DJ/H/bHPg9vN+5sKoZhkFVYCQ97y6drt0VYsuc60psYfHTgm3DWVjeXgKVHOa9r6xnM2JzSqGMkvPc8vJytUVpdi3Un72LKcx54WFyFkioxztx9jDv55Thzt2l5Qz7YfgUAMOP3Czg2b4TW71M14g0AW5LuY16Il95l4VZ2M3Dqr+cUtv36TwYi+mk3O6ayphZJd59odTMJAB6Xq7+hP3GQO4b36oiO1pLZcB+P6YO4/TfYpUml1WKErj6F3BLFi/3Yrak48H/Pa9UPQohq8skyKYVC+zV9+nSNbRiGwaZNm7Q6XqMC7+DgYDg5OTXmLWqFh4cjPDxc5X6hUAgAyMzMVLq/pKQEGzZswObNm/HCCy8AALZs2QJ3d3ccOXIEoaGhuHHjBhISEnD27FkMGSKZ1rt+/XoEBgYiPT0dXl5eOHToEK5fv47s7Gy4ubkBAFatWoXo6GjExcU1+/T5MpkM2TOGdWvWY5PmEx3UBZvOZOLt4d2f+VjS6c6ypqpY3y8bkHs6WOL+E8XkRq2xvlsb8n+MBn7ZsN5VXwLviH6u2HclF6N7O+OfO5TUsLW9t/WSyn3fTemPl/o3rHFNzyvDL6fv4b8p3FlLY74/zT4/9/FodOzAR9cF2o1qd3O0wnj/TujrZoNfTmcg6WmCs0PvD0MvZ2vU1zPg8TTP7gCAUatOwNbCFBflRoLj/zUErz/jFO+4l33gKjBH944dsCExA78n3QcgyWzd20XyN0hgYcquyfZwsAQAhPm4AJCsaf/nzhO84O0EvokxsgsrMXZNIixMjZG0YBR4PB47pb2Xcwd2GrzUw+Iqrao3SPHU/HpX1NSh76cH8WGYF/71fNP/xj0sVp3UsimkNys/CPXCioOqR+VTGrG85o1fkhX+PWiy+O9ravc7yazxH9KtYbDjwNVc/Dv+osr33cgtxYfbL2POi15wEZjjg/9eRk5JFTa/OUQvb9QSoq9u5nFv4FLc3X6VlKiuWFJXV4cjR46gqqqqZQJvfZOSkgKxWIyQkBB2m5ubG3x8fHDmzBmEhoYiKSkJAoGADboBICAgAAKBAGfOnIGXlxeSkpLg4+PDBt0AEBoaCpFIhJSUFIwcObJZ+y1bBmpU7+a7kUGa1+JxffFxRJ9mGbVRdrdUVd1v2e3ONuZKA+/WytD9LHd5zfTk5oB06n6tfLFe0ipkf38yl0Xg1K0CiGrr8aK3s0JbLxdrrJjohxUT/XA9p5QTcEsNjjuqsE3erllBMOLxFJKm+XYS4OPdaYga4oFeztYAGjdz5NjcEezzQV8exuPyGrw1tCuCezzb+r6D7w2Dl4s1+/rzl3zwcUQfpVOjVbG1NOOM0rrbW+LyZyFK2w7wsFMIvEW19ei3+JDaz5C9Canpp1ZTV48v9914psD7Vl7jZy9Ib7QpU/l0RsM7I3uoDbwbo7FBNwBsUjJNXJW+bgL2ubqgW+qvCw/w14UHyFwWwd7AuvqwRGMCQUJIA/mEizTk3X7t3LlT6fb//e9/WLhwIczNzfHZZ59pfTytr4w9PT3Zqdv6Ii8vD2ZmZgpry52dnZGXl8e2UTZK7+TkxGnj7My9CLSzs4OZmRnbRhmRSITS0lLOQxsmMkmxzE3162dKuJ4l6O7vbqt1hnJZsqPZ0umG8gzhb4BZI4KGliSd+v7Vfs2lk0jzW/qKLyYN6oztbwcCAIb16qg06Jbn7WaDzGURGOjZuNwhFxe9CH8PO6WBhpONOdZPHYSRXs9+w/PsgtE4MW8EPolo2lKhaYGeyFwWgcxlEZygW6oxQXdjWZg17ditMUOrWqZsVlP6+Z+oATiuYsr8o9KGcm97Zw/l7Nv81mDOa2WzlFpSv84CpdtVLUmSylwWgQ58xTEU2bJuykpUEkJUK2vE7B/Svpw+fRpBQUF47bXXMHbsWNy7dw8ffvih1u/XOqrIyMiAg4NDkzrZ2uRT+yubQtiUNvKWLl3KJmwTCARwd3fXqn+mxkZ4e3h3TA30RGc7S63eQwzPVy/7qg2QpaPW/9zhJvqSzVYuW1ZIF+ytNJV0aviCsjWKAf1LrkZ0w9bSDMtf9cOgLk3LD7L97UBcWRyCfbFDFfbFPN8VALDsFV82iLW3Mnum/mrLxNgIXRyt2L8Ru98J1niTYOawbvDtJMC1JaFY8jSJli5YmTV+sltXRyvOz7YlQrkzdx+j96IErDl6G0DTkpwBkr6+EdCQAfyVpyW7xvs3LGvw6SRA5rIIbH5rMP6MCcDzPbnlDsf/R3l2cVklamr4TnlOu+sBKXWz31Rdhuz4dxAA5TdEfuRkvqfAm5DGkF/Op+43yBAGQsizS0tLQ2RkJEaPHo2+ffvizp07+PrrryEQKL9pqkqj//o+evQI8+bNw9GjR5Gfn69Qx7eurk7FO5ufi4sLampqUFRUxBn1zs/PR1BQENvm0SPFMiMFBQXsKLeLiwuSk7nr84qKiiAWixVGwmUtWLAAc+bMYV+XlpZqHXzP16LmKDFs6rJgAkDt0xFv+bWh0pGKiH6uKqejtxaekgmls0Z0xw9PEwmJxA3Tt6fI1RvWlzXexLDxeDzYmJuir5uAkxCvrp6BsREPH0d467B3Dfq722LHv4OwOSkTKw6m4z+vD0BANwfcf1KJNcduI9zHRefl7Mb2c8Xh648QNcQDa4/fadR7t/yrcaUPm+KTXWkAgFWHb2H26J6c0W9txMpkAv9yvC9eG+yBLg5WYAC8EeCJAR6KN0bkA25tnc8sxMSfklTujxriwVYv0ca7I3uo3JfyyYsY8AW3PN6VxSGwMZfcGH19iAe+OXyLs192Kv2Bq3kwNjJCf5puTohW5AcOpLk0SPuTlZWFRYsWIT4+HpGRkbhy5Qp69256DNfowDs6OprthKurq06Lxg8cOBCmpqY4fPgwJk2aBADIzc1FWloali9fDgAIDAxESUkJzp07h8GDJVPJkpOTUVJSwgbngYGBiIuLQ25uLlxdJRdGhw4dAp/Px8CBA1V+Pp/PB59PdbiJcqqWFEuzJ4tVNJAO8hjxeJxlCfpC9uLtx5N3EaRifSsF3qQlaZqCqyvCwC54fYgnu3a8h1MHfDfFX8e9kljzmj9q6xmNN/Tef6EXVh9pCOR2zgpCJ1sLThtzLafCF1bUaD8LQa5bVY0IvH94fQBC5JYwyK6PVhZ0Pwt1QTeg/KalOuoSZtpbmeHeV2Pw7p8Xcfj6IyS8N4wNuqX71fklMQP3Hlfg1+jnGtUnQtor+USTTtaqZx8qrAcnbYqXlxd4PB7mzp2LoKAgpKenIz1dMUfISy+9pNXxGh14JyYm4vTp0+jfv39j36qgvLwcd+403HXPyMhAamoq7O3t4eHhgcLCQmRlZSEnR7JGU/pFXVxc4OLiAoFAgLfeegtz586Fg4MD7O3tMW/ePPj6+rJZzvv06YOwsDDExMRg3bp1ACTlxMaOHQsvLy8AQEhICLy9vSEUCrFixQoUFhZi3rx5iImJafaM5qT9qFMx/+jdUT2w7MBNlWu865++z4j3bGvMm8PI3k4KI2OyZYRu5KpOfkSBN2mv9DWDNI/H4yxlUeWNAA+YmxrhSUUNxvfvpFDKDZD8fh98bxhq6+vxoKgKM1WUSJv6azL2ztauxJVsz974JRkv9XdTaBPRzxXXc0o59a+H9eqIMb66nU0gz9vNhjM7SOpn4UCFcnLerpqvM4yMePjhdeUDAdoMgJib0vmYEG01Jpj+JfEepgV1abnOEJ0Si8VgGAYrV65U2YZhGNRrmcC30Wdid3d3henlTXXhwgX4+/vD318yGjBnzhz4+/vj008/BQD8/fff8Pf3R0SEZHrhlClT4O/vj59++ok9xurVqzF+/HhMmjQJwcHBsLS0xJ49eziJ4OLj4+Hr64uQkBCEhISgX79+2Lx5M7vf2NgY+/btg7m5OYKDgzFp0iSMHz9e7Q+ZEGW2vNUwHbOuvh7Krr+tniYMqlWRmVwaeBvzeDqfaq5szapMUn615wK+nmQ1J4Sopmz6cQdzE8wc3h0Lx/RRGnRLeblYo6+bAKF9VU/DTHtYisoa7S5i7xY0BNOJdx6zNcZlCSxM8UYAtxTjgmZauiWfU0Pd+U1ZQjNZxkY8fBDqhe9f88fB94ahi4MlXvR2RoiSn9Uv0wY1rcMygrqrz8FDiVwJ0V5jAu/swuYte0j0S21tLerq6tQ+tA26gSaMeH/77beYP38+1q1bhy5dujT27RwjRoxQ+4ctOjoa0dHRao9hbm6ONWvWYM2aNSrb2NvbY8uWLWqP4+Hhgb1796ptQ4gmwT0aLn7qGWDJuL5Y9D9uzVbplELVI96S/+fxeDA20r/gVXZ0pV7N7y+NeBOivy4tehGl1WIUlInwqty06ebOqF5aVQvLJiR0U8a3kwCTB7ljgIct+rjagG9i1GxL3r6b0h+TZXJViGrrVQasPZ074JKGUmI8Hg/j/CSj9kfnjlB6I/bCJy/AscOzL1l774VeOHNX9fR3yyZmsifEENXW1eP3pPsY6Km8woUm5TJTzZtauULXku4+QcbjCkQN8dDcmLSaRv8lnDx5MiorK9G9e3dYWlrC1JSb9biwsLDZOkeIoZG9AKyrZ+DhYMXZ362jFTuKraqutOxUc30cNDbiBN6q2+l6mrzUqN5OOHYzX2G7pqoFhLRldlZmsLMyg61F62SBby6vDuwMIyMe/Jt5zTYAdLLjrmOvFtepDLzFKmYszRzeDbNGKCZKU5aTwNzUqFmCbgAY3NUex+eNwMiVJ5TuP3XrsdLthLRFf57Lwud7rwOQzNyTVgDQlnTE+6c3Bug8KWZj1dcziPrlLM7ek8RjXi7WjS7LSRqcPHlSq3bDhw/Xql2TRrwJIZq5CSyQ8aSCsy2ouwMbkCq7cOPxGkpTGPF4jU7Q0xrKZaZg1TMMHhZXwVhJAKsvya+CezgqDbzr6hm9TF5HSKtqpl+B+eG9sezAzeY5mBoteUNPfhbS6FUnce7jF5Sey2QrOkhND+6CBeGaR8emBnri96T7eH2Ip8a2jdHFQXV50vyy6mb9LNI+peeVYXtKNhaO6dNsN66znlRi2IrjmD2qB+aGeDXLMS8/KGGfp9wvQpf5+zhVMTR5WCyZPt6Br6mkqv7ZdekhG3QDwIQfz+B2XLjeDIYYmlGjRikM1Ch73WJrvKdNm6b2QUh7t/udYPwaPQgeDpYK17RGPJ5M4K04XMwwDbVrjYwk0xmV2fzW4Gbtc2PIJo2rENUieNkxBCw9qtBOX07yqmJrVcnvCGlPBBbcC0tlNaG1MXmQ6lKaiXeebbS1k60F1k8dhCuLQ57pOJp42FvCt1NDJvQnFTXovnA/AMX13rfzywFIZjEtHNMbB98bhk/Halfabm6IF9ZPHYSFY5p3CiuPx1M5rXZ0H9WlUZvbqVOnEBkZCTc3N/B4POzevZuzPzo6Gjwej/MICAjgtBGJRJg9ezYcHR1hZWWFcePG4cGDB5w2RUVFEAqFEAgEEAgEEAqFKC4u5rTJyspCZGQkrKys4OjoiNjYWNTU1LTE127z8kurEfrtKaw/nYGuC/Y323FfWy9Z3rHmWONKHKpTr2Q6XkmVWElLRQVlIuSWSG5UWZs3zxKZ1vTDCcWfY8r9Ih30pO1IT09HUVERioqKcOnSJXTo0AGFhYUoKirCrVu3GnUTSqsr49LS0kZ1sKxMdaZjQtq6/u62GNVb+UUOD2BHWVVNVayVBt48Hob3Uqwx69iB3+Tas81B9vSibqq5vox4q+pHI3JhENKmHfi/hqzjfVytm//4V3PV7q+prVeoQy2rX2cBXvR25pTQagnGRjz8/W6wwvZlB24ieNkxFFZIAjbZc/cHIV6YMaw7vFystb74EliY4kVv5xY5R5qpuNO44tV+zf5ZqlRUVMDPzw9r165V2SYsLAy5ubnsY/9+biD33nvvYdeuXdi6dSsSExNRXl6OsWPHoq6uocRcVFQUUlNTkZCQgISEBKSmpkIoFLL76+rqEBERgYqKCiQmJmLr1q3YsWMH5s6d2/xf+qmsJ5X45fS9Fjt+a7mWU4KiihpU1dSxN51mbuFm429MouVrOSX44cQd1NQq/uHt7tQwwPCv386jy/x97OOP5Cw8LhcpvKdcVMuOSiuTU6K479Yj7WKTk7cK2Oc2FoY34l2tZDaOrhP1GjobGxv20aFDBzAMA4FAABsbG1hbWzfqd0GrWzl2dnbIzc2Fk5OTVgft1KkTUlNT0a1b0+6cE9JWyZbzuZRVjBu5ije1pNnOjZ6OBMj66mVfjOytu6AbUJ9QTZaZnox4q7oYlqyxp4RDhPSRKWcV1N2xScdQF3Nqml0y9OtjyC9TvLiWas3JKcrOFz+dlJQEe+3ns5g9ugenJrjWNcpbiapgvrmS22kjPDwc4eHhatvw+Xy4uCjPhl9SUoINGzZg8+bNbGnYLVu2wN3dHUeOHEFoaChu3LiBhIQEnD17FkOGSKqJrF+/HoGBgUhPT4eXlxcOHTqE69evIzs7G25ukiR3q1atQnR0NOLi4pq9XGxhRQ2GrzwOhgFsLc3w6sDOABqmpd7JL8O289mw4ptg3cl78O0kgIeDJd4M7gpPB0tYaciU31hZTyohsDQF38QI729LRU5xFeJjAtiM/A+KKvHF3uuoZ4DD1x81+vjXckrhIzNDROr4zXz8c+cx5of3ZpPJRnyfCEASAHa2s8Ss+ItKj3nkBndZ2MJdV7Fw11WVffgkog/G+bnh5K0CdLTmw7eTAD+dvMuZai31pFy7mQ7V4oabOzZ6PuItO+W5prYe1bV1CO7hgL8ucGeH1KgY6CGtT6t/UQzD4JdffkGHDsqnvcoTi7WbzkFIe2PE48FEJlP53L8uK7RpGPFWfL8+ZKfUNvC2s9KPO8VGKiICGvEmpMGNz8NQLqpFR+vmSfYly9Ne9dpjAGqDbkCyJlofpD8qw7t/XML/je7Jbhvc1V6HPVIku8RnxrBuGNvPFa4CCzXv0I0TJ07AyckJtra2GD58OOLi4tjBnZSUFIjFYoSENCwtcHNzg4+PD86cOYPQ0FAkJSVBIBCwQTcABAQEQCAQ4MyZM/Dy8kJSUhJ8fHzYoBsAQkNDIRKJkJKSgpEjRyrtm0gkgkjU8G9S21mf9lZmGOPjin1XczHvv5dRVi3Gkj3X2f2mxjzOErNzmYU4l1mI7SmSIOnInOHo4aTddbYyDMPgZl4ZrueUYnBXewxbcVyhjc9nB+HnbouqmlrcelTe5M8CgFd+PIOhPRzxXBd7vD28GxsATt90HgDg4WCJqYFdOO/5an/z5oH4ct8NfLnvhlZt1xy7DScbPsqrazFMyWxCKdkp6dYtPMvmWZy58xiz/7yEL8b7YIyvK8atTcTNvDKM7q04SCp7M0Eqv7Qa9QzgIjBX2GcIGIbBp/+7hm4drTA9uGuLfk5z0irw9vDwwPr167U+qIuLi0K2c0KIZFRI9sJI2XTz2qd/mOVHXpSdTFuDlZkxKmoaTtraBKz/fTtQb/5gqRp4F1PkTQjLwswYFs9QckpdIkhPueoO8izNjFFZo3hhyDcxwqH3h2l8f2uTvTDXt8oIslNKzYyN0K+zre46o0J4eDgmTpwIT09PZGRkYNGiRRg1ahRSUlLA5/ORl5cHMzMz2NlxMzE7OzsjLy8PAJCXl6d0FqaTkxOnjbMzd9mXnZ0dzMzM2DbKLF26FEuWLGnSd/sorDf2PV1aIRt0Aw15XUyMeOwNdlkvfHMSd78a06glCDdyS5FbUoU3N13Q+j2Xs4u1bitvcaQ3vj16G8WVYtTU1uPYzXwcu5mPrxNuYvvbgZwgLiEtDwVlImQVVjbqM74c74NwHxek3C/CgbQ8uNma4z/H7za5z1LXckrxyg9nAADJC0fD2UZ5wCl7s15VWdT/G90T3x29/cx9ehbv/HERRZVizIq/iMxlEbiZJ5lKf1RJMln58+vjchEGfyXJzfPTGwMR5tMw++TgtTw8Lhc1e/LH5nblQQk2n70PAHhlQGeFfCXNRf4cb2Jigs6dO6tto45WgXdmZqbWBySENJD/XTTigZ1qrkpDOTFuu5YYidLGgf8bhkPX89i7ytokJXuui/6MAqk6IQ768gjufTUGRrT2iZAWpSqfhZSZiZHChWFwDwcsGeejd0E3ANx/Wq3Cy7n518M/K2OZGVX6kuBS3uTJk9nnPj4+GDRoEDw9PbFv3z688sorKt8nn0lY2bm9KW3kLViwAHPmzGFfl5aWwt1ddfJAWR4OltgXO5SdWi0rtK8zVk3qjw58E9TXM/hoxxXUMQwuZBaxwWn3hfsRO6oH5miR3ft/qQ/xf1tTterX9OAu8Ha1waYzmRjfvxMs+caor2eQ+aQSthammD60Ky5nF6OPqw3sLE3Zn09+WTU+3pXGTkWfMtgD609noLhScWbrqz9x68ifufsEZ+4+Udmn6KAumDTIHWO+Pw0AcBWYY8e/g+BmK5mhEdLXBSF9JQHhB6G9Oe+tr2dwt6Acf1/OgZONOX46cRd5pdVgGAaxo3uip5M1HpeLMGmQO348eRffywXJeSXVKgPvrxM0j8p3f4aZCc2lSOa/QaqGmyny51fZZGtvb0nhZHyfuVmylt/f3Q59XLXPXaEtcV09tp3PRkA3yXVi944dIKqtB9/EqFGfVS5qqLBzIj0fPxy/i2lBXZp9ZmhSUhIcHBzY1x4eHrhxo2GWhZOTE3Jz1ecxkaXfixcIaWOMeDx2zRPQkBlXlmwdb1l9laylag0eDpb41/PdtJ7OpW9UTTUHgAdFVfBQU4KHEPLs1AXev53JVHoR/8VLPujWUfcXt8pIL2JVjYbpkuyNXVMTw7ip6OrqCk9PT9y+LQmOXFxcUFNTg6KiIs6od35+PoKCgtg2jx4prksuKChgR7ldXFyQnJzM2V9UVASxWKwwEi6Lz+eDz2/6je6+bgLsj30eOy8+wKuDOqO3iw1EtXXgmzTMKDEy4mHFRD/29fAVx3H/iST4/v7YHXx/7A4EFqZI/fRFhbJF13NLkXyvkK1TrY5jBz7mhfTClMGSYGSimuoDwT0U8zs4WZtj/dRBnG3bZgZg6NeK09i1lfLJC3CQqV/f390WxZU1OPGB8qn/yhgZ8dDT2ZotPyYMUD06a61h7fyeyznIKqzEG0M88deFbK0+X99+s8b/5x+1+ytkglRA9awH2UR2Y74/jeigLlg8ru8z90/WrosP8cnuNPa1Nd8EZU/7l7F0jMbgu76egZERj/N3Q3oDauGuq4jo59qso9+DBzdUEWIYBgUFBeDxeHB0dGT7qm0ONIACb0JaF09zdklp4C2dbrZ39lCcvfcEUYN1v74bkNyVNiTqftzlcn+MCCFNpOb3rEZJ6USpz/6+pnT7s0x7f1Yfj+mDuP2qbzQmZ0gSN2mavaQLshOS6tT83PXJkydPkJ2dDVdXVwDAwIEDYWpqisOHD2PSpEkAgNzcXKSlpWH58uUAgMDAQJSUlODcuXPshXFycjJKSkrY4DwwMBBxcXHIzc1lj33o0CHw+XwMHDiwRb+Tt5sNvN0aysvJBt3KnPxgJGJ+v8BJclZSJUbXBfuxdUYApvx8VuV7Lc2MMWmQOxiGwag+zujiYAkXgbnGz2yqznaW8Olkg7SHjat4FNHPFd9O7q8wE2P3O4qVBJqTuaniDTLpddaj0mrM/vMSAGDFwXStjyn/m6VpFkVzy1GT0V2Z0irutY78uu7SajFszE1xW27d/6Yzmfg4oo/K2TNVNXU4easAb8tkvN/z7lD4dlY+UCSqrcOHO65wtpXJXIf9LzUHmU8qEDuqJ4yMeLiRW4o7+eXsfyOpCF9XlWUq/ZYcwndT+uOl/p2U7m+K4uJiLFy4ENu2bUNRkWS2gJ2dHSZPnoylS5dCINB+YIwCb0JakRGPp3GURLr0S3oS9+kkUJo5tLX9Gj0IN3LLMFTJXXF9pm7Eu1tH/ZvGSkhbo2mquTKtmYVbXsywbmoDb6mLWcUt35lGkv1ZVylJqNQaysvLcedOQy3hjIwMpKamwt7eHvb29li8eDEmTJgAV1dXZGZmYuHChXB0dMTLL78MABAIBHjrrbcwd+5cODg4wN7eHvPmzYOvry+b5bxPnz4ICwtDTEwM1q1bBwCYMWMGxo4dCy8vyShoSEgIvL29IRQKsWLFChQWFmLevHmIiYlp9ozmzWH91EHIL6vG4LijnO3qgu7bceE6WVKw592hAIBlCTex7qT68mlJC0bpNMEf31TxBoS05Na1nJJm+Yx6BmiN+3A1tfUQ19UjaNmxRr1v9ZFb8HazQWVNLf574YFC0Drt13PYGP0cHDooVml4Ul6jNAFbfT2DPp8mKGyPXJvImbou6z8aarW/ty0VAGBrYSrJ+K8id8E+DSUqezo13zKgsrIyBAcHIzs7G6+//jr69OkDhmGQnp6OLVu24NSpU0hKSoK1tXafSYE3Ia3ISJsRbzVZzXVpVG9nlfXJ9Zm6Ndx6lheJEIOl7ndJrKR2ryYtlSinrZNNzNVSI56aXLhwgZMxXLpeetq0afjxxx9x9epV/P777yguLoarqytGjhyJbdu2cS5cV69eDRMTE0yaNAlVVVUYPXo0Nm3aBGPjhu8UHx+P2NhYNvv5uHHjOLXDjY2NsW/fPsyaNQvBwcGwsLBAVFQUVq5c2dI/giZzsjZH5rII5JVUY9qv55Cuova0pZkxds4K0tk6funAwILwPpg1ogfSHpZgoKcd5vyVigNpedj+dhCu55aiu6OVzrPqVylJ3HguoxCB3R3w3RHVCdLUXYPJZ7ruvnA/3hraFYvGeqt4h/JjnM8sgpezNQSWkvNduagWH26/jDG+rhjbT5KNX5pAb1RvZ/T65IDWx18/dRBu5Jbim8O3AAAxv6tOwHcpqxj9Pz8Mxw6KSyyeVIjgIjDH0gM3YG5ijPdf7IUPt19WKFnGeU+5iLOcQGrHxYda9X3xHs3LKNTxcmm+wHvZsmUoLy/HrVu3FEogfvbZZxg8eDCWLVuGuLg4rY5HgTchLUg+0y8PPI1/KOvqlSdXMxSfRWr/h6c1qPvjKVvajRDSMmQTMtbU1uNmXil83AQwMuLB08GSXdsq5dNJ/0YjDYVs4H35QbFO+jBixAi1JXgOHjyo8Rjm5uZYs2YN1qxZo7KNvb09tmzZovY4Hh4e2Lt3r8bP0zcuAnMcfH8YTt0qwNRfz8Hd3gJLX+6HxXuu4e93g3U6I0SewMKUXR/+w+sNU/gHetqpekursrdSHMVdfeQW/u+FnvBzt8XlB8pHvdXVVb8ok5xMakNiRqMC7493p+GP5CwAYEeIN5zOwP6redh/NQ/peWVYIzNCvFImJ4A2Bnexx5VGngNk13hLFVWI8dX+G/j5lGRmg72VmdqgGwAGfnkEAPCvoV3xiczPZGgPR2zTch29PDNjI4V65EN7OLKj91MDPfF70n2snOjXqMoAmuzYsQNffvmlQtANSCotxMXFsQ9taH3Vefv2bbz22mtK6xmWlJQgKioK9+6pn25CSHtnxANMlMxHks1YXqciuZohsLU0bdF6ik2h7gZGc56cCWnP1P0m1cuUTprzVyrGrf0HP56UlAfqbKc4GqarkVpZEb6uuu5Ck8jO8Llb8Gx1monuDevVEZnLInD6w1EY2tMRR+YM16ug2xCM7Sf5XZZPsnboWh5+T7qv8n3qqrOoy1uhLWnQLSvhWkOZuzVy07Ln/fdyo47fwdwEd5Qk8G2sD7dfZoNuQHlejm0zApS+95fEDCSkSb4TwzAqg+4vx/uo/PyIfq7YNP053IoLR+ayCJySScI3c3g39vnbw7sjc1kEXh3YWdlhmuz+/fsYNGiQyv2DBg1qVPUvrX97V6xYAXd3d6XrYgQCAdzd3bFixQr8+OOPWn84Ie0OT/mItzEna6nk/w2xzJWVHl4QqPoxOtvopjwbIe2N7Ij33iuStXk/nbiLd0b2YGf4fBTWmy3jY22u+/PI2ih/pK8uU3vhOtKrYyv2SDv7rjSsfdS0rImQ9oDH4yFj6RjUM5Ip4VIzNqdw2o306ohzGYWoeDo1/cMwdSXdWiZx4Y3cxiWskxrh1RGbpkuSDP5w4g468E1gbMTDzOHdcSBNsWb9l+N9cPbeE1TV1Cmt+y0rp6Ra7X5pJvKN05/D9I3nFfa/vSUFKyf64VFpw3ECutmjr5sAGxIzAADDenbE/94JxuUHxfB0sMKj0moY8XgY6GmHro7cXDweDpbYO3soausZ9He3xZ8xASgX1bJl6JqbnZ0dTE1VL30yMTHhVF/QROu/bqdOncLmzZtV7p80aRKioqK0/mBC2iMjHmCqZHqz7MirIU81Vzaar2uqMo2GeCtOGyKEND9ludWkWYWlg+Ee9pYy7XWfjZvH48HOUv06c32b3SPPVw+SchKiD3g8ntrkZ891scPG6Q1lo+TLv8lTtZKitq6eUzJWHRcbc+TJBKPK1qKr4u9hi12zgvFHchb+PJeF5a/2Y/fNGtGDfe7XWYBxfm74+3IO9sUORU8nazbB7xsBnqiplSRqUzbFXBuySdRGejnhdlw4en6suA5967ksXJCZnj9rRA8M69URrw32QHFlDTwcLOHhYAk/d1utPlc24XBgdwc1LZ+dr68vTp06hR49eijdf+LECfj4qB6xl6f1VPP79++rrVPm6OiI7OymzdsnpL0w4vFgrOTsLxuLq6rjbQj0cYTFWEXgbYD3NQjRW+pK6dQrCaSlo+DSfbLXqk3Jgt4SzmcqruOUpazusT55TU9KUBKiL3o5d1C6/a2h3Tivm7rc5e/LOVq1YxgGpdUNdagvZhUpzRCuzBcv9cWuWZISbFFDPLBn9lA4WSsv88rj8fD9a/7IXBaBvm4Chao6ZiZGWDXJT6ubdJ9E9OG8PjFvhEIbU2MjJH40EhumDcLJDxr2X5BbEz+sl2S2UA+nDhikZkq/Pnj33Xfx9ddfo7KyUmFfZWUlli9fjn//+99aH0/rEW+BQIC7d+/C01N5kfo7d+7oZXkGQnRJ/lqUB+UBtWxwKA28W7MmZHPRx2RlqrpkeD9dQgxTnZLhoWpxPfLLqmVyWijO+tF3+p4jol9nW113gRC9smHac3h++XGF7SHejavYomrE+8iNR3hlgOY1xj+cuItKmRHuV344o9Dmv28H4rku9sh8XIERK0+w2yOeZjtvLsN7dcTwp4Fwl/n7lLY5MmcYOttZop5h8EIfZ3TrqPwGBiCp897ZTjKDaekrvliw8ypn/+VPQ5qp560jMjISw4cPB5+vuDzR3NwcFy5caFT8q/VV8rBhw9Rml/z+++/x/PPPa/3BhLRHRkY8pVPI28pUc328EFV1A8MQb2wQoq+0Ta4m6/M919mp5voYeOvjDB5Nfo2WJAGKDuoCCzPdJ6kjRJ+4yyxpASTJHTOXRTRbTh1tz10rDqar3T/nxV5scrcujlac5GPKsrQ3F9lzXsbSMejl3AHj+7uhh5M1zE2NMWNYd7VBtzwna8VgVaBhCY8+srGx4ZQylDIyMmr0oLPWI94LFixAYGAgXn31VXz44Yfw8pIkHbh58yaWL1+OgwcP4swZxTs2hJAGPJ7yKc4ZjyvY5w0Xoq3UqWZkqodrvFXdwKC4m5DWITulUlZOcZXMVHOZwFs/4m5Mfs4d8UoyD+uzUb2dcevLcIUppYQQiT9jAvDa+rMAJJVYmlNz3DP0sLfEjGHcqe9vBHjCsQMfPVVMlW8uoT4u2HclFw5WZuDxeDj0/vBnOp7sFPgeTh1wZM6zHa8t0Drw9vf3x/bt2/Hmm29i165dnH0ODg7466+/MGDAgGbvICFtCQ/KR7xlT9Z1Si5EDYU+9lm2S4sjvbF4z/Wn2/Wvr4QYKnW/Tkdu5KNCVKtQF/diVjG8XW0U3l9Xrx9rvA1xxBsABd2EqBHY3QHfv+aP1YdvYfmExtXG1kTV7B5tGRvxcGLeCKUj8GE+LZ8Q9vNxfWFjbtJsiSOdZKrHqFpf3940qmbH2LFjcf/+fSQkJODOnTtgGAa9evVCSEgILC0tNR+AkHZG/tRpxNMc8B17WtqhtLq2hXrVcrTN5tmaZO+49nFtmBKkrH4wIaRl3Mwrw0BPxZIr0pwWsjftbC1abiplYxjrYc4KQsizG+fnhnF+zbtWGgDEzxB4r43yx/M9O+q0lKxDBz6WvtJPc0NtjyczLV5VArj2ptHFMi0sLPDyyy+3RF8IafOMeDytp5DHn72POS/2atkONVFoX2ccvPZIYbs+jg/JTiUzMTbCH/8agiM38injLyGtSNX9Rjbw5vGwfuog/HzqLpa+4tuKPVNNH8sjEkL017PM1onwdW1zuWdMjI2wcfpzuHi/SG+vZ1ub1rdzx4wZg5KSEvZ1XFwciouL2ddPnjyBt7d3s3aOkLZGssZbuxPrk4qaFu5N043z66R0u74kRZJlJjMKz+MBQT0c8WmkN8xNKfEQIS1pfP+GESVVZz3pOYPH4+FFb2f89+0ghQRIuqKPS2cIIfrLy7nx1Z2mBXrixudhbS7olhrp5YS5IV4G//1EIhESExMVnjeW1oH3wYMHIRI1FFj/+uuvUVhYyL6ura1Ferr6LH2EtHcPiqp03YVmoep6tF5VjQ0d4ps2nOaedf0VIUR7XRyt2OeXs4sV9vu52+p1MklDXeNNCNENn06aA+9vj9zivB7R24kqEBiAhw8fIjw8XOF5Y2kdeDNyF9Tyrwkhmm06k6l12+bOttmcVN251McRItkRb30ckSekrTKWOU9IkxrKMjPmQVwnmZppqocJwZSdz2YO74booC7YO3uoDnpECNE3ZiZGcLGRrF/W5hLj2yO3Oa9NKZdEu0L/tQlpSc8Qh+rzaIuqrunjVCLZhG91OrxheOrUKURGRsLNzQ08Hg+7d+9m94nFYnz00Ufw9fWFlZUV3NzcMHXqVOTk5HCOMWLECPB4PM5jypQpnDZFRUUQCoUQCAQQCAQQCoWcZUEAkJWVhcjISFhZWcHR0RGxsbGoqdHfpQ3EMGlKEsQDr6GcmD6eO5T038rMBIvH9YVPJ4EOekQI0Tepn74IbzfJSLemWXXH0/MVtlEuifZF68BbepEnv40QosYzxHnv63EiClWZ2fX4XgEAoHtH3ZWzqKiogJ+fH9auXauwr7KyEhcvXsSiRYtw8eJF7Ny5E7du3cK4ceMU2sbExCA3N5d9rFu3jrM/KioKqampSEhIQEJCAlJTUyEUCtn9dXV1iIiIQEVFBRITE7F161bs2LEDc+fObf4vTdoNnpK7jJpmwBgZNYwQ6eNsGWVZzfWvl4SQ1iZ/CSS9JtK03G76xvMK2/R5kIU0P62zmjMMg+joaPD5kpps1dXVePvtt2FlJVnDJbv+mxAiIX8K/vylvlq/N7CbQ/N2phmpmhmlr7Wx/5k/CmXVYjjb6K6cRXh4uMo1QQKBAIcPH+ZsW7NmDQYPHoysrCx4eDRkYLe0tISLi/J6njdu3EBCQgLOnj2LIUOGAADWr1+PwMBApKenw8vLC4cOHcL169eRnZ0NNzdJ8qtVq1YhOjoacXFxsLFpfHIYQpTRNIptbMRjL1T19NShQJelfggh+odhGgYdmrKaTR/LsJKWo/V/7WnTpsHJyYmdvvjGG2/Azc2Nfe3k5ISpU6e2ZF8JMTjyNz8bU8dQn2eUKBvdAvQ38O5ka4HeLoYVUJaUlIDH48HW1pazPT4+Ho6Ojujbty/mzZuHsrIydl9SUhIEAgEbdANAQEAABAIBzpw5w7bx8fFhg24ACA0NhUgkQkpKitK+iEQilJaWch6EaKIpSDXi8WSSq+nfuaOmVrE0kB52kxCiY9qOeCtDI97ti9Yj3hs3bmzJfhDSLjRmOqU+n4tVXXzSRWnzqK6uxvz58xEVFcUZgX799dfRtWtXuLi4IC0tDQsWLMDly5fZ0fK8vDw4OTkpHM/JyQl5eXlsG2dnZ85+Ozs7mJmZsW3kLV26FEuWLGmur0faCU1LF414PDZRqz4G3tdyShS26WM/CSG6w6BhFmBTAm99XGZDWg7NbyCkFTXm/KpqVFkfGFJWc0MjFosxZcoU1NfX44cffuDsi4mJwQsvvAAfHx9MmTIF27dvx5EjR3Dx4kW2jbL/NgzDcLZr00bWggULUFJSwj6ys7Ob+vVIO6JxjTev4UJVH08dh64/Utimh93UO+oSScqbOXMmeDwevv32W872vLw8CIVCuLi4wMrKCgMGDMD27ds5bSiRJNEVhw5m7HNzE6OGEW8Nc83tlFSrEVjobwUbwqXpOkobWo94v/nmm1p1aMOGDU3qCCFtESO3ylvVaIm1uQnKqms52/R5YEVV12g06NmIxWJMmjQJGRkZOHbsmMb11gMGDICpqSlu376NAQMGwMXFBY8eKQYLBQUF7Ci3i4sLkpOTOfuLioogFosVRsKl+Hw+m9+DEK1pOB/U1jPsVHN9Xloji85xmkkTSU6fPh0TJkxQ2W737t1ITk7mLHuREgqFKCkpwd9//w1HR0f88ccfmDx5Mi5cuAB/f38AkkSSDx48QEJCAgBgxowZEAqF2LNnD4CGRJIdO3ZEYmIinjx5gmnTpoFhGKxZs6YFvjlpL8xNGupumxgbYe+VXADA0Zv5iA7uqvJ9lTV1AIDpwV2w8Z9MAIAprfE2CPb29li4cKHC88bS+r92UVGRysfjx4+xdetWbNq0qUmdIKStkp91pOqa7c+YAIVt+nx9p6pvotq61u1IGyINum/fvo0jR47AwUFzcr1r165BLBbD1dUVABAYGIiSkhKcO3eObZOcnIySkhIEBQWxbdLS0pCbm8u2OXToEPh8PgYOHNjM34qQBozcCbFCVKvXI96Gdl7WF+Hh4fjyyy/xyiuvqGzz8OFDvPvuu4iPj4epqeKIX1JSEmbPno3BgwejW7du+OSTT2Bra8vO7pEmkvzll18QGBiIwMBArF+/Hnv37kV6ejoAsIkkt2zZAn9/f7zwwgtYtWoV1q9fT3kqyDNRNa59+vZjte8TPc0bkfm4gt1mRoG3QbC1tcX8+fMVnjeW1iPeu3btUrr9f//7HxYuXAg+n49PP/20SZ0gpL1QNfVSWU1YfR4BUjUN/p87T1q5J4ajvLwcd+7cYV9nZGQgNTUV9vb2cHNzw6uvvoqLFy9i7969qKurY9db29vbw8zMDHfv3kV8fDzGjBkDR0dHXL9+HXPnzoW/vz+Cg4MBAH369EFYWBhiYmLYMmMzZszA2LFj4eXlBQAICQmBt7c3hEIhVqxYgcLCQsybNw8xMTGU0Zw0mTanq1q5aZgWZsbszUl9HEkO7O4ATwdL3H9SyW7T5/Oyoaivr4dQKMQHH3yAvn2VV/oYOnQotm3bhoiICNja2uKvv/6CSCTCiBEjAGhOJOnl5aUxkeTIkSOVfrZIJOJU6qEgnWirs52FVu0Gd3XA8fQCAICpCZ1T2pMm32b5559/MHToUERFRWHs2LG4d+9ek6N/Qtoq+buiyi4uh/XqqPS9+jgCJEXXno0nnSIpnSY5Z84c+Pv749NPP8WDBw/w999/48GDB+jfvz9cXV3ZhzQbuZmZGY4ePYrQ0FB4eXkhNjYWISEhOHLkCIyNG6a9xcfHw9fXFyEhIQgJCUG/fv2wefNmdr+xsTH27dsHc3NzBAcHY9KkSRg/fjxWrlzZuj8Q0ub1dOrAeV1bxz0j+nW21evkagDQxcGK81qfz8uG4uuvv4aJiQliY2NVttm2bRtqa2vh4OAAPp+PmTNnYteuXejevTuAlkskCUiSSUrXjQsEAri7uzfla5J2ZNYIyb/LF72VL9eSsjST/K2WXSNOI97ti9Yj3lLXrl3D/PnzkZCQgKlTp2Lr1q3o3LlzS/SNEIMnP7VS2bWlqYorOb1OrqZie183GjFVZcSIEQr/HmSp2wcA7u7uOHnypMbPsbe3x5YtW9S28fDwwN69ezUei5BnMbiLPed1TR23PFe5qFZmjXdr9apxTOVSs+tpNw1GSkoKvvvuO1y8eFHt7IFPPvkERUVFOHLkCBwdHbF7925MnDgRp0+fhq+vL4CWSSQJSJJJzpkzh31dWlpKwTfhkP9zLa3FLX9zUV5dveKNRkpK275ofZslOzsb06dPR//+/WFiYoIrV65gw4YNFHQT0gjKRnXOZRSqaNvSvWk6VRctX473aeWeEEL0lXwdb7Fc4P170v2GNd56esIzMeJeJtFU82dz+vRp5Ofnw8PDAyYmJjAxMcH9+/cxd+5cdOnSBQBw9+5drF27Fr/++itGjx4NPz8/fPbZZxg0aBD+85//AIDWiSTlR7Y1JZIEJMkkbWxsOA9C1JEOoNTW16ttJw28ZWt30zmlfdF6xNvLyws8Hg9z585FUFAQbt++jdu3byu0GzduXLN2kBBDJn/vU3pn87NIbyzZcx0AUCaqhVJ6fC6W/zsxe1QPvDOyB8xNjZW/gRDS7skH3kDDyJG+nu5MTbiBt77eIDAUQqEQL7zwAmdbaGgohEIhpk+fDgCorJSsqTeSu+lhbGyM+qeBjWwiycGDBwNQnkgyLi4Oubm5bAJKSiRJWoJ0xFusZsSbYRg2z4WbrXZrwUnbo3XgXV1dDQBYvny5yjY8Hg91dZTVmBBVpNdsGmYVP22rvxd48j3zsLekoJsQopa4VvHEV6/na7xN5AJtirs1U5dI0sPDQ6Fig6mpKVxcXNgEkL1790aPHj0wc+ZMrFy5Eg4ODti9ezcOHz7MLpGhRJJEn0iXpNQqubkoVSeTXLKXcwesmugHR2sq06nvtFniBwDDhw/Xqp3WgXe9hukThBAlFMqJSU7ORZU1Gt+qz9d38lOjCis0fx9CSPtWXKV4ntDncmKA4nlYX28Q6JMLFy5wMoZL10tPmzZNq7Kzpqam2L9/P+bPn4/IyEiUl5ejR48e+O233zBmzBi2XXx8PJtkEpDMuFy7di27X5pIctasWQgODoaFhQWioqIokSRpdtIbdOJ61aMqsqPhpsZGmDCQluoaglGjRqnMCyGbm0fbOLnRydW0FRERgV9++YWd3kNIe8TIRd7GT39xtVnTo88XePJd0+e+EkJan7Ia2MqmYTYkV9PTcwhP7UuihKZEkvIyMzMVtvXs2RM7duxQ+z5KJEl0Rf7ariG5murgSywTmJkY05nEUBQVFSndXllZiW+//RZr1qxhqy1oo8Vy2J86dQpVVVUa20RGRsLNzQ08Hg+7d+/m7GcYBosXL4abmxssLCwwYsQIXLt2jdNmxIgR4PF4nMeUKVM4bYqKiiAUCtnSEEKhEMXFxZw2WVlZiIyMhJWVFRwdHREbG4uaGhrFI89G/tpDGqBqM7qjr9ehgOLFp7+HrS66QQjRU4HdHRS2qbso1dcRb9mbim4Cc4z1c1PTmhDSHjVMNVd9w0l2n6kRlRAzFPKJFq2srLB161YMHDgQf/75J3744QdcvnxZ6+Pp9L98RUUF/Pz8OFODZC1fvhzffPMN1q5di/Pnz8PFxQUvvvgiysrKOO1iYmKQm5vLPqTrfaSioqKQmpqKhIQEJCQkIDU1FUKhkN1fV1eHiIgIVFRUIDExEVu3bsWOHTswd+7c5v/SpF2TXsNpM0KstyNAUOxbF0crFS0JIe2No0yNWll1aqZh6uusGdleJX40Ch34LTZRkBBioKTVD9RPNZfceDTiUZJGQ7V9+3b07dsXCxcuxNy5c3H79m1MmzatUdfrOv0LEh4ejvDwcKX7GIbBt99+i48//hivvPIKAOC3336Ds7Mz/vjjD8ycOZNta2lpCRcXF6XHuXHjBhISEnD27FkMGTIEALB+/XoEBgYiPT0dXl5eOHToEK5fv47s7Gy4uUnuZq9atQrR0dGIi4ujJByk2UgvLmXrNnZVEbTq6XUoAMW+GetzZwkhrUz5+aDWAANvWXSxTAgBlNXx1pxcTRp4mxrTaLehOX78OBYsWIBr167h//7v//DRRx/B2tq6ScfS2//6GRkZyMvLY5NmAJLaisOHD8eZM2c4bePj4+Ho6Ii+ffti3rx5nBHxpKQkCAQCNugGgICAAAgEAvY4SUlJ8PHxYYNuQFLeQiQSISUlRWUfRSIRSktLOQ9CZGUXVnJeSwNu2WtMv84Cpe/V50s8hYRDdEFKCNFA3Yg3T0+vRgzgfgAhRMdM2XJiqgNv6VRzCrwNS1hYGEJDQ9G/f3/cunULX375ZZODbkDHI97q5OXlAQCcnZ05252dnXH//n329euvv46uXbvCxcUFaWlpWLBgAS5fvozDhw+zx3FyclI4vpOTE/sZeXl5Cp9jZ2cHMzMzto0yS5cuxZIlS5r2BUm7UFrNrdGtLD5VNUVFn0eA5PssX3KHEELkqbso1dfzHU+vb4ESQvQBm9VczRpv6fmPEqsZlsOHD8PExAR//fUXtm3bprKdqiRs8vQ28JaSv8CXT+keExPDPvfx8UHPnj0xaNAgXLx4EQMGDFB6DGXH0aaNvAULFrBlMgCgtLQU7u7uWnwr0l5YmnFrW0v/PclezKn6J6an16EAFEe8jSnwJoQoEdbXBQnXJDew1V2U6usphHIgEULkyWftl45i16opKZVTUg0AKK4Ut1zHSLPbuHFjsx6vxQLvhQsXwt7evsnvl67ZzsvL45Qky8/PVxidljVgwACYmpri9u3bGDBgAFxcXPDo0SOFdgUFBexxXFxckJyczNlfVFQEsVis9rP4fD74fH6jvhdpX5xszDmvpReXsqUoVI306OsIEEDlxAgh2lk2wZcNvL/af0NlO/09h+hrvwghuiKfr8JEi6zmH27XPvM10R9Tp05t1uM1+l7ukydP2OfZ2dn49NNP8cEHH+D06dOcdgsWLICtrW2TOyadPi6dMg4ANTU1OHnyJIKCglS+79q1axCLxWywHhgYiJKSEpw7d45tk5ycjJKSEvY4gYGBSEtLQ25uLtvm0KFD4PP5GDhwYJO/AyGqRobr1ax1ZN+rx9d78tMvacSbkPZN1flKNv/Dw2LVJUb19Xynr/0ihOiOQuD9dGpMZU2dyvc8KhW1aJ+IYdB6xPvq1auIjIxEdnY2evbsia1btyIsLAwVFRUwMjLC6tWrsX37dowfP17rDy8vL8edO3fY1xkZGUhNTYW9vT08PDzw3nvv4auvvkLPnj3Rs2dPfPXVV7C0tERUVBQA4O7du4iPj8eYMWPg6OiI69evY+7cufD390dwcDAAoE+fPggLC0NMTAxbZmzGjBkYO3YsvLy8AAAhISHw9vaGUCjEihUrUFhYiHnz5iEmJoYympNnIh9eS0d1LM0afvUcVJTeMdPjBBw387iJBCnuJoRIyQar2lY80NcRb/3sFSFElwZ62nFeS0e8sworIa6rpwRqRCWt/2V8+OGH8PX1xcmTJzFixAiMHTsWY8aMQUlJCYqKijBz5kwsW7asUR9+4cIF+Pv7w9/fHwAwZ84c+Pv749NPP2U/87333sOsWbMwaNAgPHz4EIcOHWKzyZmZmeHo0aMIDQ2Fl5cXYmNjERISgiNHjsDYuGFtbXx8PHx9fRESEoKQkBD069cPmzdvZvcbGxtj3759MDc3R3BwMCZNmoTx48dj5cqVjfo+hGgivbbs7tSB3absglNgYarXdbwHdeEuI9HnvhJCWpfs2UDb2TD6egahUxshRF6ItzN+emMgTn84EgC3YkNucbWuukUMgNYj3ufPn8exY8fQr18/9O/fHz///DNmzZoFo6fTK2bPno2AgIBGffiIESMUEhTI4vF4WLx4MRYvXqx0v7u7O06ePKnxc+zt7bFlyxa1bTw8PLB3716NxyKkMeT/fUsD1GE9Hdlt9Up+BwbJ3U3VN+amdDeXEKKZtoGrvo54TxjQGVvOZqGvG81+I4RI8Hg8hPm4sK9lL+Mm/HQGpz4YCQu55LqEAI0Y8S4sLGQTnnXo0AFWVlac5Gl2dnac+tmEEEXSS0sejwfHDpLEfC/2UUzgp+8jyPp6kUwI0S/aTjXX11OKv4cd/pk/CrtmBeu6K4QQPSWbzbygTIS/LmRz9mcXVrZ2l4iealRWc/lgQN+DA0L0jey0y+PzhuNhcRV6uyiOpOj7mmn61SeEaEPrqeZ6fFLpZGuh6y4QQvSYfLI1+SRrhRU1rdkdoscaFXhHR0ez5bOqq6vx9ttvw8rKCgAgElG2PkI0kb20tDY3RW8XU6Xt9H1EWd/7RwjRD/ocUBNCSHOokysj9tPJu/j3iO7sa6r8QqS0DrynTZvGef3GG28otGnuWmeEtDUdrbWr+26k50uo6U8IIUSWfIlBQghpL+RHvEuqxJzXatJZkXZG68B748aNLdkPQtoFbUd/9H2USN/7RwjRHU2nB4GFqcKFKSGEGCplSXIbs5+0H3o+rkZI+6TvU7n1u3eEEF3SNPrd28W6lXpCCCEtz8PeUu3+Ogq8yVMUeBOih2g5ECHEUDFQf5FpYkwnuLbs1KlTiIyMhJubG3g8Hnbv3q2y7cyZM8Hj8fDtt98q7EtKSsKoUaNgZWUFW1tbjBgxAlVVVez+oqIiCIVCCAQCCAQCCIVCFBcXc46RlZWFyMhIWFlZwdHREbGxsaipoURXpHn5dBKo3S9bWjbC17Wlu0P0GAXehOihKrmMmPpGdkD+s0hv3XWEEGJwTPQ9iQV5JhUVFfDz88PatWvVttu9ezeSk5Ph5uamsC8pKQlhYWEICQnBuXPncP78ebz77rswkvm3ExUVhdTUVCQkJCAhIQGpqakQCoXs/rq6OkRERKCiogKJiYnYunUrduzYgblz5zbflyVEC7JLwGnGT/vWqKzmhJDGaersokPXHzVvR1pQuA/dvSWENNA01dyEpvS0aeHh4QgPD1fb5uHDh3j33Xdx8OBBREREKOx///33ERsbi/nz57PbevbsyT6/ceMGEhIScPbsWQwZMgQAsH79egQGBiI9PR1eXl44dOgQrl+/juzsbDa4X7VqFaKjoxEXFwcbG8VSnoS0hL9Tc3TdBaIn6LYzIaTRrM0byqDZW5npsCeEEEMjX1qni4P69ZGkbamvr4dQKMQHH3yAvn37KuzPz89HcnIynJycEBQUBGdnZwwfPhyJiYlsm6SkJAgEAjboBoCAgAAIBAKcOXOGbePj48MZUQ8NDYVIJEJKSkoLfkNCuDafvc8+L62mxJLtGQXehJBGMzbi4frnobi2JBRmJnQaIaS9a0w+SPnkkVQloX35+uuvYWJigtjYWKX77927BwBYvHgxYmJikJCQgAEDBmD06NG4ffs2ACAvLw9OTk4K73VyckJeXh7bxtnZmbPfzs4OZmZmbBtlRCIRSktLOQ9CGuvoDeUzF9efzmjlnhB9QlfMhJAmsTQzgRWfVqsQQrg0xdEnbxVw27dgX4h+SUlJwXfffYdNmzapvOFSX18PQJJ4bfr06fD398fq1avh5eWFX3/9lW2n7P0Mw3C2a9NG3tKlS9mEbQKBAO7u7lp/P0Kk3vrtgq67QPQQBd6EEEIIaTWutuac11Rop/04ffo08vPz4eHhARMTE5iYmOD+/fuYO3cuunTpAgBwdZXkDfH25ibu7NOnD7KysgAALi4uePRIcUSxoKCAHeV2cXFRGNkuKiqCWCxWGAmXtWDBApSUlLCP7OzsJn9fQgiRRYE3IS1IU1kdQghpb+STTtbU1uumI6TVCYVCXLlyBampqezDzc0NH3zwAQ4ePAgA6NKlC9zc3JCens55761bt+Dp6QkACAwMRElJCc6dO8fuT05ORklJCYKCgtg2aWlpyM3NZdscOnQIfD4fAwcOVNlHPp8PGxsbzoOQptD3CjWk9dE8UUIIIYS0mnq5yJuqi7Ut5eXluHPnDvs6IyMDqampsLe3h4eHBxwcHDjtTU1N4eLiAi8vLwCS6eEffPABPvvsM/j5+aF///747bffcPPmTWzfvh2AZPQ7LCwMMTExWLduHQBgxowZGDt2LHuckJAQeHt7QygUYsWKFSgsLMS8efMQExNDwTRpFXuv5GDiIFqqQBpQ4E0IIYSQZqNpzbb8fk3lx4hhuXDhAkaOHMm+njNnDgBg2rRp2LRpk1bHeO+991BdXY33338fhYWF8PPzw+HDh9G9e3e2TXx8PGJjYxESEgIAGDduHKd2uLGxMfbt24dZs2YhODgYFhYWiIqKwsqVK5vhWxKi2cWsIoR4u+i6G0SPUOBNCCGEkFbDNzHmvKak5m3LiBEjwMivJ1AjMzNT6fb58+dz6njLs7e3x5YtW9Qe28PDA3v37tW6L4Q0pz/PZWMSjXgTGTTBi5AW1IhrD45lr/g2b0cIIaQFNSZ2fndUD87rClFt83aGEEL0hPzSmuigLrrpCNELFHgTood6OHXQdRcIIaRFdLKz4Lx+XF6jo54QQkjLqpPLHTnCq6NuOkL0AgXehOghmnpJCGmr6PRGCGkPHDvwFbZ1trPUQU+IvqDAmxC9RJemhBDDxNNw51DTfkIIaQtsLEwUBlJoRmP7RoE3Ia1kcaS31m3pupQQ0lbR6Y0Q0h4Y8XgwkjnhffUy5e9p7yjwJqQFyebUiA7uqrZtiLcz+5wuTAkhbRXdWCSEtAc8mf8FgOe62OmqK0RPUOBNiJ4Y6NlwQqapmISQtorqdhNC2gMjHo9zo5Eu7QgF3oToCc7JWXfdIC3k1KlTiIyMhJubG3g8Hnbv3s3uE4vF+Oijj+Dr6wsrKyu4ublh6tSpyMnJ4RxDJBJh9uzZcHR0hJWVFcaNG4cHDx5w2hQVFUEoFEIgEEAgEEAoFKK4uJjTJisrC5GRkbCysoKjoyNiY2NRU0OZpUnT0c1CQghRZCRzbqTzJKHAmxA9ITsKROfmtqeiogJ+fn5Yu3atwr7KykpcvHgRixYtwsWLF7Fz507cunUL48aN47R77733sGvXLmzduhWJiYkoLy/H2LFjUVdXx7aJiopCamoqEhISkJCQgNTUVAiFQnZ/XV0dIiIiUFFRgcTERGzduhU7duzA3LlzW+7Lk3ZF0/mLzm+EkPYg/VEZZm1JYV9bmhnrsDdEH5jougOEEAnuiDddmbY14eHhCA8PV7pPIBDg8OHDnG1r1qzB4MGDkZWVBQ8PD5SUlGDDhg3YvHkzXnjhBQDAli1b4O7ujiNHjiA0NBQ3btxAQkICzp49iyFDhgAA1q9fj8DAQKSnp8PLywuHDh3C9evXkZ2dDTc3NwDAqlWrEB0djbi4ONjY2LTgT4G0BxRYE0KIRE5JNfvcVWChw54QfUAj3oS0IEZzE6XowpWUlJSAx+PB1tYWAJCSkgKxWIyQkBC2jZubG3x8fHDmzBkAQFJSEgQCARt0A0BAQAAEAgGnjY+PDxt0A0BoaChEIhFSUhruzMsSiUQoLS3lPAhRRdONQzq/EULaGzeBua67QPQABd6E6Ala+0OkqqurMX/+fERFRbEj0Hl5eTAzM4OdHTcrqrOzM/Ly8tg2Tk5OCsdzcnLitHF2dubst7Ozg5mZGdtG3tKlS9k14wKBAO7u7s/8HUnbpXGqOc3oIYS0MfNCeqndT9d4BKDAmxC9IXtKpvNz+yUWizFlyhTU19fjhx9+0NieYRjOH3Rlf9yb0kbWggULUFJSwj6ys7O1+SqkndJ0+qLzGyGkrQnq4ah2P533CECBNyF6g9Z4E7FYjEmTJiEjIwOHDx/mrLd2cXFBTU0NioqKOO/Jz89nR7BdXFzw6NEjheMWFBRw2siPbBcVFUEsFiuMhEvx+XzY2NhwHoQQQgiR6NdJoHY/Bd4EoMCbkBbFMNqv8qYR7/ZNGnTfvn0bR44cgYODA2f/wIEDYWpqyknClpubi7S0NAQFBQEAAgMDUVJSgnPnzrFtkpOTUVJSwmnz/+zdeVxU5f4H8M+wL8IoIIwEqJUiCiruqCmmgSiSWdeKmrS8WD8XromW1K20UtQsLb2V10xLKKuba9a4rwku6LgSLqGigpjCsMjO/P4gjjPMDDMDMzDg5/168co555kzzyE4nO95nuf7PXv2LLKysoQ2O3bsgL29PXr37m3OU6QWzJhLFq9vRNTS2FhbYemzPXTu54AKAcxqTmQx1KcCN2FHyCwKCwtx6dIl4XVGRgbkcjnc3Nzg7e2NZ555BidOnMAvv/yCyspKYVTazc0NdnZ2EIvFmDRpEuLi4uDu7g43NzfMmjULQUFBQpbzgIAAjBw5EjExMVi5ciUAYPLkyYiMjIS/vz8AICwsDF27doVUKsVHH32Eu3fvYtasWYiJieFINpmEvrWMvAElopaok6eLzn28ryOAgTeRxeBU85bt+PHjGDZsmPB65syZAIAJEyZg7ty52LJlCwCgZ8+eau/bu3cvQkNDAQBLly6FjY0Nxo8fj+LiYgwfPhxr166FtfX92qBJSUmIjY0Vsp9HRUWp1Q63trbGtm3bMGXKFAwaNAiOjo6Ijo7GkiVLzHHa9ADiGm8iehAF1jHdnJc9Ahh4E1kMTjVv2UJDQ+tcemDIsgQHBwcsX74cy5cv19nGzc0NiYmJdR7Hz88Pv/zyi97PIzIHXt6I6EHDrOYEcI03kUXi5ZmImi195cR4gWvRDhw4gDFjxsDb2xsikQibNm3S2fbVV1+FSCTCsmXLtO5XKpWIiIjQepzc3FxIpVKhzKFUKkVeXp5am2vXrmHMmDFwdnaGh4cHYmNjUVZW1rATJKpD/45uWrfzskcAA28iszI8tRrU7kZ5Y0pEzZX+yxcvcC1ZUVERevToobbERZtNmzbhyJEj8Pb21tlm2bJlOkcKo6OjIZfLIZPJIJPJIJfLIZVKhf2VlZUYPXo0ioqKcOjQIaxfvx4///wz4uLi6ndiRAZYKe2NmMc6au7gZY/AqeZEFkNUxysiopbgo2e6N3UXyMwiIiIQERFRZ5sbN25g2rRp2L59O0aPHq21zalTp/DJJ5/g2LFjaNeundq+tLQ0yGQypKSkoH///gCAVatWISQkBOnp6fD398eOHTtw/vx5ZGZmCsH9xx9/jIkTJ2L+/PlMJklm0drJDtIBHbDqYIbadt7VEcARbyKLoZZcjVdoImpGDL1m/aOPL69vD7iqqipIpVLMnj0b3bp109rm3r17eP7557FixQpIJBKN/cnJyRCLxULQDQADBgyAWCzG4cOHhTaBgYFqI+rh4eEoLS1Famqqzv6VlpYiPz9f7YvIGNqucVzjTQADbyKLoZrJnJdnImqu9N1gFpVWNFJPyBItWrQINjY2iI2N1dnm9ddfx8CBA/Hkk09q3Z+dnQ1PT0+N7Z6enkIpxuzsbHh5eantb9OmDezs7IQ22iQkJAjrxsViMXx9fQ05LSKBlZXmNZD3dQRwqjmReRmxyNtKbcSbl2giap70Xb2KSisbpR9keVJTU/Hpp5/ixIkTOv/ObdmyBXv27MHJkyfrPJa29yuVSrXthrSpLT4+Xij3CAD5+fkMvsko1lp+vqx4X0do4hFvfZkvlUol5s6dC29vbzg6OiI0NBTnzp1Ta1NaWorp06fDw8MDzs7OiIqKwvXr19XaMPMlNQeqT0h5eSailkrLYBA9IA4ePIicnBz4+fnBxsYGNjY2uHr1KuLi4tChQwcAwJ49e3D58mW0bt1aaAMATz/9NEJDQwEAEokEt27d0jj+7du3hVFuiUSiMbKdm5uL8vJyjZFwVfb29nB1dVX7IjKGtmsc424Cmjjw1pf5cvHixfjkk0+wYsUKHDt2DBKJBE888QQKCgqENjNmzMDGjRuxfv16HDp0CIWFhYiMjERl5f0n6sx8Sc2BNbOaE1ELoO/6pW0aJj0YpFIpTp8+DblcLnx5e3tj9uzZ2L59OwBgzpw5Gm0AYOnSpVizZg0AICQkBAqFAkePHhWOfeTIESgUCgwcOFBoc/bsWWRlZQltduzYAXt7e/Tu3buRzpgeRLzGkS5NOtW8rsyXSqUSy5Ytw9tvv41x48YBAL755ht4eXnhu+++w6uvvgqFQoHVq1dj3bp1GDFiBAAgMTERvr6+2LVrF8LDw5n5kpoNa7URb160iahl4j1py1ZYWIhLly4JrzMyMiCXy+Hm5gY/Pz+4u7urtbe1tYVEIoG/vz+A6pFqbQnV/Pz80LFjdZmmgIAAjBw5EjExMVi5ciUAYPLkyYiMjBSOExYWhq5du0IqleKjjz7C3bt3MWvWLMTExPC+jsxK27RyLiEkwIKTq2VkZCA7OxthYWHCNnt7ewwdOlTIWJmamory8nK1Nt7e3ggMDFTLammuzJdEpqQ21ZzXZyJqpvQ9OOQNaMt2/PhxBAcHIzg4GAAwc+ZMBAcH49133zXp5yQlJSEoKAhhYWEICwtD9+7dsW7dOmG/tbU1tm3bBgcHBwwaNAjjx4/H2LFjsWTJEpP2g6g2bWu8iQALTq5Wsy6n9jocLy8vXL16VWhjZ2eHNm3aaLRRzWpprsyXpaWlKC0tFV6z5ATVpjQiuxov1ET0IGCSoZYtNDQUSqXhf/uuXLmit42247m5uSExMbHO9/n5+eGXX34xuC9EpiCy2GFNamoW/6NR+8m4vmyU2tqYK/MlS06QKVlb/G8jEZF2IiNyVDDsJqKWjA8XSReLvdWvWd9Te8Q5JydHLWNlWVkZcnNz62xjrsyX8fHxUCgUwldmZqaRZ0ktnbO94ZNKrJhcjYhaoLE9q5dxPfn3f3lTSkQtGWcwki4WG3h37NgREokEO3fuFLaVlZVh//79QsbK3r17w9bWVq1NVlYWzp49q5bV0lyZL1lygvQZ2U2C0UHt8O/RAXrbqiVX40WbiFqIhU93x5qJfbHo6e4AgIB2Lk3cIyIi8+EtHOnSpGu89WW+nDFjBhYsWIBOnTqhU6dOWLBgAZycnBAdHQ0AEIvFmDRpEuLi4uDu7g43NzfMmjULQUFBQpZzZr6kpmRjbYX/vNDLoLas401ELZGDrTWGdbmfa8WG62qIqAWz1lK64Y9s5oGiJg68jx8/jmHDhgmvZ86cCQCYMGEC1q5dizfeeAPFxcWYMmUKcnNz0b9/f+zYsQMuLvefli9duhQ2NjYYP348iouLMXz4cKxduxbW1tZCm6SkJMTGxgrZz6OiotRqh9dkvpwyZQoGDRoER0dHREdHM/MlNSrW8SailoAzdojoQaZtOY0R+QapBWvSwFtf5kuRSIS5c+di7ty5Ots4ODhg+fLlWL58uc42zHxJzQHreBNRS8CrFxE9yLQMeBMBsOA13kQPGmvW8SaiFoADO0T0IOOsH9KFgTeRhbDmGm8iagF4/SIiItLEwJvIQqitCeKdKxE1UxzsISIi0sTAm8hCcI03EREREVHLxMCbyEIwqzkRERERUcvEwJvIQlip/DYy7iai5ooPDomIiDQx8CayEFZqI968cyWi5snYpTJrX+5rpp4QERFZDgbeRBZCLfBuwn4QETWmUH/Ppu4CERGR2THwJrIQVqpJzRl5E1Ez1cuvtcFtQ/3bmq8jREREFoSBN5GFUK8mxsibiJqnqJ4PGdy2u09r83WEiIjIgjDwJrJEjLuJqJnijB0iIiJNDLyJLBBvXInoQWDFax0RET0gGHgTWSDeixJRc2XM9YvLalqeAwcOYMyYMfD29oZIJMKmTZt0tn311VchEomwbNkyYdvdu3cxffp0+Pv7w8nJCX5+foiNjYVCoVB7b25uLqRSKcRiMcRiMaRSKfLy8tTaXLt2DWPGjIGzszM8PDwQGxuLsrIyE54tEZHhGHgTWQil8v6/WU6MiB4Egx51b+oukIkVFRWhR48eWLFiRZ3tNm3ahCNHjsDb21tt+82bN3Hz5k0sWbIEZ86cwdq1ayGTyTBp0iS1dtHR0ZDL5ZDJZJDJZJDL5ZBKpcL+yspKjB49GkVFRTh06BDWr1+Pn3/+GXFxcaY7WSIiI9g0dQeISBPDbiJqyY6+PRyZd4vRu32bpu4KmVhERAQiIiLqbHPjxg1MmzYN27dvx+jRo9X2BQYG4ueffxZeP/LII5g/fz5efPFFVFRUwMbGBmlpaZDJZEhJSUH//v0BAKtWrUJISAjS09Ph7++PHTt24Pz588jMzBSC+48//hgTJ07E/Pnz4erqauIzJ7ov/cOR8P+3rKm7QRaGI95EFogD3kTUknm6ODDofkBVVVVBKpVi9uzZ6Natm0HvUSgUcHV1hY1N9XhRcnIyxGKxEHQDwIABAyAWi3H48GGhTWBgoNqIenh4OEpLS5Gamqrzs0pLS5Gfn6/2RWQsextrZCSMaupukIVh4E1kgbjukYiIWqJFixbBxsYGsbGxBrW/c+cOPvjgA7z66qvCtuzsbHh6emq09fT0RHZ2ttDGy8tLbX+bNm1gZ2cntNEmISFBWDcuFovh6+trUD+JauOyQaqNgTeRBeK1moiaK95ski6pqan49NNPsXbtWoN+TvLz8zF69Gh07doV7733nto+be9XKpVq2w1pU1t8fDwUCoXwlZmZqbefRESGYOBNRERERGZ38OBB5OTkwM/PDzY2NrCxscHVq1cRFxeHDh06qLUtKCjAyJEj0apVK2zcuBG2trbCPolEglu3bmkc//bt28Iot0Qi0RjZzs3NRXl5ucZIuCp7e3u4urqqfRERmQIDbyIiIjIZjneTLlKpFKdPn4ZcLhe+vL29MXv2bGzfvl1ol5+fj7CwMNjZ2WHLli1wcHBQO05ISAgUCgWOHj0qbDty5AgUCgUGDhwotDl79iyysrKENjt27IC9vT169+5t5jMlItLErOZEFogzNYmIqDkqLCzEpUuXhNcZGRmQy+Vwc3ODn58f3N3VS8jZ2tpCIpHA398fQPVId1hYGO7du4fExES1BGdt27aFtbU1AgICMHLkSMTExGDlypUAgMmTJyMyMlI4TlhYGLp27QqpVIqPPvoId+/exaxZsxATE8NRbCJqEgy8iSwQk6sREVFzdPz4cQwbNkx4PXPmTADAhAkTsHbtWr3vT01NxZEjRwAAjz76qNq+jIwMYUp6UlISYmNjERYWBgCIiopSqx1ubW2Nbdu2YcqUKRg0aBAcHR0RHR2NJUuWNOT0iIjqjYE3kQXiiDcRETVHoaGhUCqVBre/cuVKvd7v5uaGxMTEOtv4+fnhl19+MbgvRETmxDXeRBaCwXbLduDAAYwZMwbe3t4QiUTYtGmT2v4NGzYgPDwcHh4eEIlEkMvlGscIDQ2FSCRS+3ruuefU2uTm5kIqlQqlcKRSKfLy8tTaXLt2DWPGjIGzszM8PDwQGxuLsrIyE58xEREREdVg4E1kIVQf8DMGb3mKiorQo0cPtamQtfcPGjQICxcurPM4MTExyMrKEr5q1jfWiI6Ohlwuh0wmg0wmg1wuh1QqFfZXVlZi9OjRKCoqwqFDh7B+/Xr8/PPPiIuLa/hJEoEPEYmIiLThVHMiC8Q6uC1PREQEIiIidO6vCY5rT7uszcnJCRKJROu+tLQ0yGQypKSkoH///gCAVatWISQkBOnp6fD398eOHTtw/vx5ZGZmwtvbGwDw8ccfY+LEiZg/fz6TDhERERGZAUe8iSwQw27SJSkpCR4eHujWrRtmzZqFgoICYV9ycjLEYrEQdAPAgAEDIBaLcfjwYaFNYGCgEHQDQHh4OEpLS5Gamqr1M0tLS4XMwqoZhomIiIjIMBzxJrIQHOQmfV544QV07NgREokEZ8+eRXx8PE6dOoWdO3cCALKzs+Hp6anxPk9PT2RnZwttvLy81Pa3adMGdnZ2QpvaEhISMG/ePBOfDbVUrMpARFTNo5U9/iosbepukIVg4E1kIZzs7v86MggnbWJiYoR/BwYGolOnTujTpw9OnDiBXr16AdC+TEGpVKptN6SNqvj4eKEkEADk5+fD19e33udBLVsrB95aEBEBQP+Obth2Jqupu0EWgn8diSyEd2tHzInoAmd7G67xJoP06tULtra2uHjxInr16gWJRIJbt25ptLt9+7Ywyi2RSIQauTVyc3NRXl6uMRJew97eHvb29qY/AWpRFo4Lwp2iMnT0cG7qrhARWYQPxgaitZMtnu3Lh9XEwJvIorw29JGm7gI1I+fOnUN5eTnatWsHAAgJCYFCocDRo0fRr18/AMCRI0egUCgwcOBAoc38+fORlZUlvG/Hjh2wt7dH7969m+ZEqEV4rp9fU3eBiMiiuDnbYf5TQU3dDbIQDLyJiBpBYWEhLl26JLzOyMiAXC6Hm5sb/Pz8cPfuXVy7dg03b94EAKSnpwOoHqGWSCS4fPkykpKSMGrUKHh4eOD8+fOIi4tDcHAwBg0aBAAICAjAyJEjERMTI5QZmzx5MiIjI+Hv7w8ACAsLQ9euXSGVSvHRRx/h7t27mDVrFmJiYpjRnIiIiMhMmNWciKgRHD9+HMHBwQgODgYAzJw5E8HBwXj33XcBAFu2bEFwcDBGjx4NAHjuuecQHByML7/8EgBgZ2eH3bt3Izw8HP7+/oiNjUVYWBh27doFa2tr4XOSkpIQFBSEsLAwhIWFoXv37li3bp2w39raGtu2bYODgwMGDRqE8ePHY+zYsViyZEljfSuIiIiIHjgipVKpbOpOtBT5+fkQi8VQKBQcOSJqIfh7rYnfE6KWib/bmvg9IWp5mur3miPeRERERERERGbEwJuIiIiIiIjIjBh4ExEREREREZkRA28iIiIiIiIiM2LgTURERERERGRGrONtQjUJ4vPz85u4J0RkKjW/zywAcR+vdUQtE693mni9I2p5mupax8DbhAoKCgAAvr6+TdwTIjK1goICiMXipu6GReC1jqhl4/XuPl7viFquxr7WsY63CVVVVeHmzZtwcXGBSCSqs21+fj58fX2RmZnZbOpCss/m19z6C7T8PiuVShQUFMDb2xtWVlydAxh3rQOa389Ic+svwD43lpbeZ17vNPHezvKwz+bX3PoLNI9rHUe8TcjKygo+Pj5GvcfV1bXZ/EDXYJ/Nr7n1F2jZfebIj7r6XOuA5vcz0tz6C7DPjaUl95nXO3W8t7Nc7LP5Nbf+ApZ9rePjTCIiIiIiIiIzYuBNREREREREZEYMvJuIvb093nvvPdjb2zd1VwzGPptfc+svwD6Tfs3t+93c+guwz42Ffaa6NMfvNfvcOJpbn5tbf4Hm0WcmVyMiIiIiIiIyI454ExEREREREZkRA28iIiIiIiIiM2LgTURERERERGRGDLyJiIiIiIiIzIiBNxEREREREZEZMfAmIiIiIiIiMiMG3kRERERERERmxMCbiIiIiIiIyIwYeBMRERERERGZEQNvIiIiIiIiIjNi4E1ERERERERkRgy8iYiIiIiIiMyIgTcRERERERGRGTHwJiIiIiIiIjIjBt5EREREREREZmTT1B1oSaqqqnDz5k24uLhAJBI1dXeIyASUSiUKCgrg7e0NKys+qwR4rSNqqXi908TrHVHL01TXOgbeJnTz5k34+vo2dTeIyAwyMzPh4+PT1N2wCLzWEbVsvN7dx+sdUcvV2Nc6Bt4m5OLiAqD6f6Krq2sT94aITCE/Px++vr7C7zfxWkfUUvF6p4nXO6KWp6mudQy8TahmCpKrqysvzkQtDKcY3sdrHVHLxuvdfbzeEbVcjX2t4wIeIiIiIiIiIjNi4E1ERERERERkRgy8iYiIiIiIiMzI4gPvhIQE9O3bFy4uLvD09MTYsWORnp6us/2rr74KkUiEZcuWqW0vLS3F9OnT4eHhAWdnZ0RFReH69etqbXJzcyGVSiEWiyEWiyGVSpGXl2eGsyIiIiIiIqIHhcUH3vv378fUqVORkpKCnTt3oqKiAmFhYSgqKtJou2nTJhw5cgTe3t4a+2bMmIGNGzdi/fr1OHToEAoLCxEZGYnKykqhTXR0NORyOWQyGWQyGeRyOaRSqVnPj4iIiIiIiFo2i89qLpPJ1F6vWbMGnp6eSE1NxZAhQ4TtN27cwLRp07B9+3aMHj1a7T0KhQKrV6/GunXrMGLECABAYmIifH19sWvXLoSHhyMtLQ0ymQwpKSno378/AGDVqlUICQlBeno6/P39zXymRERERERE1BJZ/Ih3bQqFAgDg5uYmbKuqqoJUKsXs2bPRrVs3jfekpqaivLwcYWFhwjZvb28EBgbi8OHDAIDk5GSIxWIh6AaAAQMGQCwWC21qKy0tRX5+vtoXERERERERkapmFXgrlUrMnDkTgwcPRmBgoLB90aJFsLGxQWxsrNb3ZWdnw87ODm3atFHb7uXlhezsbKGNp6enxns9PT2FNrUlJCQI68HFYjF8fX3re2pEuHbnHpIv32nqbhARmZVSqcS+9Bzk5Jc0dVeoiRiSv0epVGLu3Lnw9vaGo6MjQkNDce7cObU2zN9Dlq6kvBI7z99CUWlFU3eFLECzCrynTZuG06dP4/vvvxe2paam4tNPP8XatWuNLoKuVCrV3qPt/bXbqIqPj4dCoRC+MjMzjfp8IlVDPtqL51el4NxNRVN3hYjIbLadycLENccwaNGepu4KNRFD8vcsXrwYn3zyCVasWIFjx45BIpHgiSeeQEFBgdCG+XvI0r27+Sxivj2O6d+fbOqukAWw+DXeNaZPn44tW7bgwIED8PHxEbYfPHgQOTk58PPzE7ZVVlYiLi4Oy5Ytw5UrVyCRSFBWVobc3Fy1Ue+cnBwMHDgQACCRSHDr1i2Nz719+za8vLy09sne3h729vamOkUiAMDZGwp08xY3dTeIiMziwIXbAIDySmUT94Sair78PUqlEsuWLcPbb7+NcePGAQC++eYbeHl54bvvvsOrr77K/D3ULPx4vHoGxp4/cpq4J2QJLH7EW6lUYtq0adiwYQP27NmDjh07qu2XSqU4ffo05HK58OXt7Y3Zs2dj+/btAIDevXvD1tYWO3fuFN6XlZWFs2fPCoF3SEgIFAoFjh49KrQ5cuQIFAqF0IaIiIiITKt2/p6MjAxkZ2er5eaxt7fH0KFDhbw7zN9DRM2NxY94T506Fd999x02b94MFxcXYb21WCyGo6Mj3N3d4e7urvYeW1tbSCQS4UmmWCzGpEmTEBcXB3d3d7i5uWHWrFkICgoSnpIGBARg5MiRiImJwcqVKwEAkydPRmRkJJ+IEhERmYiSA92kQlv+npp7vdozDr28vHD16lWhjbny98ybN69hJ0VEpIXFj3h/8cUXUCgUCA0NRbt27YSvH374wajjLF26FGPHjsX48eMxaNAgODk5YevWrbC2thbaJCUlISgoCGFhYQgLC0P37t2xbt06U58SEREREUF7/p4atXPs1JV3R1cb5u8hIkth8SPeyno8Gr9y5YrGNgcHByxfvhzLly/X+T43NzckJiYa/XlEREREZBxd+XskEgmA6hHrdu3aCdtzcnKEUXDm7yGi5sbiR7yJiIiIqOXQl7+nY8eOkEgkarl5ysrKsH//fiGoZv4eImpuLH7Em4iIiIhaDn35e0QiEWbMmIEFCxagU6dO6NSpExYsWAAnJydER0cLbZm/h4iaEwbeRBZGBOPq0RMRNSfMrUZffPEFACA0NFRt+5o1azBx4kQAwBtvvIHi4mJMmTIFubm56N+/P3bs2AEXFxeh/dKlS2FjY4Px48ejuLgYw4cPx9q1azXy98TGxgrZz6OiorBixQrzniARkRYMvImIiIio0RiSv0ckEmHu3LmYO3euzjbM30NEzQnXeBMRERERERGZEQNvIiIiIiIiIjNi4E1EZAESEhLQt29fuLi4wNPTE2PHjkV6erqwv7y8HG+++SaCgoLg7OwMb29vvPTSS7h586bacUJDQyESidS+nnvuObU2ubm5kEqlEIvFEIvFkEqlyMvLa4zTJCIiInogMfAmIrIA+/fvx9SpU5GSkoKdO3eioqICYWFhKCoqAgDcu3cPJ06cwDvvvIMTJ05gw4YNuHDhAqKiojSOFRMTg6ysLOGrJptvjejoaMjlcshkMshkMsjlckil0kY5TyIDlvcSERG1OEyuRkRkAWQymdrrNWvWwNPTE6mpqRgyZAjEYrFavVoAWL58Ofr164dr167Bz89P2O7k5ASJRKL1c9LS0iCTyZCSkoL+/fsDAFatWoWQkBCkp6ezxA4RERGRGXDEm4jIAikUCgDVGXnraiMSidC6dWu17UlJSfDw8EC3bt0wa9YsFBQUCPuSk5MhFouFoBsABgwYALFYjMOHD2v9nNLSUuTn56t9EREREZHhOOJNRGRhlEolZs6cicGDByMwMFBrm5KSEsyZMwfR0dFwdXUVtr/wwgvo2LEjJBIJzp49i/j4eJw6dUoYLc/Ozoanp6fG8Tw9PZGdna31sxISEjBv3jwTnBkRERHRg4mBNxGRhZk2bRpOnz6NQ4cOad1fXl6O5557DlVVVfj888/V9sXExAj/DgwMRKdOndCnTx+cOHECvXr1AlBdH7c2pVKpdTsAxMfHY+bMmcLr/Px8+Pr6Gn1eRERERA8qBt5ElkZ77EMPiOnTp2PLli04cOAAfHx8NPaXl5dj/PjxyMjIwJ49e9RGu7Xp1asXbG1tcfHiRfTq1QsSiQS3bt3SaHf79m14eXlpPYa9vT3s7e3rd0JERERExDXeRESWQKlUYtq0adiwYQP27NmDjh07arSpCbovXryIXbt2wd3dXe9xz507h/LycrRr1w4AEBISAoVCgaNHjwptjhw5AoVCgYEDB5ruhIh0UIJpzYmI6MHDEW8iIgswdepUfPfdd9i8eTNcXFyE9dZisRiOjo6oqKjAM888gxMnTuCXX35BZWWl0MbNzQ12dna4fPkykpKSMGrUKHh4eOD8+fOIi4tDcHAwBg0aBAAICAjAyJEjERMTI5QZmzx5MiIjI5nRnIiIiMhMOOJNRGQBvvjiCygUCoSGhqJdu3bC1w8//AAAuH79OrZs2YLr16+jZ8+eam1qspHb2dlh9+7dCA8Ph7+/P2JjYxEWFoZdu3bB2tpa+KykpCQEBQUhLCwMYWFh6N69O9atW9ck501ERET0IOCINxGRBVAq655+26FDB71tfH19sX//fr2f5ebmhsTERKP6R0RERET1xxFvIiIiIiIiIjNi4E1ERESNh7nViIjoAWTxgXdCQgL69u0LFxcXeHp6YuzYsUhPTxf2l5eX480330RQUBCcnZ3h7e2Nl156CTdv3lQ7TmlpKaZPnw4PDw84OzsjKioK169fV2uTm5sLqVQKsVgMsVgMqVSKvLy8xjhNIsHWUzf1NyIiIiIiombD4gPv/fv3Y+rUqUhJScHOnTtRUVGBsLAwFBUVAQDu3buHEydO4J133sGJEyewYcMGXLhwAVFRUWrHmTFjBjZu3Ij169fj0KFDKCwsRGRkJCorK4U20dHRkMvlkMlkkMlkkMvlkEqljXq+RAcv/tXUXSAiIiIiIhOy+ORqMplM7fWaNWvg6emJ1NRUDBkyBGKxGDt37lRrs3z5cvTr1w/Xrl2Dn58fFAoFVq9ejXXr1mHEiBEAgMTERPj6+mLXrl0IDw9HWloaZDIZUlJS0L9/fwDAqlWrEBISgvT0dJbZISIiMrHyyirYWlv8GAAREVGDNbu/dgqFAkB1Vt662ohEIrRu3RoAkJqaivLycoSFhQltvL29ERgYKJThSU5OhlgsFoJuABgwYADEYrHQhoiIiEzn4MXbTd0FIiKiRmHxI96qlEolZs6cicGDByMwMFBrm5KSEsyZMwfR0dFwdXUFAGRnZ8POzg5t2rRRa+vl5YXs7Gyhjaenp8bxPD09hTa1lZaWorS0VHidn59fr/MiIiJ6EFVUMtMaERE9GJrViPe0adNw+vRpfP/991r3l5eX47nnnkNVVRU+//xzvcdTKpUQiUTCa9V/62qjKiEhQUjEJhaL4evra+CZEBERPZiUOv5NRETUkjWbwHv69OnYsmUL9u7dCx8fH4395eXlGD9+PDIyMrBz505htBsAJBIJysrKkJubq/aenJwceHl5CW1u3bqlcdzbt28LbWqLj4+HQqEQvjIzMxtyikRERA8UJSNvIiJ6QFh84K1UKjFt2jRs2LABe/bsQceOHTXa1ATdFy9exK5du+Du7q62v3fv3rC1tVVLwpaVlYWzZ89i4MCBAICQkBAoFAocPXpUaHPkyBEoFAqhTW329vZwdXVV+yIiIiJDMfImIqIHg8Wv8Z46dSq+++47bN68GS4uLsJ6a7FYDEdHR1RUVOCZZ57BiRMn8Msvv6CyslJo4+bmBjs7O4jFYkyaNAlxcXFwd3eHm5sbZs2ahaCgICHLeUBAAEaOHImYmBisXLkSADB58mRERkYyozkREZEZcMSbiIgeFBYfeH/xxRcAgNDQULXta9aswcSJE3H9+nVs2bIFANCzZ0+1Nnv37hXet3TpUtjY2GD8+PEoLi7G8OHDsXbtWlhbWwvtk5KSEBsbK2Q/j4qKwooVK8xzYkRERA84xt1ERPSgsPjAW6nncXiHDh30tgEABwcHLF++HMuXL9fZxs3NDYmJiUb3kYiIiAyj+jebI95ERPSgsPg13kRERNQyKTnmTUREDwgG3kRERNRoVEt0csSbiIgeFAy8iYiIqNGoTjWvYuRNREQPCAbeRERERERERGbEwJuIiIgaDce4iYjoQcTAm4iIiIgazYEDBzBmzBh4e3tDJBJh06ZNavsLCwsxbdo0+Pj4wNHREQEBAUJ52RqlpaWYPn06PDw84OzsjKioKFy/fl2tTW5uLqRSKcRiMcRiMaRSKfLy8sx8dkRE2jHwJiKyAAkJCejbty9cXFzg6emJsWPHIj09Xa2NUqnE3Llz4e3tDUdHR4SGhuLcuXNqbXgzSpZOpL8JtXBFRUXo0aMHVqxYoXX/66+/DplMhsTERKSlpeH111/H9OnTsXnzZqHNjBkzsHHjRqxfvx6HDh1CYWEhIiMjUVlZKbSJjo6GXC6HTCaDTCaDXC6HVCo1+/kREWnDwJuIyALs378fU6dORUpKCnbu3ImKigqEhYWhqKhIaLN48WJ88sknWLFiBY4dOwaJRIInnngCBQUFQhvejJKl41RzioiIwIcffohx48Zp3Z+cnIwJEyYgNDQUHTp0wOTJk9GjRw8cP34cAKBQKLB69Wp8/PHHGDFiBIKDg5GYmIgzZ85g165dAIC0tDTIZDJ89dVXCAkJQUhICFatWoVffvlF46EmEVFjYOBNRGQBZDIZJk6ciG7duqFHjx5Ys2YNrl27htTUVADVo93Lli3D22+/jXHjxiEwMBDffPMN7t27h++++w4Ab0aJqGUYPHgwtmzZghs3bkCpVGLv3r24cOECwsPDAQCpqakoLy9HWFiY8B5vb28EBgbi8OHDAKqDd7FYjP79+wttBgwYALFYLLTRprS0FPn5+WpfRESmwMCbiMgCKRQKAICbmxsAICMjA9nZ2Wo3mvb29hg6dKhwE2nOm1EiU1Gdaq5a05uoxmeffYauXbvCx8cHdnZ2GDlyJD7//HMMHjwYAJCdnQ07Ozu0adNG7X1eXl7Izs4W2nh6emoc29PTU2ijTUJCgrAMRywWw9fX14RnRkQPMgbeREQWRqlUYubMmRg8eDACAwMBQLhR9PLyUmtb+0bTHDejHAEiU1Kdam7FuJu0+Oyzz5CSkoItW7YgNTUVH3/8MaZMmSLM3NFFqVSqPczR9mCndpva4uPjoVAohK/MzMz6nwgRkQqbpu4AERGpmzZtGk6fPo1Dhw5p7Kt9w6jvJlJbG2NvRhMSEjBv3jxDuk5kFCuOeFMtxcXFeOutt7Bx40aMHj0aANC9e3fI5XIsWbIEI0aMgEQiQVlZGXJzc9UeNObk5GDgwIEAAIlEglu3bmkc//bt2xoPMFXZ29vD3t7exGdFRMQRbyIiizJ9+nRs2bIFe/fuhY+Pj7BdIpEAgMaodE5OjnATqXozWlcbY29GOQJEpqRUGfLmiDfVVl5ejvLyclhZqd+iWltbo6qqCgDQu3dv2NraYufOncL+rKwsnD17Vgi8Q0JCoFAocPToUaHNkSNHoFAohDZERI2JgTcRkQVQKpWYNm0aNmzYgD179qBjx45q+zt27AiJRKJ2o1lWVob9+/cLN5Hmuhm1t7eHq6ur2hdRfVVW3Y+8OeL9YCosLIRcLodcLgdQncNCLpfj2rVrcHV1xdChQzF79mzs27cPGRkZWLt2Lb799ls89dRTAACxWIxJkyYhLi4Ou3fvxsmTJ/Hiiy8iKCgII0aMAAAEBARg5MiRiImJQUpKClJSUhATE4PIyEj4+/s31akT0QOMU82JiCzA1KlT8d1332Hz5s1wcXERRrbFYjEcHR0hEokwY8YMLFiwAJ06dUKnTp2wYMECODk5ITo6WmhbczPq7u4ONzc3zJo1S+fN6MqVKwEAkydP5s0oNZoqJQPvB93x48cxbNgw4fXMmTMBABMmTMDatWuxfv16xMfH44UXXsDdu3fRvn17zJ8/H6+99prwnqVLl8LGxgbjx49HcXExhg8fjrVr18La2lpok5SUhNjYWCHhZFRUlM7a4URE5sbAm4jIAnzxxRcAgNDQULXta9aswcSJEwEAb7zxBoqLizFlyhTk5uaif//+2LFjB1xcXIT2vBklc6mqUmJveg6CfMTwdHEw6r0HLtyGvY0V+j/srjbibc255g+k0NBQKJW6K7pLJBKsWbOmzmM4ODhg+fLlWL58uc42bm5uSExMrHc/iYhMiYE3EZEFqOsmtIZIJMLcuXMxd+5cnW14M0rmsuHkDcz66RQcba2R9sFIg9+nuFeOl76uXtpwaX6EWuBdXlll8n4SERFZIq7xJiIiIr32/pEDACgurzTqffkl5cK/yyqr1KaaT16Xisy790zTQSIiIgvGwJvIwu1Ou4WfjjOLNBE1LSX0z8rQRnUZt1IJVFSpH+fr3zMa0i0iIqJmgVPNiSzcpG+OAwD6dnBDBw/nJu4NEVH9KaGe1RwATl7La5K+EBERNSaLH/FOSEhA37594eLiAk9PT4wdOxbp6elqbZRKJebOnQtvb284OjoiNDQU586dU2tTWlqK6dOnw8PDA87OzoiKisL169fV2uTm5kIqlUIsFkMsFkMqlSIvL8/cp0hkkFv5JU3dBSJ6gBmQhsCAYyg1Am8THJaIiMjiWXzgvX//fkydOhUpKSnYuXMnKioqEBYWhqKiIqHN4sWL8cknn2DFihU4duwYJBIJnnjiCRQUFAhtZsyYgY0bN2L9+vU4dOgQCgsLERkZicrK+2vVoqOjIZfLIZPJIJPJIJfLIZVKG/V8iYiIWhKRylzzKqV6OTEAponoiYiILJzFTzWXyWRqr9esWQNPT0+kpqZiyJAhUCqVWLZsGd5++22MGzcOAPDNN9/Ay8sL3333HV599VUoFAqsXr0a69atE2rZJiYmwtfXF7t27UJ4eDjS0tIgk8mQkpKC/v37AwBWrVqFkJAQpKens74tNTlLvDX9+lAGfj2ThTUv94WLg21Td4eIzKg+8XGWohj//Hu5DABkK0o0RrxVF4FfvVOEh1o7wsba4scFiIiIjNLs/rIpFAoA1eVwACAjIwPZ2dlCPVoAsLe3x9ChQ3H48GEAQGpqKsrLy9XaeHt7IzAwUGiTnJwMsVgsBN0AMGDAAIjFYqFNbaWlpcjPz1f7IjKF/Rdua2yzxEGh9385j+NXc/H1oStN3RUiMrP6JFeL33AGaVn3/zaGLzuASh2H+eX0TQz9aB9eXZda3y4SERFZrGYVeCuVSsycORODBw9GYGAgACA7OxsA4OXlpdbWy8tL2JednQ07Ozu0adOmzjaenp4an+np6Sm0qS0hIUFYDy4Wi+Hr69uwEyT623/2XGrqLhjF2PJCRPRgyMrTzE1RVWvE2/rvAe+vDlZnN9/9d9kyIiKilqRZBd7Tpk3D6dOn8f3332vsU11DBlQH6bW31Va7jbb2dR0nPj4eCoVC+MrMZMknenAcUBmVr2+ZISJqPuoz60bPn2EAgNXfjawMaEtERNRcNZvAe/r06diyZQv27t0LHx8fYbtEIgEAjVHpnJwcYRRcIpGgrKwMubm5dba5deuWxufevn1bYzS9hr29PVxdXdW+iEyhOQSym07eaOouEFEjMtVVqfb1LUtRPSqu72E5ERFRc2bxgbdSqcS0adOwYcMG7NmzBx07dlTb37FjR0gkEuzcuVPYVlZWhv3792PgwIEAgN69e8PW1latTVZWFs6ePSu0CQkJgUKhwNGjR4U2R44cgUKhENoQNTalJS7s/ptaZmLL7SYRNSFDgukbecUAOOJNREQtm8VnNZ86dSq+++47bN68GS4uLsLItlgshqOjI0QiEWbMmIEFCxagU6dO6NSpExYsWAAnJydER0cLbSdNmoS4uDi4u7vDzc0Ns2bNQlBQkJDlPCAgACNHjkRMTAxWrlwJAJg8eTIiIyOZ0ZyajHpsa1nRbRXjbqIHiqmeA+o6jhVHvImIqAWz+MD7iy++AACEhoaqbV+zZg0mTpwIAHjjjTdQXFyMKVOmIDc3F/3798eOHTvg4uIitF+6dClsbGwwfvx4FBcXY/jw4Vi7di2sra2FNklJSYiNjRWyn0dFRWHFihXmPUFq9krKK7H28BUM8/eEv8RF/xvqqwmiW6VSiT1/5KBLO1c81NqxznZERIbQdblg3E1ERC2ZxQfehtzQi0QizJ07F3PnztXZxsHBAcuXL8fy5ct1tnFzc0NiYmJ9ukkPsJX7/8TSXRew8Lc/cGXhaJMeu6nD2R3nbwmlfWqf24VbBU3RJSJqMsZfkRhLExERVbP4Nd5Elu7MjTyTH7PmeVNTjyQfzbirc1+FylzzyqrG6A0RNSWTTTXXsV3EMJ2ImrnKKiWOXbmLEpZZJS0YeBM1mPE3iyXllXjmi8P4dNfFOts19Yi3oSqrGHkTkSZt08d1PVDkVHMiau7+s/cS/vFlMqYknWjqrpAFYuBN1ED1ycT784nrOH41F0t3XdC6v+a2tKkTh9c1wqV681zJNd5ELV59fsuNCaYZeBNRc/fN4SsAgD1/5DRtR8giMfAmaqD63CyWlBs2QtzUmcyLSisMasep5kQtn7mXvnCqORE1d4aUUKQHFwNvogZqrMHephhU/uF4ps59qt3JLSozf2eIqNnRFkwzqzkRtUQr9lzEX4WlwuuqKs4GJHUMvImagL410TUjS81lBveRjDtN3QUiMrPs/FL9jWrRFkxXMCcEEbUwpRWVWLJDfflg7Vu4pk6YS02PgTdRE1jw6x9N3YWGU/n7walVpnHgwAGMGTMG3t7eEIlE2LRpk9p+kUik9eujjz4S2oSGhmrsf+6559SOk5ubC6lUCrFYDLFYDKlUiry8vEY4Q2rObuTeM8lxKrWMAl3KKTTJsRvi7A0FVh/K0No/IqK6aHueWFUr0P5i/+VG6g1ZKgbeRA1kjls07cnVLOxmUCXWbuNki6gVh3CRtb0bpKioCD169MCKFSu07s/KylL7+vrrryESifD000+rtYuJiVFrt3LlSrX90dHRkMvlkMlkkMlkkMvlkEqlZjsvahnqlVxNy7bySs0j/Wv9ySZ/gBe5/BA++OU8ftSyxEZRXI6jGXc5YkVEWmlLMlt702JZeiP1hiyVTVN3gIg0nb6uAGCBwbYK1Vvky7eLAADTvjuJ7a8PaZoOtQARERGIiIjQuV8ikai93rx5M4YNG4aHH35YbbuTk5NG2xppaWmQyWRISUlB//79AQCrVq1CSEgI0tPT4e/v38CzIFKhJZjWNqJ87mY+rOtTIsIMTmXm4fl+fmrbxv7nd2T8VYRPxvfAuF4+TdQzIrJUlVoeKFryPRw1DY54EzVQQUm5yY9Zc2Oqen/aHDL+3r3HJGuN5datW9i2bRsmTZqksS8pKQkeHh7o1q0bZs2ahYKC+zMRkpOTIRaLhaAbAAYMGACxWIzDhw9r/azS0lLk5+erfdEDyET3kLrWeFvKFO+cAvW17PfKKpDxV/XDxS2nbjZFl4jIwmkb8b54q+mX0JBl4Yg3UQOl/Hm3Qe//4dg1RAS107qvuU1rZAbPxvPNN9/AxcUF48aNU9v+wgsvoGPHjpBIJDh79izi4+Nx6tQp7Ny5EwCQnZ0NT09PjeN5enoiOztb62clJCRg3rx5pj8JavG0PS6ssMDrhOq1NktRorbv8SX7hX9bysMBIrIs65Kvamyb+aNcY1tVlRJWFjK7hxqfyQLv+oyAuLq6murjiZqtN38+g11pOVr3WfItnra+aXviS+bx9ddf44UXXoCDg4Pa9piYGOHfgYGB6NSpE/r06YMTJ06gV69eALQnw1MqlTrX2MbHx2PmzJnC6/z8fPj6+priNKgZUf3tlmfmoYePWO+6bK1ZzbVMyQQAR1trFJdXNqCH9VdXQJ2dfz8Qr50siYgIAJbuuqCx7YKWEe/yqirYW1k3RpfIApks8G7durVRiVFEIhEuXLigsTaR6EG08/wtrduVFlx1p5NnK/z599pualwHDx5Eeno6fvjhB71te/XqBVtbW1y8eBG9evWCRCLBrVuaP2+3b9+Gl5eX1mPY29vD3t6+wf2mlmPsf37HR890xz/6GP8AprC0Quv2gHYuOHEtr4E9qx/Vh4ZpWboHEjjiTUQNwWvIg82kU83/97//wc3NTW87pVKJUaNGmfKjiVokS07M8Vintth+Tj2A42BQ41i9ejV69+6NHj166G177tw5lJeXo1276uUMISEhUCgUOHr0KPr16wcAOHLkCBQKBQYOHGjWflPzVnvpyw/HMvUG3s1lQqWhN8O8aSaihtBW1YEeHCYLvNu3b48hQ4bA3d3doPYPP/wwbG1tTfXxRC2SJQey72w+q7GN0zAbprCwEJcuXRJeZ2RkQC6Xw83NDX5+1VmW8/Pz8dNPP+Hjjz/WeP/ly5eRlJSEUaNGwcPDA+fPn0dcXByCg4MxaNAgAEBAQABGjhyJmJgYoczY5MmTERkZyYzmZJTyStNOyWmq0W7A8ID62JVcdJizDSMCvPDVhD5m7hURtTQ1182qKiUUxeVo42zXxD2ixmSyrOYZGRkGB90AcPbsWa4RJNJDNZBt4hK3GrTG2Iy7G+T48eMIDg5GcHAwAGDmzJkIDg7Gu+++K7RZv349lEolnn/+eY3329nZYffu3QgPD4e/vz9iY2MRFhaGXbt2wdr6/pqypKQkBAUFISwsDGFhYejevTvWrVtn/hOkFuWyAUtNDF2C1sNH3NDuNIixI9m70rQvDyLDHDhwAGPGjIG3tzdEIhE2bdqk0SYtLQ1RUVEQi8VwcXHBgAEDcO3aNWF/aWkppk+fDg8PDzg7OyMqKgrXr19XO0Zubi6kUinEYjHEYjGkUiny8vLMfHZEuv10vPpnNH7DGQR/sBOpVxuWoJeaF5OWE3v88cd5QSMyIdVbQQ4mt3yhoaFQKpUaX2vXrhXaTJ48Gffu3YNYrBmo+Pr6Yv/+/bhz5w5KS0tx6dIlfPrppxpLgNzc3JCYmCiUBktMTETr1q3NfHbU3NW+BGlbq32nsBQzf5TjaIZxN5OPtG3VgJ41HKeQN66ioiL06NEDK1as0Lr/8uXLGDx4MLp06YJ9+/bh1KlTeOedd9SSSc6YMQMbN27E+vXrcejQIRQWFiIyMhKVlfcT9EVHR0Mul0Mmk0Emk0Eul0MqlZr9/Ih0+SO7OofED8czAQCf773clN2hRmbSNd779u1DWRnr+BKZiuqId3OYxm35PSSi+jJk7Hrhb39gw4kb2HDiBq4sHG3wGu8NJ280pGsNVjvwrqisgo21FcoqLDjDZTMWERGBiIgInfvffvttjBo1CosXLxa2qSbjVSgUWL16NdatW4cRI0YAABITE+Hr64tdu3YhPDwcaWlpkMlkSElJQf/+/QEAq1atQkhICNLT07m0hppEabn6NYX3TQ8Wk454E5GJKbX+02I1t7rjRGS4ojL9pb7+/Ms0lQ6+OvinSY6jqmZNpTa1SyH+L7V6OmhBifb2ZD5VVVXYtm0bOnfujPDwcHh6eqJ///5q09FTU1NRXl6OsLAwYZu3tzcCAwNx+PBhAEBycjLEYrEQdAPAgAEDIBaLhTZEja2kQv062hwGVch0TB54FxQUCNMXdX0ZQ986oMLCQkybNg0+Pj5wdHREQEAAvvjiC7U2XAdEzY2jbfV6XPWp5rw4E5H5ZCtKcPxKw9YbmioVxYfb0nCnsNRER6s26Ztj6DFvBy7cKtDYV7u2+JwNZwAYvkbdkpSUV2Ljyev4y8Tfv8aSk5ODwsJCLFy4ECNHjsSOHTvw1FNPYdy4cdi/fz8AIDs7G3Z2dmjTpo3ae728vJCdnS208fT01Di+p6en0Eab0tLSBt23EtWl9rWGt3YPFpMH3p07d0abNm20frVu3VrjIqmPvnVAr7/+OmQyGRITE5GWlobXX38d06dPx+bNm4U2XAdEzU1xeSXyS8rVnoQ2h2uzISNiTSX58h0cuHC7qbtBZLEGJOzGM18m4+S13Hofo3ac2pDRnL8KTbt0bW969e9/UspVjX3a1ngrlUpUVOmeap5bZJlL65ZsT8frP5zC8/9Naequ1EvV39/zJ598Eq+//jp69uyJOXPmIDIyEl9++WWd71UqlWoPS7Q9OKndpraEhARhEEYsFjMRMJnUoUt/qb1uDvd2ZDomXeMNGF7L21D61gElJydjwoQJCA0NBVCdeGjlypU4fvw4nnzySa4DomZr3pbziAvrLLxOvZKLYf6aT+9Jv/LKKjy/qvom9NS7YRA7sZQhkSrVGTWHL99BsJ9xD8lriGqNeTckZ1n4sgP4PmYA2okd8FAbR9ham2asoPa0cgCo0NJRRXE5tp3O0nmcZbsuYN6TgSbpkyn98nefL+YUNnFP6sfDwwM2Njbo2rWr2vaAgAAcOnQIACCRSFBWVobc3Fy1AZ2cnBwMHDhQaHPrlmb2+du3b8PLy0vn58fHx2PmzJnC6/z8fAbfZDZNNZsxv6QcznY2sLZqfrN6mjOTB96DBg3SOrXHXAYPHowtW7bglVdegbe3N/bt24cLFy7g008/BaB/HVB4eLjedUAMvMlQ13PvwaeNk0mO9fOJ65ipEniv2HsJHTyc8d2Rq0gY1x3+EpcGf8btglLEfn8S0f39MKaHd4OPB+gfTWgKqvWG84rLGHgT1bLnjxzh36VGJBRTFJdD7Hj/96n2r35DbyprHpgN7+KJ1RP7NuhYNbSNbmvbVlZRhXt1zOIJ8mltkv6QOjs7O/Tt2xfp6elq2y9cuID27dsDAHr37g1bW1vs3LkT48ePBwBkZWXh7NmzQkK2kJAQKBQKHD16FP369QMAHDlyBAqFQgjOtbG3t4e9vb05To3IIuTkl6Dfgt3o5dcaG6YMauruWLSXX35Zb5va1WfqYvLAu7F99tlniImJgY+PD2xsbGBlZYWvvvoKgwcPBmD+dUClpffXUHEdUMtTUl6JH45l4vEunvB10x9QG3PDaoiqWjeDs346BQCI+fY4DrwxrMHHXyT7A8l/3kHyn3dMFnjP23oec6O6meRY5sD1VESa1JZhGPFLsuv8LTzd20d4XTvwLqs0zS/c7j9yTPZgU9vscdWHczVKK6rqLDNmb2OZ+WmbwwhWYWEhLl26JLzOyMiAXC6Hm5sb/Pz8MHv2bDz77LMYMmQIhg0bBplMhq1bt2Lfvn0AALFYjEmTJiEuLg7u7u5wc3PDrFmzEBQUJMxuDAgIwMiRIxETE4OVK1cCqJ4VGRkZyQEVMomCknIcu3IXgx9ta9T7VB9INsU9yfZz1bHNiWt5jf/hzYxCodC5r7KyErt27UJxcXHTBN7t27eHtbW1KQ+p12effYaUlBRs2bIF7du3x4EDBzBlyhS0a9dOuPhqY6p1QPPmzWvYCZBFi16VghPX8rBkRzrOzA3X276xbnduF5gmaU7ePcMz9ho6kr328BWLC7yVzSw7PFFTMuZ3pHbb2lPN07JM90B68KK9uLJwdIOPo23deZmWwHvYkn1ap6DXMPWDVlOxsbb8wPv48eMYNuz+w+Oaqd0TJkzA2rVr8dRTT+HLL79EQkICYmNj4e/vj59//lkYVAGApUuXwsbGBuPHj0dxcTGGDx+OtWvXqt2HJiUlITY2Vpj1GBUVpTNnEJGxXl2XisOX78DGyIddqtcOZRPclTja3Q//CkrK4eLAWYC6bNiwQev2zZs346233oKDgwPee+89g49n0sA7IyPDlIfTq7i4GG+99RY2btyI0aOr/xh3794dcrkcS5YswYgRI7gOiBqk5mlgQUmFyY5pzNRLXU2Ly02TxMyYvxXyzLx6r/tsapVqT5cZetOD6d+bzuBUpgI//99A2NUxWmvMr0jt36d7Zaa7Vmrz5+1CzN+WBgc7a7w9KgDerR2NPoa20yvXEkTXFXQD1TOiLIFSqcTVO/fQ3t0JIpHI6CCgKYSGhuq9Fr/yyit45ZVXdO53cHDA8uXLsXz5cp1t3NzckJiYWO9+EtXl8OU7APRfK2pTC7yb4JbEwfb+9X/5nkt4a1RA43eimTp48CDefPNNyOVyTJ8+HW+99RbEYrHB7zfLPKlbt25BKpXC29sbNjY2sLa2VvsylfLycpSXl8PKSv00rK2thayYquuAatSsA6oJvFXXAdUwdB2Qq6ur2heRPsZcZC2pvqMxo+MZJqrlaypKlXtqS/qeEjWmxJRrOHNDIaznfnfzWcRvOA0A+Cn1folNbcnHdE25rr311PX70/LM8ZDr8Y/3Y/cfOdh2OgtDFu+tV53t2kt4AKC8HlPia6aiF5SUY+PJ61gk+wMKI66TpvLJzgsIXbIPz3yZDKB5TDUnepCVqtTybop7EmuV2Yu38ksa/fObo7Nnz2LMmDEYPnw4unXrhkuXLmHRokVGBd2AmdZ4T5w4EdeuXcM777yDdu3aNSjRkr51QEOHDsXs2bPh6OiI9u3bY//+/fj222/xySefAOA6IGpc2n7WyyurYGMlEvY1ZBpnU9qZdgvDuhiWOHHYkn24OD/CZFmIG0r1D1t9brCJWhKlsjpY/Da5uqzWC/3bqyURu6uljNdeleRr6gfT/TmG/q5tmDIQl3MKMft/pw1qX6OiSomguTtw7O0RaOtieDIsbTe6f2QbPyX+g1/O44Nfzqtt+2LfZfRp3wb/+z/1h/bFZZU4knEHIY+4w97GtEvylu+pvkdKvVpdBk71IYklJrsketCVljftiLfq0pqevq0bvwPNSE08m5SUhDFjxuD06dPo0qVLvY9nlsD70KFDOHjwIHr27NngY+lbB7R+/XrEx8fjhRdewN27d9G+fXvMnz8fr732mvAergOixlJ7ip+iuByDF+1B/47u+GpCHwDGjQLVldgn714ZWjvZ1a+jfzPmfuy7I9ew4Kkgg9tfvl2ILhLLmAWiOoJXZqHrMoka0x2V4Dpy+SG1fT8cz8SiZ7qrbcsr1j6Sm1/HiLO2ddO1je7eDr382iDYtzUUxeX4cFua3vfU1nf+LqR/ONLggFbbVbU+n6vL8au52JuegyGd2gqjzzN+OInt525h4sAOZs2BcTOvGA+1ccLl29WzjorKKtHKvtnn0SVqUdTXeDft59d1n0mAv78/RCIR4uLiMHDgQKSnp2tUXACAJ5980qDjmeVq7Ovra7IpZvrWAUkkEqxZs6bOY3AdEDUV2dksFJRUYFfa/RwCxvxmaMu0W6Pn+ztxem4YXC00KcY/vkjGmXn6E9I1BtU/LIYEA9TyKJVKDFy4B1mKElz4MKLONc7GWvt7BgpKKjB9eCfk3SvDL6ez8P3Ra3iiqxdmjOis/wCNTCQCQpfsM+o9uqZDfrgtDf987GGt+wx5yDV3TLe/+yTCPx97GC+FdMC+9BzIzmbjlcEdNR4K6LJizyXEhRk2Q632faY5psS/vOYY3o3siuEBnqioUmL7ueq/AcYmn8xSFMPTxUHn9PHaa+oHLtyj9nrZzgtwcbBF7PBHOfJNZEJX79R/SZ3qVPOmiLxVr82cBVi38vJyKJVKLFmyRGcbpVIpLHHWxyyB97JlyzBnzhysXLkSHTp0MMdHEFkkQ9bqGHOPV6HngvhHVgH6dXQz/IBG6trOFefrmZW4oNS8SZaMoZr4xFISIj1IlEolSiuq4GDbuFUvVJ26rkCWonot28lruej/sLtJjltVpcTcrdXTjdcevoLOXi5I/rM64c65m/kWGXgbUn9Bca9crd69tnXRNXRlxTUk8K49RdzOxgph3SQI6yYBAIzt6Y1N8pt6j7N8zyW8PqIzRCLgrY1n0cbJFm+M1D4dsPZ1OuXPu3qPXx/v/3Ie79eaim6M3y/9hRe+OoLHu3jiax01zLu+u73OY3x1qDrpbWbuPSz5R49694WI1DUk6W6JylTzpljjXaoWeHMwoi4VFaa9lzXLAsxnn30W+/btwyOPPAIXFxe4ubmpfRE1B/WZfmPIW4wpHaFvdNbcGbptm0FZGkNUqHwfP9l5ASXllcxu3ojmbT2PoLnbkXq1OsApKCnHkT/voMOcbegwZxuGf7wPR/68g3M3FegwZxt+Op4pvLegpNwk/69u5hUL/75bpLmGub5UlzHcKSoTgm5L9lpiqt42Pd7fgQ5ztgn1veu6Fqk+IOzmfX95iSmWdXxkRLD48Fu/YuKaY/j+6DV8vu+y2u+9qm2ns5DwaxomrT2G8soq3FD52WgMMd8eR4c523AqM6/Odqv/Dpr36Fpfb4T/qSTPI6KGM3YCiUer+w8ZVa+NTTERpczAwPvcTQV2ndes+kT1Z7YRb6Lmrj5PAU094q0vY6+5Q8eWEpqqjnifvJaHLu/IMC74IXzybM+m69QDYtWBP7H28BUAwNNfJCNhXBDiN5xRa3P5dhGe/W+K8Hr2/05rJNoa38cHi5+p/4idalb+mpFvY8gz8zD2P78Lr8f08EbcE50xed3xevfJnKqqlPjywGUkpVzDGyP98a/18nod56Wvj+L4v0fAyU737ULNb1dJeSXO3bw/Q6assuGzS2ytrXDqvTDcyC2GROyAlfsvY5P8Bm7ll2ptv//vBwUAcOxKLkIe0T6zYeWBPwEABy/ehrNd487E2Pn3jeyT//kdGQmjhCngN/OKYW9jBfe/b9CPZtwfiZ+x/iQ+Gd8TH+1IR0/f1hj4iDsKVWYVWYnqfvD7sIezGc6EiAyl+gB525n7s3hEBsxAMjXVwPvrQxlqy3Qu3CpAGyc7tHWxx+jPqpf6/DJ9MAIfMi57d0uxf/9+g9oNHTrUoHZmCbwnTJhgjsMSNSpj6zICph+Brhnx0P15Jv04DS2l9Ja2KfsbTt5g4N0IVLNlA9AIug314/Hr+PH4dZydF16vZFE/qoyiv//LeUT2aAdPFwetbXOLylCpVGJd8lV8uvui1jZbT93E1lP6p0A/tngPPFrZY6W0t87PayilUon0WwUYueyg1v31Dbpr9PlwFx71bFXn55++noeoFb+rbY/78VSDPreG2NEWYsfqqezxowLQ1sXeoGRoz69KQcxjHeusUfv1oSs4dOmvevftq5f6IOG3NDzexROrDtZ9vdZm5o+nsC89B/987GF8tL06Yc/xf4+ARyt7dPN2xZG/g+9N8pt1TrmPC/MX3q/Nf1/qY3TfiMh0VO9CElOuCf/OaMBa8fpSXWNeVFaJzLv34OvmhCt/FSFs6QEAwJWFo4U2p68rHtjA+/HHH9eoDqHtdaOv8c7PzzeqjnVBQQFcXFxM9fFEJld7muKBC7cxpHNbtW1qCTJg4FRzI2LZgxfrf0NoCH1PWnX11ZgHDAcv3sbutBzEj+pidBkdpVKJnIJSeLk2LGCpMPCCSKY3cVAHpN/Kx69nsjX2jQjwhDSkAz7ekY7TKvWf6/L4kn04+vYIgz+/skqJgxdvQ15rWm+/+bvVXr88qAOu/FWEvem3YUqZd4uRebcY/ebvVruRqcv13HsYvGgvAh9yxdZpg++XIlQqceJaHu4UliJ+wxncMeGUeX0u5RTWuf+FVUc0tp0y8P+pscb08MaH29Lg5myH3HtldV5TVx3MwPAAL/Rp30br/tpB9wdPdsM7m88BAL77Z39Ef6V5Xqo6ebXC7rhQlJRXIunINY0HTfpsPHkDANSC5tjvT+K7mAFC0G2IupYF9e/oVueDEyIynrEj1boGMm4XaJ+9Y061lwFNWHMUe+JCceJarrBNddZn7SSOD5r09HR4eXkBAK5cuYLBgwcjMzMTIpEIt2/fRufOhudyMVng3aZNG2RlZcHT07A6vw899BDkcjkeflh7NlSipvb7JfW1mi99fVTjxvmp/xxWe137wqrtOmvMGm995Jl5wlTKU5l5aO1ki/buhk8p1NcXXQ8SZGc1gyhtKquUkK4+CgDwcnXA/4U+YnDfAOC9LefwbfJVLPlHDzzT28eo96rSl6SOzEfsaIvPX+iNyiolxn3+O05dV6CjhzO2zxgiZBYf2rktcovK8NWhP/GwRyucup6HX89k469CzRuSnIJSnLyWi2A/7YGUqo93pAs1jvVZ8/sVo86rPr47cg1X7xTh1aGPwM3ZTu2peWWVEv898Ce+Tb4iTIU/eyMfHeN/NXu/GkqJxk2m6OXqgLPzwuFoa41fz2Rh+vcn62xfXF6JWwbc3A561B3SkA4I7yZBWxd7iEQizIvqhve2nNP5Hj83JwCAg601/vfaQIhEQEC76kGIDnO2GXFW9x2+fMfo97ay10xu5y12QJUS+PLF3vXqBxGZTl0JKhtb7Zwdf97WHHVXTR5XbOQDxZbG1dVVGFxu1aoVlEolxOLqGQAlJSVGDUaZLPBWKpX46quv0KqVYU9Vy8vrXrtK1BjyS8qxRX4TEYESYV1djdPX8/S+v3bG7+1nb+mtXW3K2duLZH/g2b6+ePzjfcIaVkNH1Qyh62Lyf0knDHr/I2/dDxou3657xEybb5OvAgAW/vZHwwJvHX/wshUlkIjNM/23Pg4cOICPPvoIqampyMrKwsaNGzF27Fhh/8SJE/HNN9+ovad///5ISbm/Prq0tBSzZs3C999/j+LiYgwfPhyff/45fHzuf/9yc3MRGxuLLVu2AACioqKwfPlytG7d2mznZm0lwuZpg3HxVgEkYgeNcl5tnO0wO7w6C/XTvX3w/pOBAIBfz2Th1zNZUBSXCzNAnvq8+oHXB092gzSkg9pxKquUOHTpL0z4+qjWfkwd9gi+2HdZ46HS4Ec94C9xwepDGejboQ3+KixDeWUV2rrYY9Lgjpj23f3g7qHWjjoTcl1ZOBrXc+9BUVwurI+r8dbG6mn2NeuLzSVhXBBkZ7Ox/8JtLHgqCNH9/VBZpVT7fazR3UcszDZo62Jfr9GXpliRUrPcILJ7O72B98trjhl0zKR/DgAAeKrMsJkwsAOe6e2DvwpLMfSjfQCq//9Pe/xRhDzsrjbdsKu37mv/41088WRP7wZP+z/69nB8se+y8KDovTFd8UL/9qisUuLH45lqMzuW/KMHBjzsDisdpciIyPTmRXXDR9vT1XIwAPpz5lRUVsHG2iw5rzWUluufBXj8yv0ZN3fvNd7sqpbOZIG3n58fVq1aZXB7iUQCW1vLrD9MD443fjoN2bls/HAsE1unDxa2n72hqNfN8dJdF/CvEZ3qbGPqe9TPdl9USxxljPpONa+P+vaxvq7duYf9F2/jxf5+OrMbW5qioiL06NEDL7/8Mp5++mmtbUaOHIk1a9YIr+3s7NT2z5gxA1u3bsX69evh7u6OuLg4REZGIjU1FdbW1VP9o6Ojcf36dchkMgDA5MmTIZVKsXXrVjOd2X2dvIxbYjQqqB1GBbUDAPx70xm1tXHvbD6Hp3v7oLCkAm9tPINdafqzP88O7yIE+Nq8E9lV6/bI7t7Cw6OHPZzVRqJfHfowVu7/E7/96zEAgE8bJ/i0AX58NQTjVybrP0kjPdTaESulvdXW3OUWleHw5TuICJTAykqE5/v5qb1HVx3oT8b3xLfJV9Da0RYvD+qI4A92Gt2fvCa8KROJRNg1cwiu5xZjooEBtjZPdPXSuc/Z3gbOKnkF7GysNL6/2qgmEvzixV6wt7HGkz0fAlC/0fCaRGzvjemG98Zo1gLfNHUQRn16UHgg7GRvw6CbyAx+PZOFa3fvad03uns7hPq3FR7U1dB1PyUSAYcu/oUXV1cva/njg5FmL72pr2IOANioLF/JaYLp8JbC1LmbTBZ4X7lyxVSHImo0snPVU6bP3Kge8Skpr8TxK7nCBdAcTP1LfP5m/epsG8KU0+LvFjXuhXvIR3sBABtOXMcslYydqmqPuja1iIgIRERE1NnG3t4eEolE6z6FQoHVq1dj3bp1GDGieh10YmIifH19sWvXLoSHhyMtLQ0ymQwpKSno378/AGDVqlUICQlBeno6/P21f68swYdjgzDwEQ9MUZlxoa+O8e9zHkdSylWcuaHAukn9G/T5j7S9P6Nr+4wh+PpQBhY+HQSRSIT4CM0EXv06umH95AF4TiVje11Gd2+HyKB2WHv4itr63vWTB0DsaAs/NyfYWIu05kpo42yH0d3bGfQ5b47sgk0nb8DaSoRH2joLswvqy9h1zTU+fa5ngz63xqOeLnjU0wU//18Inv4iGSEPu+P7yQMMCm77tG+Dpc/2RDsjZr4YGso+388Pw7t4oo2zHWzrGMn69pV+eEnHDA0AODM3TGuddG3sbe9/Tg+fBzMZEpE53covUfsbVJuVSKR1UENXeUWlEmr3nF3ekeHgG8Pg+/cyFnPQ1peQhN2IVPkbcrfo/mDJttNZ+E+02bpj0US16r3Z2NiozSDU1qYuZslqTtRczfxRrjUJFADYmGjkwNQj3kevGJ6Ax1imXJJUnyzxpnDyWp7Oz7a0wNsQ+/btg6enJ1q3bo2hQ4di/vz5Qm6N1NRUlJeXIywsTGjv7e2NwMBAHD58GOHh4UhOToZYLBaCbgAYMGAAxGIxDh8+rDXwLi0tRWnp/Qcn+fnme9ijz6igdrg0PwKPvv2b1v2ju7eDlUiEd0YHCFOG3xipe4S7vvwlLlj0THe97QY87I70D0fiq4MZaNvKHm/8fBoDHnbDe2O64bPdFyEd0B4DH/VAVZVSGJ2MCGqHN/93Gj8cz8TscH8MeFh7Saz6srUW4dd/PQYRdN8wBD0kFh5ImsOnz/UURn9NpXd7Nxx9ezjcne31tk2OfxztxI71+hxj6u56GpAY8rFOHpgS+gg+33dZ635jsvjbq1zTjLkZJHrQlFdW1flATJe7epJaWom0XyMMGWWu8djivbi8YJTOmUoNVTsxMFBdZlO1MsMdLTlWHkTJyclwd7//N9jPzw9paferanh6eiIrK8vg4zW/u04iM9IVdAOmCxzrO+C95B89sG5SP73tQhJ244NfzptkerUpR+drr3cCqksy/ZFdHcT9ebsQPx7LRKUZAnRd3wu7RlpPZSoRERFISkrCnj178PHHH+PYsWN4/PHHhaA4OzsbdnZ2aNNGPfGYl5cXsrOzhTbakmB6enoKbWpLSEiAWCwWvnx9fU18ZsaxsbbCoTeHqW2zt7HCxfkR+E90Lyx/PtiggKex2NtYY+qwRzG+ry+uLByN9ZNDENDOFV+82BsDH/UAAI0pwfOe7Iaf/28gXhtqXEJCQ1lbieqchtxO7ICDbwzTuV/VRT0Zz1V183bFt6/0M3nQXcPTxUG4Wa1rFLu+QTege9q+MVSXNIhEIswO1z3TxJgA2tjKEUQPoixFMXp9sBPvbj5r9Hv1VXgwVV3uYUv24cx1BVKv3lXLMG4KpTpG31XlqiwPdHF4cMdp+/XrBxub6vNXKpXIycnB7du31e6PDU0sDjDwJjKrC7e0XKDrGVc+09sHj3Vqq7ddlqIEqw9l4Ovfja8pW1vtuPv3BtS7Vc2aqVQqcfjSX5j+/Umh9vDjH+/HGz+fxsLfNOvzastubYzicu1TYesqwWOJnn32WYwePRqBgYEYM2YMfvvtN1y4cAHbttU9pbZ2zUltN/K126iKj4+HQqEQvjIzM7W2a0w+bZxwZeFo4Sv9w4h6jV5YKgdba/Ru38ZsIx66fDK+BwLaueKdyK7VdV0XjsbrIzpj0uCOOt8z6yfD63Vvi31MoyyjuWyaOgjSAe3xzSvqDyx93eofdAPVU0kbatLgjjj/fjgyEkYBqP6dXPR0kLD/xQHVa8jbOBmXCyesW/Va9dZGvo/oQbL6YAYKSiqEBK7G0JfMUWQFiE3w+3ft7j2MWXEIT3+RjE5v/1av4DtLUax1AEXXtHdViuL7I/tFpRUmXybZnOTl5WHKlCnw8PCARCKBl5cXPDw8MGXKFCgUxs0Me3AfYTSxSzkF+Cn1Ol4b8gjaONvpfwOZXU5BiVHt9dU1vFtUpjX4NeW66bos+PUPTB7SsNGy2j398XgmBv09QlcfqVfvYvWhDOxLvy2U3AGq6xbXWHUwA2+P1kxwVVZRVe+p4bpG0Zv7VMx27dqhffv2uHjxIoDqpJVlZWXIzc1VG/XOycnBwIEDhTa3bt3SONbt27eFOpW12dvbw95e//Rdav7G9fLBuF7q69dqEkauPtTwh3mNycvVAR+M1Vy//r/XBjbouH9kFzTo/TWc7NRvwcb38cVDrZ3Q1dsVttYi+LRxwuggw9bt13iurx9cHGzRW0fdciICThlQtQaoLqM1ed1xPNbJw+D7KSuRCK3sberM3fBU8EPYePKGod0FAKw/lokX+/sZfN/y1cE/8eG2NMQ90RnTh6sn/TVoxFtljXeVEigpr4KjXdPPqDl9PQ8l5VXo19GtUT6voKAAgwYNQmZmJl544QUEBARAqVQiPT0diYmJOHDgAJKTk+HiYlji2JYzPNCMlJRXYsQnB7By/5/1yiDbHKRezcVz/03G1lM3m81Tsrc3GjflqLyi7vO6ckezLiLQ8EzhQ+sxWpRTUKL1QUHtuuP69jd0uv3TXyTj1zPZuFdWidSrucJ2bXXBa9e8rFIqcSOvGB3mbMOIT/Yb9XNV3kLreN+5cweZmZlo16765rx3796wtbXFzp33rytZWVk4e/asEHiHhIRAoVDg6NH7NwRHjhyBQqEQ2hC1NM4qN4xeFrQMQZVIJMLgTh5wc7aDi4MtXhv6iNEJlqytRIjq4Y2HWjdsVJ+oJTt25f79R5GWZXAAoLhXjoB3ZTh48S8s+PUPoz9DdWaPm7Md+nWoDhQ7ejgjSKUiBVA9C+fY2yPqPN47m86qVdPQ58Nt1bMHP955QW17cVmlUHbQtY4p5Ipi9Uo02pYLNraqKiWiVvyO8SuTcSnHNA9A9Vm4cCEKCwtx4cIFfPHFF4iNjcW//vUvfP7557h48SIKCgqwcOFCg49n0sD74sWLeP7557Um3lEoFIiOjsaff5q3fmlzYI41rJbm6S8OI+XPu5j+/UkkHrkGpVKJ/JJypJtopMAcjJ5Greeho67AsD7/91XXWta+YOuTU1CCfvN3o/+C3Rr7VH8Wz95QaCTcqH0KhkxPAoDXR3Q2qo81fyCA6tJMALDvgnppqO+PXsN7m88BqF5jlXz5jsHH1zXV3NIUFhZCLpdDLpcDADIyMiCXy3Ht2jUUFhZi1qxZSE5OxpUrV7Bv3z6MGTMGHh4eeOqppwAAYrEYkyZNQlxcHHbv3o2TJ0/ixRdfRFBQkJDlPCAgACNHjkRMTAxSUlKQkpKCmJgYREZGWnRGc2q4mmDs8S6Gr0drKUwxPbxGc1uiQvSg+/VMFjrM2Ya9f2iWnKwdYNbYcPK60Z/T1sUejlpKgT3exRMrXghG7PBOSPpnf4zv64uHPZwxIsATb47sgt/+NQRtXewRO7zucrQAcFXHoI6hDl++f6+7YYruh+3Jf6rfY6k+oCgoKUd+SeOWiAWg9pkjPjnQKPHUzz//jA8//FBrNRkvLy/Mnz8fGzZsMPh4Jg28P/roI/j6+sLV1VVjX01Cno8++siUH9ks2deaLltZpUROQQn2/pEDpVKJzLv3Gq3ucN69Mpy4lqu/YQO8s+ksRnyyH93n7kD4sgNm/7z6MrYkTomeYE7X9cCQkdrHOt2fzr0nbqjaqIcxSz47zNmGXeer/9AUlFRo9Fl1BDty+SG8tFp9WlTtEW9DA+9/9PHBnrihhndUhfXfN8gLf1N/wjxv63nsSrs/RTpPxx9LABprod7ZZHwClaZw/PhxBAcHIzg4GAAwc+ZMBAcH491334W1tTXOnDmDJ598Ep07d8aECRPQuXNnjSlOS5cuxdixYzF+/HgMGjQITk5O2Lp1q1DDGwCSkpIQFBSEsLAwhIWFoXv37li3bl2jny81rt1xQ5ESPxwPq5RFe1B8/mIvONpa4yMDMtHr09HD2QQ9IqLGoFQqhfJfL689phGs6bqXM/Zh3die3jgwe5jWvBxKZXXix5lPdIZ3a0e0srfBnlmh+GpCX/xf6CNC5YJn++pPXPqfvZeM6ldtqvdHHT0M/1sQumQfOszZhjW/ZyBo7g50n7vD4HtCU7mZp74k9HYj1Be/evUq+vTpo3N/nz59jCqpbdI13gcOHKjz5m38+PGIjn5AC8GpsKmVAOiRt7RPHfnjg5FwsLXGz6nXYWMtMksW2IhPDyJLUYKV0t4I76a9NrA+NRctaysRbKxEWtefXFZJrLX9XDZ6+TXP9WfJl++gf0c3WFmJsGzXhTrb1r64f/DLebwT2dWg6dr/F/oIPhnfEx6t7DS+n491bovP9hh+4X1r4xnh35/uvog3VUor1Q6sj2TcVUuyVfsZQXllFU4bsDbKuwHTHG/mFQMAshV1r7mvaadNzTSq5iY0NLTOBzPbt9ddsxoAHBwcsHz5cixfvlxnGzc3NyQmJtarj9R8OdhaQyJuujV6b5qhrJuhHuvUFmfmhmn8/TXG7HB/fLQ9HR+ODdLfmIiazI28YrywKgUTBnaATxv15RqvrD2m9lrXoIuxk2Sc7G10roE2NLfPQ60dcXZeOJxsrfH17xnYfi5bbVo8AOy/cNugY9lai7Qus6upzz0iwBPWViJ8Mr4Hvtx/WXsyYC3mbT0v/HvcF7/j43/0hL9EfX3z1TtFKK2oQmcvw9Y9G+rzfer3vtO/P4G1L/eD898PLi7cKhAebJhKmzZtYGurO1mejY2NRiWZuph0xPvq1at1plT38PCwiGy4zUWXd2ToO38X4n46hX+tlwuBRmFphd6gxFBZfx/n1XWp9Xp/QUk5urwjQ5d3ZOj09m946vPDekd0K5p4vW2xkSPbqp5flYIe83ZAqVTi+6N1/yyfu6m+5GL1oQycua5AablhTwjbuthrfYjRwb3+oy3/PaC+1OOUlgC15skwoDk6X1ZRhagVv9f5Ge8/2a3e/QOATfKb1Z+tp91iWbrOfbrWbBFR0/D3csFrfy8jaSoNCboBYOqwR5H+4chGS+pDVF9VVUpslt9AlkL3A+r6UiqVOHdTAUVxOW7kFePgxdv4+lCG3oSzjWnhb3/gyp171TPlzqsnE60duOpaimZs8lUbLSPdIwKqE5aO6eFt8HFa2dvAykqEfz72MH7SkgjyVn6pQTMndeW2qanP7dGqOmHquF4+2PH60HpVQjh7Ix/hyw6gw5xtUCqVyC0qw7rkKxj60T6ELT2gcxp/fSiVSvxyWr1e9rEruVj69xr2tb9nIGzpAfxbZbDJFIKCgnDgwAGd+/ft24fAQM0knrqYdMRbLBbj8uXLaN++vdb9ly5d0joN/UH0yfgemPmj/hIsqtMoBi7cg2H+bfFHdgHuFJbh4JvDGpQkRvUXtz7ZossqqhA0d4faNnlmHvrO36X3fU1l/dFrmLOh+pfSuZ7ZGQtKK5Bfov8PzAe/nNfYlldcZtDFra46kMaWl1GlOgp/8VaB1vP4TSXRWe3LdpkBSyDaN+DBQA3p6iMo0PM9rqsvzSSfH1GLFfdEZ7WkPu3dnZp9FQGAdbLJvOoq62iMxCNX8e7mc+jp2xqbpg4yQc/uW/P7Fbyv5f7myp0ivP+k4QGIOZWp5KsZ+Kg7fjiue6BEV9IwYys5apua/ulzPXH1zj109a5/7PPqkIexstagyZ2iMiFw1qZ2CVbZ2SyEPOwBsZMt7hRVlwmrXVGpl18b7NGyBt7gfq5LhaerPRJTrgnbMu/eg9jIvES6XNRRP/2rQxn4SqXixib5TcyN6obWTqapGDVt2jTMmjULzz33HJyc1GdP3Lt3D4sXL8aiRYsMPp5JR7yHDBlS5/TGzz77DI899pgpP7LZGtfLB6feC8OgR9019wXrnlK+N/02shQlKKusQv8Fu3HupnH141SpPuULeVizH9pUVinx47FMxG84gwk6yiT8VVimdXuNdSlXMTXpBHac08xkbWopf95Bt3dl+HzfJXSYs00IugGgqAEj35/uuliv91VUKfVmEtfHxtoKsY8/CjtrK/z8fyFGv7/mgnwk467ONi99fRTnb+Zr9PX0df0/b6a4tT540fBEd/kl5biUU4jDl//CH9n5WJd8BS/XmkpGRI1rdPd2eL6fn/DaEsrQEJlbWUUVwpbux9SkExq5elYd+BODF+3RWCalVCohO5uNDnO2oWP8r+gwZxv2/KFZ8tEYu9KqAyh5Zp5JBztyi8q0Bt0AsDut/kGbqaneuujr1+60W0j58w4O1brvqB1IJ6bUXfNb24i3s71Ng4JuAIgfFYA/PhiJU++GCdtqBuX+KizFvvQcjRHw41fU7+9eSzyBJ5buB1Bd6hYA3GsF3oue1p7/oovEsOniO87fUgu6AWDBr2k6Wms6d1OBDnO2YbuO2EB1hqZPm7qXM3539Fqd+40xZswYHDt2TGtJVQcHBxw/flxIcGsIkwbe8fHx+O233/DMM8/g6NGjUCgUUCgUOHLkCJ5++mls374d8fHxRh3zwIEDGDNmDLy9vSESibBp0yaNNmlpaYiKioJYLIaLiwsGDBiAa9fuf9NLS0sxffp0eHh4wNnZGVFRUbh+XT1bYW5uLqRSKcRiMcRiMaRSKfLy8urzbTCY2NEWiZP6C68TJ/XH0beGY/Ez3TH/qUC8PKiD3mOM/uyQxi+YITLv3sPlnPvrrvdfuC384pZXVqn9wci7V4YOc7ahw5xteOStX/HGz6fx/dFrGhkPjbHtTBYmGzm9vaS8Um8Gw/LKKhz58w62n8vGlKRUPPffFBSVVdY5Lbk+tNXnNsSPxzJ1Jl1Tpe+B98wwf/zxwUj0bu+Gxc90x6Kng/Bkz+qpTPoukmv+7ntddRwPXLiNUZ8dVKvjaCjVvn/+Qi+z1pP95fRNdJ+7AyM+2Y/oVUcwctlBvPN35nMiMq3/Snsb3FYkEqFYZeppU67vJmoMdwpL0Xf+Lly4VYhtZ7IQ/P5OKJVKPPPFYXSYsw3zf03D9dxiDFy4B/EbzuD5/6YIwfZrier3Q6+sPY6CBmSNVr2FuHzbsLW7tSmVSo1Epf/erDtR6Y068q40NtXbrC2nbtbZduf5W3juvyl4cfUR/KnyvaodR/9bT5JWbUnVTMXB1hpildmOEZ8exFsbz+DFr45g4ppj+Om4ekzTyl5zZmTO38F67r2/R7xrjQi3ddE+gv726AB09mqFz1/ohWf76E/+purw5TuQnc3CZrn+muWjPzsEoHrkXNty2qN/DxZNHNgBYse6Z36+amDNdUO5urqqJaitYWVlZfRMbpNONQ8ODsb//vc/vPLKK9i4caPaPnd3d/z444/o1auXUccsKipCjx498PLLL+Ppp5/W2H/58mUMHjwYkyZNwrx58yAWi5GWlgYHh/tTsGfMaLhC2wABAABJREFUmIGtW7di/fr1cHd3R1xcHCIjI5Gamip8I6Ojo3H9+nXIZDIAwOTJkyGVSrF161Zjvw1GEYlEWPKPHriUU4hBj7oLU4xe6F89XV+emYeT1/LqPMYzXybjysLRBn9mtqIEjy3eq7FdW31AVwcbg6ZV11fevTKDpoPcKSxF7w+rp7CfnhsGVwf1X7rKKiWe+GQ//vyrYWUWzO23s9kI9mttkmNZ/X2RH//3hXB8H18sHNcddjZWOhP2AcB/9l5GGye7OgPvGoZMLa9NdZr8qKB2GBXUDuO/TMbRejwg0mfadyeNah/q3xb70g1LTEJE6mrWKxpChPv5GoCGJVwkag7Ejrbw93IR/tYVlFbgha+O4PhVzUou3xswIhc0d4dR93aqVNd2bzudhYB2xgUH+y/cVpvVWNOPbbXW2Nb2yc4LCOvqhUATTS82VGlFJZ76z2Gcz8rHiAAvtQoo+tzKvz8te1faLUz+u+qDsVP+w+qZoLi+vjty/2fojZ9PY7xKRnQrHcOqxWWVwoxCQ5Y9/jJ9MAIfEmPH69VVaob5e+K10Ecw80e5EJu0sreps8b3a4nVeYMGPOxu8PLYneez8VPqdZy+rsBPr4Xgr4JS/JRa/XBBUVyOWWH+Omc21vd3prGYNPAGgMjISFy9ehUymQyXLl2CUqlE586dERYWpjE33hARERGIiIjQuf/tt9/GqFGjsHjxYmHbww/fT+CiUCiwevVqrFu3Tqhjm5iYCF9fX+zatQvh4eFIS0uDTCZDSkoK+vevHoFetWoVQkJCkJ6ebvbats/09tG5L+mf/XG7oBTt3Z2FeszaXMopxKOe+ssC3CurwD+/NXwarjmDbgDo+f5O/Br7GCRiBzjZWWPH+VsY9Ig73P9eu1JVpcRfRaUYunif8J4JXx/F6KB2uJ5bjPNZ+cJTMGP4ujki867+p7N/fDASI5cdwJU794z+DF0W/PqH3jZ39EzX10YkEhk8nfPDbWkG1YusD21/q1a91Ac7zmdj9v9Oa33P8ueD8cOxTBwytpa6kaoT0zHwJqoPY+5DmWaBHjQ21lZY+0pfHL+Si5f+DloPX1afGdivg5tRD6GLSiuEjM2GUiqVuJF7//6mrqCoorIKBSUVcLK3xic7L2Dl/j8xtHNbjQRkHeZsw24DSoR+tvsiPtt90ezBT05BCSI/OySM4qoyJuiubcGvf2Dy36OlVVqmJ768RvsSyzdG+pt1dp8hSisqhRwUuhKrjfvisPBvfT9Xe+KGapSedLSzRkcPZ8RHBOC1xFS8PSoAT/f2QfyG03oTDl+9c8/gwFt15uI/vkxW22djJcKwLp7YHTcUwz/eL2yXDmiPCQO15xizJCYPvAHA0dHRqPnu9VVVVYVt27bhjTfeQHh4OE6ePImOHTsiPj4eY8eOBQCkpqaivLwcYWH310Z4e3sjMDAQhw8fRnh4OJKTkyEWi4WgGwAGDBgAsViMw4cP6wy8S0tLUVp6/5c+Pz9fa7uGcLKzQXv36v9Nni4OODM3DG/877RaAiwAGPFJ9Q9fZ69WkP1riDAaquqP7HyMXHbQqM8fEeAJXzcnKIrL0cOnNaytRLh29x5C/duibSt7PLG0OtNffEQXJPymPaC8vGAUIj49oLNUwajPtPdpXlQ3vLdFc9rwyWv6ZwHUtmvmUGQpinHkz7u4nnsPS/7RAzbWVnh8yT6NUfLWTrbIu1c9xcvexkrr99LcbuU3LGv9gqeC1MqIaVNspgyk2r5bYidb/KOPr87A+/EunriUU2j2wNvYupxERESGcrKzwZDObbFr5hCM+OR+JuSt0wYjyKd6FDhbUYIBCfcHUYZ2bov5TwXCp40Ttp3OgqOdFV5ZexwA8OPxTLw8qKNRfcgvrlDLYbP28BX4ujnh7A0FHO2s8VJIe9zMK8ahi3e0LpvTVa5KNcgBADtrK7w8uAPauTpg7lb1dd9/ZOeji8R0yZQz797DvvScBi0lsxJBbanfQ60d65wer5oTqMZeHTPm/E1cNkuXDu5OOgeC/P8tw4djA/HigPYo1ZGpPS3rfpzS07e1xv7Xhj6CtYcz8NOrAzWCblX9Oroh9d8jhFkBvfzaqAXeh94chsGL1GfWXrt7r86KEPr+f9RYMK66nGPtma8fjLWMxH76mDTwHjVqFL7//nuIxdUXl/nz52Pq1Klo3bo1AODOnTt47LHHcP689sQMxsrJyUFhYSEWLlyIDz/8EIsWLYJMJsO4ceOwd+9eDB06FNnZ2bCzs9Oosebl5YXs7OrgNTs7W2sZNE9PT6GNNgkJCZg3b55JzsVQLg62eP2Jzjh06S+M7+OL1YfUL5oXbhXi2JW76P93srQLtwrw6a6L2Ham7ulBNc6/Hw4bKyuDs5xfWTgalVVKWFuJ8G3yVeGX5ttX+mGR7A94utjD2kokTFORZ+Zh7H/qLkdVQ1vQrU/6hyOFJ35lFVXo/O/f8LCHMx71bIVHPVvhsU5t1drbaikvM3nIw+jh0xoOttYQierKL265nu/ni4fbOuPL/ZdhZ22FHec1nwCvOli/dep61fEN8/dyQfqtAuG1m7Md1k2qrsH4f6GP4NPd9Uta919pbyzeno5LOrJe1jh82byBPVFL1hKykhM1hkc9XTBt2KNYsfcSYod3EoJuAJCIHZCRMAol5VUas9RGd28HAHh16MNYuf9PfHP4CiYO7GDU717GHc0ld6pVVlSnKDdEcvzjwuzExzq3VQvMRy47aPCo9+f7LmGL/CY2TxukVjXg+JW7SPjtD6RqmaqvS+17DFXn3x+JOT+fxib5TayZ2BcZfxVpTRS3O+0WhhuxrAYwvuZ3fe14fSimfXdC6z0dUL0O/cUB7VGiZylhVA9vONhqzpCcE9EFM0Z00rqvNtWfySd7PqQ2sFK7djoAXLtThMOX/sKBi38hLqyzxv13aYXmw4K5Y7qqPdT5c8EoYTDMxcEsY8dmZ9Jeb9++XW0EeNGiRXj++eeFwLuiogLp6aZLclVVVf2D9eSTT+L1118HAPTs2ROHDx/Gl19+iaFDdU+LqV2yQdtFTV9Zh/j4eMycOVN4nZ+fD19f4xIP1EdnLxecejcMVlYi/Ht0AJ5YekAt4Hj2vylGHe/svHBUKZVwtrOpV3KImvdsmjoIn+xMx0shHRDQzhWPdfLQ+P719G2NX6YPRuTyQ0Z/Tl3OzQvXmDZjZ2Ol98KvmrVb/u4TkGfmYfCjHmr1Xu3qWT7mH719hDUphni6lw9+PlHdvqHTNEUiEQY87I4BKtnqO8zZpvd9jrbWOmtaGvzZdUTej3XyUPujeOKdJ4R/G3Kh16bm/3FYNwmKyyqRnV+CYUv2aW37R7b2P8hEZFqG1Jklaslmhftj2uOPav3bpm9p2NRhj+Lbw1dx5c49hC87IAxe1KX2SDoAzHyiMz5RKesHVE/V7eDhrPVBdd8ObdDWxR6/nqkedHoppD2+TVbP5v2v4Z0QorIkEAAeadsKyfGPIyRhj95+1qiorMK98vvJb4cs3ouevq2x/ZzhU8V//r+B8HSxx428YlzKKcSzfX1ha22FT3ZewGcqD/Jr7hOWPReMpc/2hEgkwu1j2qdGT/rmODISRhncB0D7II452NlY4b8v9YFSqdSalwmoTkKWnn1/ZPvjf/RA3E/q5Yvfieyq8zPqcy9mZ2OF5c8HY+aPcshmDAFQHROM/c/v6CJxwR/ZBbh29x4+23MJQHVZ3FeH3k+AVlFZJcw0TRgXhP4d3YQR94k6ZnzU956xvkpLS3Hs2DEMHjxY7d/GMmngXfsPrbn/8Hp4eMDGxgZdu6r/AAUEBODQoerATiKRoKysDLm5uWqj3jk5ORg4cKDQ5tYtzV/027dvw8tL91Mve3t7renlG0PNEx+RSIRdM4fiaMZdjF+ZrOdd1eY/FQhHW2tsOHEDK6KD0crI9UO6tHWxR8K4++UIdD20aO9u3Fr/PxeMghLA0I/24vrf65YuLxiForIKuNjbNGgURjXwbu1kh1B/zZkPcyK66Cydpk3NAxtj12WpPr0zx+/O6gl98Fpiqs61P33at1GbhmQO0x5/VK3eoj5fvNAL/5d0QmP7f6W98Z+9l/DJsz3VttesPyKipvfNK/0w4euj8HMzPr8LUUtQ3+DA1cEW/+jjg2+Tr+LCrepymQMf8dDZXnY2S0hipSp2eCe8OvRh7E7LgbO9Dfp3dIOttZUwYFLXAFNhaQVa2dvg+X5+iPj0/pLA15/orLV9O7F6AsXN8hvo5dcGvm5OOHdTAZ/WThA72aKisgrhyw7g8m31kflb+aV1Bt2X5kcIgyIl5ZUoKa8UkvP6ujmpDTRUVt0f8V31Uh+149Scr6L4ftb4t0Z1Ucu/U3tavT51/b8xh7rue1VjgfBuXni6tw9GBHjhscV7kF9SgR8mD9CZwbwhxvTwxpge3sLrnr6tcWXhaPx6JgtTkk6oJdtcJPtDLfC+VVCKiiolbK1FGN/H1+hBwJqqPuZ048YNREREoKCgQO3fxmqcRzRmYmdnh759+2qMol+4cAHt21cvsO/duzdsbW2xc+dOYX9WVhbOnj0rBN4hISFQKBQ4evR+cHXkyBEoFAqhjaXr19ENG6Zo7+vTvaqTt705sguuLByNF/q3x7hePkj8Z3+TFZg3houDLb6L6Y8JIe3xxwcj8X3MACx7tqfa6PSumUNxcX4ELv89rcTaSqRWY9DaSgRXB9sGT300JL4d2rktNkwZCPm7T2DBU0F629eM6Bpar3tFdDC+eqkP7G3N++s4PMALS2sFqqqOX81tcL1JffQ9FT761nDh30/38oGDlhGBsT29EdZNgs3TBuOROtYgAcDIbhLEPHb/aam2OptEZHouDrYY2rktjr41HPtmhTZ1d8jCGFIqtsarr74KkUiEZcuWqW231FKxpvIvlQSo0auO6Fz/unL/Za1Bd9r7IwEA9jbWGBXUDkM7t4WDrbVaUFPXPVTNoExnlfXLo4Pa1dnnyUPuJzf+13o5Hlu8F/9afxKjPzuEHu/vQIc52/Do279pBN26jAjwwuUFo3Bl4Wi1mYgOttZ13r+qFmR5oqv2ATSlytzC2lOjja2QY85SYg1R8+BH7GSL03PDcWXhaGEpamPRVnO7Sgm1et3X71avW/du7Viv76VjI49+N4RJ7/RFIpHGL3FDA6PCwkLI5XLI5XIAQEZGBuRyuVCne/bs2fjhhx+watUqXLp0CStWrMDWrVsxZcoUAIBYLMakSZMQFxeH3bt34+TJk3jxxRcRFBQkZDkPCAjAyJEjERMTg5SUFKSkpCAmJgaRkZFmz2huSr382iDpn9UJ4lZEBwMAtkwbhI/H98CVhaPxf6GmrWvXEAMf8cC8JwPhYGuNkEfcMTb4IQDAr7GP4euJffCoZyu1p7IAMOhRD5x/PxwXPtSd5d5YlQYGx7382qC1kx3G9/HB9McfrbNt1t/1B/XVHK8xOqgdRnT1whNGrimqj27edZf4SBgXhKGd22JKrZ8VYwJWZR0T5VWf/m+ZNkhjv6erg/DENGZIR62T1hc9013LVu0qqqrUEqrVHiEnIvOoGVHxdHVokgSVZNlqSsWuWLGiznabNm3CkSNH4O2tOaI1Y8YMbNy4EevXr8ehQ4dQWFiIyMhIVFbeXy4VHR0NuVwOmUwGmUwGuVwOqVRq8vMxB/dW9tjx+hDh9f9UajUr7pXj4MXbGPuf39US2+6OG4rTc8NwaX6EwVVO9LG2EuHPBaOQ/uFI/OeFuksCvzUqQGPbZnnddbRrmziwA/bEDUVGwih8NaFPvQIx1RFvXVSTc3m5Ns3s1YaYE9EFQHUi4gOzh2ltY29gviZzcnPW/oDk1XWpOH+zepZlzUwHQ++ba7wyqCNcHWwsKr7Rx+RTzSdOnChMvy4pKcFrr70GZ+fqqZ+q678Ndfz4cQwbdv8HqmZN9YQJE7B27Vo89dRT+PLLL5GQkIDY2Fj4+/vj559/Vpt3v3TpUtjY2GD8+PEoLi7G8OHDsXbtWrVi6ElJSYiNjRWyn0dFRen9g2CJBj3qIYwcR3Y3/9QLU+vq7VrnqKuTnWmTKRg6Kl3DxtoKcWH++OdjD+NSTgEmfn0MBbVLdSiNO3bNw6l2jVDnVl+fHvV0wTev9AMAfL7vsrB96bM9Mf17A2tm1/ER1lYiHP/3CFQplfB00V5W4rPnemLBU4FwcbBVq68JAGfmhqklX9HbFaX6wz/XZpqMg4ioJdFXKhaonto5bdo0bN++HaNHq+draQ6lYk2hs5cLxvb0xib5TSzddQHZ+cUY18tHo8QSAMwK66x3Flh9WVmJYG9l2lHFbbGD0c1bjPLKKgxZvBcFJRU48c4TBif3rUul/rhbbcT8UU8XHJ7zOAYuNHyNelN7begjeKG/H1wcbLWWPgMafx20Nm3qmJlQu6rR9Vz9Wc1VvTumK96JDGhWiT9Nehc6YcIEtdcvvviiRpuXXnrJqGOGhobqXe/6yiuv4JVXXtG538HBAcuXL8fy5ct1tnFzc0NiYqJRfaPmz4CHolqJHW3Ru732sgg1I77GPrlrDPVdOz6mh7fBgbe+0/ZoVfeTZZFIBJe/n0SrXko9WtkL2/V5e1QAvtx/GfGjAtQyuLKcGBGR5auqqoJUKsXs2bPRrVs3jf3mLBVraaY93klYH/v90UyNesnuznb4fc7jFhFkAcDip7vjp9RM3C4o1Sh91bt9G/zvtRAA9x+K21pbYdfM6uRxpgi6AcNGvId1aYt2Ygc86tkKYkdbiB0Nu7+wJDX3RLpmFdk1UtK3ujjVmnnxa+xjOssIa5uWrk9zCroBEwfea9asMeXhiMzOHEnMai4Chjxx1cVceQmNOe6ql/og9vuTWPKPHsZ9RoNzsmvnbG/4TUXMkIfxz8c6QiQSIfHI/YysDLyJiCzfokWLYGNjg9jYWK37zVkqtrS0VG2GZn6+eZOO6vOop/ZR7J9eC4EI1eXJLCXoBoDxfX0xvq8vqqqUuFdeiVb2NkJVlbCuXloDJWOT0erja0BCR3sbayTHD9fbrrlY/HR3XLhVoJbA1hKGf0QiERaOC8KcDWewYcpAdPV2xVPBD2HjyRsabd8c2aUJeti4OO+SHmgNHZTW9nbrv/+oGDuNXZW54kPXOp7oeovVp34/0dULZ+eFG72+ypQPDVQzb66Z2Neo99b8cS9TqWfJpaZEDXP0reEoKa/CkI/2NnVXqIVKTU3Fp59+ihMnThg9mmWKUrEJCQmYN2+eUZ9rbrvjhmLJ9nTcyi/BiWt5+PfoAPTtoH3WnaWwshIJCdq2ThuMvek5eFlHaShTe3FAe9zIKzY6d86O14dg1k+ncPq6wkw9M5/xfavLGasG3pYy8/K5fn54rp+f8Prjf/TQGnhbwpp0czNp4F3XdO8aIpEIq1evNuXHEtWbocnVdNE2Yl4T6FnKBU+Vl6sDFj/dHc72Npj6nXoWVG3lJXQF3brKfJlaQDtXxEd0QRtnO6GmY0M0tylJRJbG01V7bgYiUzl48CBycnLg53f/Rr2yshJxcXFYtmwZrly5YtZSsfHx8UI+IaB6xNvX19cUp1Zvj7RthS9e7N2kfWiIIB8xgnzqTu5qSg621nhvjOYSBX06e7lgy7TBwgh9c7Tm5b54ec0xAOYv61xftafGvz6iMy7cKtCZgd5S6HuoZwiTPlrIzc3V+fXXX39h/fr1WLt2rSk/kqhBGnpRmjRY8+nte1vOAWjoiLf5AsTxfX0xuns7yGY8prZdX6mvXn6tAQB74oYi5BHd5ShMfZl/degjGN/HNDc9ViJg3N8Z9F8c4KenNRERNTapVIrTp08LFW3kcjm8vb0xe/ZsbN++HYB5S8Xa29vD1dVV7YseLJunalZdaS6G+Wsur7B0/xrRCf95oZdFD464ubnhrbfe0vi3sUw64r1x40at2zdv3oy33noL9vb2ePfdd035kUQN0tBBaW0Z2GtqbRoSeD/Z837medXLTUgj1FnsIlHvu74p5T+9NhD5xeVo83dpiDNzwzB/WxrWH1NP9GKpT1iB6qesCU8H4R99fNG7fRv9byAiIpMrLCzEpUuXhNc1pWLd3Nzg5+cHd3f1v4G2traQSCRCQjTVUrHu7u5wc3PDrFmzdJaKXblyJQBg8uTJza5ULDU+91a6M3E3J82hlGNk97prw1uK1q1bY86cORr/NpZZJ9P//vvvGDx4MKKjoxEZGYk///yz3h0lMoeGjEpX031RM2Sq+afPBWvd7uNm/tJitY3QsxbK2kokBN1AdTZNbRd1C467YSWqTqgS8oi7ybKnmtKBAwcwZswYeHt7QyQSYdOmTcK+8vJyvPnmmwgKCoKzszO8vb3x0ksv4eZN9RqpoaGhEIlEal/PPfecWpvc3FxIpVKIxWKIxWJIpVLk5eU1whkSEVWXig0ODkZwcPXfwJkzZyI4ONiowZmlS5di7NixGD9+PAYNGgQnJyds3bpVo1RsUFAQwsLCEBYWhu7du2PdunUmPx9qWSx55NUYlnifUyPt/ZFY83JfoxP4NndmSa527tw5zJkzBzKZDC+99BLWr18PHx8fc3wUUYOYcx22sVnNm/o6PzJQYvR7tI1umyuruSlY+h/ToqIi9OjRAy+//DKefvpptX337t3DiRMn8M4776BHjx7Izc3FjBkzEBUVhePHj6u1jYmJwfvvvy+8dnRUf5ATHR2N69evQyaTAageBZJKpdi6dauZzoxampcHdcCa368Irxc9HYQ3fz7TdB2iZsWQUrGqrly5orGNpWKJtHtt6CPYcOK61uWQlsLRzrpZTotvKJMG3pmZmXj33XeRmJiIyMhInD59GgEBAab8CCKTerKnNxJTrqG7GZJ+6BtN11UipKnUZ0rSgQt/maEn5mPp5cQiIiIQERGhdZ9YLFZbzwgAy5cvR79+/XDt2jW1REROTk6QSLQ/SElLS4NMJkNKSopQ33bVqlUICQlBeno6p2CSQdo4qU/FfLyLFwAG3kTU/FnykjlDzInogjdH+lv8YMODyKSBt79/9f/kuLg4DBw4EBcvXsTFixc12kVFRZnyY4nq7d+ju6JfR3cM6eRRr/fXtS5a32j6Q60bfzp5Xepzea5Zz67Kkv9eNYPlTkZRKBQQiURo3bq12vakpCQkJibCy8sLEREReO+99+Di4gIASE5OhlgsFoJuABgwYADEYjEOHz7MwJuIiKiZY9BtmUwaeJeUlAAAFi9erLONSCRCZWWlKT+WqN4cbK0R1cNbf0Md6noqqm/Eu/Y1UVSv0Ldhpg57BP/ZexmA6UaDLTvwbjl/iEpKSjBnzhxER0erZd194YUX0LFjR0gkEpw9exbx8fE4deqUMFqenZ0NT0/N6V2enp7Izs7W+lmlpaUoLS0VXufn55v4bIiIiIhaNpMG3lVVRi5qJWqBXB1skFtUhoKSijrb1RUCNlbwOnnI/cDbVDGppcXd0f398N2RawCafh29qZSXl+O5555DVVUVPv/8c7V9MTExwr8DAwPRqVMn9OnTBydOnECvXr0AaH8SrlQqdT4hT0hIwLx580x4BtTc1b5GtZTfLSIiohr79+83qN3QoUMNameW5GqGGj16NL766iu0a9c8UskTGaKHb2sEf7BTb7vaQU6T3Lg2MEru5dcaJ67lqW1reKZ403plUEch8G4JI97l5eUYP348MjIysGfPHr01Znv16gVbW1tcvHgRvXr1gkQiwa1btzTa3b59G15e2jPbx8fHY+bMmcLr/Px8+PqaprY6NU+WnESRiIjIFB5//HGNgQltrw0dfG7SPPMHDhxAcbHmGlGi5uzsDYVB7SwhBFS9ea5PTFrZDO69VdfhN/fAuybovnjxInbt2qVR61abc+fOoby8XHjAGRISAoVCgaNHjwptjhw5AoVCgYEDB2o9hr29PVxdXdW+iIiIiFq69PR05ObmIjc3FydPnkSrVq1w9+5d5Obm4sKFC0atp2/SEW+ilij3XrlB7er8PW2kgNbR7n69U1cHW6PfX6UlgVwre8u6rKgmVLP05GqFhYW4dOmS8DojIwNyuRxubm7w9vbGM888gxMnTuCXX35BZWWlsCbbzc0NdnZ2uHz5MpKSkjBq1Ch4eHjg/PnziIuLQ3BwMAYNGgQACAgIwMiRIxETE4OVK1cCqC4nFhkZycRqZLDaVRks/FeLiIioXlQHHFq1agWlUgmxuLoaUklJiVFZ8C3rDpmohZsd7o+Ptqf//Ur9VlU1CLazaZzJKPY21tg1cygAJRxsrfW2r001c/v7T3bDH9kFGPiI/lHYxqQ6ym3pWT6PHz+OYcOGCa9rpndPmDABc+fOxZYtWwAAPXv2VHvf3r17ERoaCjs7O+zevRuffvopCgsL4evri9GjR+O9996DtfX9/79JSUmIjY1FWFgYgOpKEytWrDDz2VFLMiqwHYCTWvfZWPoTLiKiOkhcHZq6C9RCMfAmakRThz2qEnirc3WwxfLng2ElEqkF4ebWkHriqoH3SyEdTNAb07NSm2rehB0xQGhoaJ1PTvU9VfX19TUoEYibmxsSExON7h9RDSsrESaEtMc3yVebuitERCZlY22Fjh7OyPirSG/biEBJI/SImoqpa7oz8CZqItoGX8c0oLRZU6i0sERq2liLWs4abyJLomWlCQDLq2xARGQsO2vDZh6+0L+9mXtCTan2TEkbGxv4+PjU2aYuTZpcjai5a8gNZksIASt13XlbEPU13i3hu05kGVQrGNTO8EpE1JwZertg6TPpqGGSk5PVEtn6+fkhLS1NeO3p6YmsrCyDj9ekgfdbb70FNze3puwCETVAhYHlE5qS6lRzxt1EpqMrvG4Gz+OIiOrUycvFsIa8r2jR+vXrBxubuieIe3p6Gnw8s0w1v3PnjvB0IDMzE6tWrUJxcTGioqLw2GOPCe3i4+PN8fFE1Egc65GQrbFxlJvIPDiwTUQt1byobmhlb4PxfXzw1OeHdbbjPQYZw6Qj3mfOnEGHDh3g6emJLl26QC6Xo2/fvli6dCn++9//YtiwYdi0aZNRxzxw4ADGjBkDb29viESiOt//6quvQiQSYdmyZWrbS0tLMX36dHh4eMDZ2RlRUVG4fv26Wpvc3FxIpVKIxWKIxWJIpVLk5eUZ1VciY/Tp0Kapu9Bgy54NxsNtnfH5C72auis6WfOPIpFZqJYT5G8ZEbUkbs52SBgXhGC/uu/VeO0jY5g08H7jjTcQFBSE/fv3IzQ0FJGRkRg1ahQUCgVyc3Px6quvYuHChUYds6ioCD169NBb6mbTpk04cuQIvL01k1PNmDEDGzduxPr163Ho0CEUFhYiMjISlZWVQpvo6GjI5XLIZDLIZDLI5XJIpVKj+kpkiN1xQ/HBk93w8qCOTd2VBuvq7Yo9caEYFdSuqbuik4iZLIjMojkkVyQiMidLL1NKlsWkU82PHTuGPXv2oHv37ujZsyf++9//YsqUKbCyqr7znT59OgYMGGDUMSMiIhAREVFnmxs3bmDatGnYvn07Ro8erbZPoVBg9erVWLduHUaMGAEASExMhK+vL3bt2oXw8HCkpaVBJpMhJSUF/fv3BwCsWrUKISEhSE9Ph7+/v1F9JqrLI21b4ZG29S/hRcbhiDeReUwc2AH/S72OJ7p6NXVXiIiaBJOrkTFMOhZ09+5dSCTV9exatWoFZ2dnteRpbdq0QUFBgSk/ElVVVZBKpZg9eza6deumsT81NRXl5eUICwsTtnl7eyMwMBCHD1ev2UhOToZYLBaCbgAYMGAAxGKx0Eab0tJS5Ofnq30RkWVRjbs5QEdkOoEPiXHq3TD8V9q7qbtCRNQk+GyfjGHySZi1p1yYewrGokWLYGNjg9jYWK37s7OzYWdnhzZt1NdoeHl5ITs7W2ijLSOdp6en0EabhIQEYU24WCyGr69vA86EmiMGcpZPpLICS8kKw0QmJXayhUgk4s0nET2QONWcjGHyrOYTJ06Evb09AKCkpASvvfYanJ2dAVSPEJtSamoqPv30U5w4ccLoH3ylUqn2Hm3vr92mtvj4eMycOVN4nZ+fz+CbyMLYWt//HW7tZNeEPSEiIqKWhGE3GcOkgfeECRPUXr/44osabV566SWTfd7BgweRk5MDPz8/YVtlZSXi4uKwbNkyXLlyBRKJBGVlZcjNzVUb9c7JycHAgQMBABKJBLdu3dI4/u3bt+HlpXvtmr29vfCQgR5MfNBp+WysrbBl2iCUV1ZB7Gjb1N0hIiKiFoIj3mQMkwbea9asMeXh9JJKpULCtBrh4eGQSqV4+eWXAQC9e/eGra0tdu7cifHjxwMAsrKycPbsWSxevBgAEBISAoVCgaNHj6Jfv34AgCNHjkChUAjBOZE2nGrePHT3ad3UXSBq0UQc9yGiBxCTq5ExTD7V3NQKCwtx6dIl4XVGRgbkcjnc3Nzg5+cHd3d3tfa2traQSCRCJnKxWIxJkyYhLi4O7u7ucHNzw6xZsxAUFCQE7QEBARg5ciRiYmKwcuVKAMDkyZMRGRnJjOZERERERKSBDx3JGBZf4fb48eMIDg5GcHAwAGDmzJkIDg7Gu+++a/Axli5dirFjx2L8+PEYNGgQnJycsHXrVlhbWwttkpKSEBQUhLCwMISFhaF79+5Yt26dyc+HWhbVGUbM7EtERET04OBMczKGxY94h4aGQmnEfN4rV65obHNwcMDy5cuxfPlyne9zc3NDYmJifbpIDzDVH802zuqJu5zsrHGvrLKRe0REREREjYGBNxnD4ke8iZqLsooqtdcfjg1sop4QETUy3nwS0QOIU83JGAy8iUykvbuT2msrPgYlIiIiatbWTx6AiECJ1n1WjKTICPxxITIRnzbqgTfjbiIiIqLmbcDD7vjiRe15fDjiTcZg4E1kJhzxJqIHBS93RNTShfq3BQCIHW2FbSwnRsaw+ORqRJbMp42jzn3Wta7GE0Lam7s7RERERGQG/4nuhd8v/YVbBaV4Z9NZAHzoSMbhiDdRAwQ+JMaSf/TA9zEDNPbVfgrq6erQSL2i5urAgQMYM2YMvL29IRKJsGnTJrX9SqUSc+fOhbe3NxwdHREaGopz586ptSktLcX06dPh4eEBZ2dnREVF4fr162ptcnNzIZVKIRaLIRaLIZVKkZeXZ+azowfFwx7OTd0FIiKTc7a3QVg3CS7nFKpsZeRNhmPgTdRAz/T2Qcgj7lr28GJMxikqKkKPHj2wYsUKrfsXL16MTz75BCtWrMCxY8cgkUjwxBNPoKCgQGgzY8YMbNy4EevXr8ehQ4dQWFiIyMhIVFbeL20XHR0NuVwOmUwGmUwGuVwOqVRq9vOjB0P8qICm7gIRkdmojnJzqjkZg4E3kZlw+hEZKyIiAh9++CHGjRunsU+pVGLZsmV4++23MW7cOAQGBuKbb77BvXv38N133wEAFAoFVq9ejY8//hgjRoxAcHAwEhMTcebMGezatQsAkJaWBplMhq+++gohISEICQnBqlWr8MsvvyA9Pb1Rz5daDtXLner6RyJt6prdU15ejjfffBNBQUFwdnaGt7c3XnrpJdy8eVPtGJzdQ5ZAxJs9MgIDb6JGwmszNURGRgays7MRFhYmbLO3t8fQoUNx+PBhAEBqairKy8vV2nh7eyMwMFBok5ycDLFYjP79+wttBgwYALFYLLSprbS0FPn5+WpfRET1Vdfsnnv37uHEiRN45513cOLECWzYsAEXLlxAVFSUWjvO7iFLwFs7MgaTqxGZCbOakyllZ2cDALy8vNS2e3l54erVq0IbOzs7tGnTRqNNzfuzs7Ph6empcXxPT0+hTW0JCQmYN29eg8+BiAiont0TERGhdZ9YLMbOnTvVti1fvhz9+vXDtWvX4OfnJ8zuWbduHUaMGAEASExMhK+vL3bt2oXw8HBhdk9KSorwoHHVqlUICQlBeno6/P39zXuS1GKplhDjvR4ZgyPeRCbU3UcMAHCys8bQzm2buDfUEtWe1qZUKvVOdavdRlv7uo4THx8PhUIhfGVmZtaj59SScbolmZNCoYBIJELr1q0BmG92D8AZPqSf6uWOlz4yBke8iUxow/8NhKK4HO6t7DX2iTghiRpAIpEAqB6xbteunbA9JydHGAWXSCQoKytDbm6u2qh3Tk4OBg4cKLS5deuWxvFv376tMZpew97eHvb2mj/TRETmVlJSgjlz5iA6Ohqurq4AzDe7B+AMHzIOA28yBke8iUzIxtpKa9BN1FAdO3aERCJRm4JZVlaG/fv3C0H1/7N353FRlfsfwD8DA8OiDLI7CWimuIBLmghWUhpKLnmtTDHSFvNeKzL1drXlSr80vaXpTW+3osUFi+7NLNMuKbllCipKohJiooCyKOCwDzDM7w/kMGcWmEGGAfy8X695yZzznDPPQTic77N8nxEjRsDOzk5UJi8vD2fOnBHKhISEQKlU4tixY0KZ5ORkKJVKoQwRUUdQW1uLmTNnor6+Hh9++GGL5W91dA/AET7UMu2fHo72IXOwx5uIqIMoLy/HhQsXhPdZWVlITU2Fm5sb/Pz8sHDhQrzzzjvo168f+vXrh3feeQdOTk6IjIwE0DA38tlnn8XixYvh7u4ONzc3LFmyBEFBQcI8yIEDB2LixImYN28ePv74YwDA888/j8mTJ3POI7UJjUZj7SpQF1BbW4sZM2YgKysL+/btE3q7AcuN7gE4wodaJhpqbr1qUCfEHm8iog7ixIkTGD58OIYPHw4AWLRoEYYPH46///3vAIBXX30VCxcuxIIFCzBy5EhcuXIFe/bsQffu3YVzrFu3DtOmTcOMGTMwZswYODk54YcffoCtra1QZtu2bQgKCkJ4eDjCw8MxZMgQbN26tX0vlroUPnxSW2oMujMzM5GYmAh3d3fRfo7uoY6CydXIHOzxJiLqIMLCwprtLZRIJIiJiUFMTIzRMg4ODtiwYQM2bNhgtIybmxvi4uJupapERnHoJbWkudE9CoUCjz32GE6ePIldu3ZBrVYLc7Ld3Nxgb2/P0T1kVeLpDFasCHU6DLyJiIiozXCoObXkxIkTeOCBB4T3ixYtAgDMmTMHMTEx2LlzJwBg2LBhouP279+PsLAwAA2je6RSKWbMmIGqqiqMGzcOmzZt0hvdEx0dLWQ/nzp1qsG1w4lai4E3mYOBN1E74c2ZiLoq3t/IHC2N7jGl8Yaje8haRMnVONGGzMA53kRERERERGZioyOZo8MH3ocOHcKUKVOgUCggkUjw3XffCftqa2vxt7/9DUFBQXB2doZCocBTTz2Fq1evis6hUqnw0ksvwcPDA87Ozpg6dSpyc3NFZUpKShAVFQW5XA65XI6oqCjcuHGjHa6QiIiIiIiIurIOH3hXVFRg6NChBufkVFZW4uTJk3jzzTdx8uRJfPvttzh//jymTp0qKrdw4ULs2LED8fHxOHz4MMrLyzF58mSo1WqhTGRkJFJTU5GQkICEhASkpqYiKirK4tdHtw82ihIRERF1clxOjFqpw8/xjoiIQEREhMF9crlctJQEAGzYsAGjRo1CdnY2/Pz8oFQq8dlnn2Hr1q1Cpsu4uDj4+voiMTEREyZMQHp6OhISEpCUlITg4GAAQGxsLEJCQpCRkcHsl0RERM3gPEcium0wfyS1Uofv8TaXUqmERCKBq6srACAlJQW1tbVCRksAUCgUCAwMxJEjRwAAR48ehVwuF4JuABg9ejTkcrlQhoiIiIiIqBGXTyRzdPgeb3NUV1dj6dKliIyMhIuLCwAgPz8f9vb26NGjh6ist7e3sC5kfn4+vLy89M7n5eUllDFEpVJBpVIJ70tLS9viMqiLmjb8DmtXgYjI4tgZREREpK/L9HjX1tZi5syZqK+vx4cffthieY1GI2qlMtRipVtG16pVq4RkbHK5HL6+vq2rPN0WnGVdqp2LiEjATh8iuh3x1kfm6BKBd21tLWbMmIGsrCzs3btX6O0GAB8fH9TU1KCkpER0TGFhIby9vYUyBQUFeue9du2aUMaQZcuWQalUCq+cnJw2uiIiIiIiIupoOKqHWqvTB96NQXdmZiYSExPh7u4u2j9ixAjY2dmJkrDl5eXhzJkzCA0NBQCEhIRAqVTi2LFjQpnk5GQolUqhjCEymQwuLi6iF5ExbBUlotsB73VERET6OvzY1/Lycly4cEF4n5WVhdTUVLi5uUGhUOCxxx7DyZMnsWvXLqjVamFOtpubG+zt7SGXy/Hss89i8eLFcHd3h5ubG5YsWYKgoCAhy/nAgQMxceJEzJs3Dx9//DEA4Pnnn8fkyZOZ0ZyIiMgM7A0iIiLS1+ED7xMnTuCBBx4Q3i9atAgAMGfOHMTExGDnzp0AgGHDhomO279/P8LCwgAA69atg1QqxYwZM1BVVYVx48Zh06ZNsLW1Fcpv27YN0dHRQvbzqVOnGlw7nIiIiIiIiPktyBwdPvAOCwuDRmO8/by5fY0cHBywYcMGbNiwwWgZNzc3xMXFtaqORKbgzZmIiIiI6PbU6ed4ExERUcdhQns4ERHRbYeBNxEREd0S7RE9HN1DRF2ZKaNtiQxh4E3UTiTM9UtERETUZfDZjszBwJuIiIjaDB9DiYiI9DHwJiIiIiIiIrIgBt5E7YTzHulW9e7dGxKJRO/1wgsvAADmzp2rt2/06NGic6hUKrz00kvw8PCAs7Mzpk6ditzcXGtcDnUhHG5JRETUPAbeRBYUGexn7SpQF3L8+HHk5eUJr7179wIAHn/8caHMxIkTRWV+/PFH0TkWLlyIHTt2ID4+HocPH0Z5eTkmT54MtVrdrtdCXZeErYxE1IWJcqvxdkdm6PDreBN1ZjNG+uLL5GxrV4O6CE9PT9H71atXo2/fvhg7dqywTSaTwcfHx+DxSqUSn332GbZu3Yrx48cDAOLi4uDr64vExERMmDDBcpUnIiIiuo2xx5uIqBOqqalBXFwcnnnmGVEP44EDB+Dl5YX+/ftj3rx5KCwsFPalpKSgtrYW4eHhwjaFQoHAwEAcOXLE6GepVCqUlpaKXkTa2MlNRETUPAbeRBbEZ1GylO+++w43btzA3LlzhW0RERHYtm0b9u3bh7Vr1+L48eN48MEHoVKpAAD5+fmwt7dHjx49ROfy9vZGfn6+0c9atWoV5HK58PL19bXINRERERF1VRxqTmRBmpaLELXKZ599hoiICCgUCmHbE088IXwdGBiIkSNHwt/fH7t378b06dONnkuj0TQ7L3fZsmVYtGiR8L60tJTBNxnF3m8iul3wfkfmYOBN1E54c6a2cvnyZSQmJuLbb79ttlzPnj3h7++PzMxMAICPjw9qampQUlIi6vUuLCxEaGio0fPIZDLIZLK2qTx1Sby9EdHtgp0q1Focak5E1Ml88cUX8PLywqRJk5otV1RUhJycHPTs2RMAMGLECNjZ2QnZ0AEgLy8PZ86caTbwJiIiIqJbwx5vIgvSaNguSm2rvr4eX3zxBebMmQOptOkWXl5ejpiYGDz66KPo2bMnLl26hNdeew0eHh7405/+BACQy+V49tlnsXjxYri7u8PNzQ1LlixBUFCQkOWc6Fax95uIiEgfA2+idiLh4yi1gcTERGRnZ+OZZ54Rbbe1tUVaWhq2bNmCGzduoGfPnnjggQfw9ddfo3v37kK5devWQSqVYsaMGaiqqsK4ceOwadMm2NratvelEBERdWp8siNzMPAmsqDmElYRtUZ4eLjBkRSOjo746aefWjzewcEBGzZswIYNGyxRPbpN8V5HRETUPM7xJrIgDjUnIiIiIiIG3kTthB1CRHQ74L2OiLoy9qlQazHwJiIiolvCWJvMcejQIUyZMgUKhQISiQTfffedaL9Go0FMTAwUCgUcHR0RFhaGs2fPisqoVCq89NJL8PDwgLOzM6ZOnYrc3FxRmZKSEkRFRUEul0MulyMqKgo3btyw8NXR7YTTbMgcDLyJLIiNokRERGIVFRUYOnQoNm7caHD/u+++i/fffx8bN27E8ePH4ePjg4ceeghlZWVCmYULF2LHjh2Ij4/H4cOHUV5ejsmTJ0OtVgtlIiMjkZqaioSEBCQkJCA1NRVRUVEWvz7q2ty72QtfO0gZSpHpOvxPC1tFqatgmygR3R54t6PmRUREYMWKFZg+fbrePo1Gg/Xr1+P111/H9OnTERgYiM2bN6OyshJffvklAECpVOKzzz7D2rVrMX78eAwfPhxxcXFIS0tDYmIiACA9PR0JCQn49NNPERISgpCQEMTGxmLXrl3IyMho1+ulrsXBrmkVEKlthw+lqAPp8D8tbBWlzkx7HhCHIxERETUvKysL+fn5CA8PF7bJZDKMHTsWR44cAQCkpKSgtrZWVEahUCAwMFAoc/ToUcjlcgQHBwtlRo8eDblcLpQhImpPHX45sYiICERERBjcp9sqCgCbN2+Gt7c3vvzyS8yfP19oFd26dSvGjx8PAIiLi4Ovry8SExMxYcIEoVU0KSlJuEHHxsYiJCQEGRkZCAgIaJ+LpS6NYTcRdVVsV6S2kp+fDwDw9vYWbff29sbly5eFMvb29ujRo4demcbj8/Pz4eXlpXd+Ly8voYwhKpUKKpVKeF9aWtq6CyEi0tHhe7ybY+1WUZVKhdLSUtGLSIyzvImIiMylO0pMo9G0OHJMt4yh8i2dZ9WqVcK0Q7lcDl9fXzNrTkRkWKcOvJtrFdVu8bRUqyhvztQS8VBz69WDiKi98F5Ht8LHxwcA9J6/CgsLhec9Hx8f1NTUoKSkpNkyBQUFeue/du2a3nOjtmXLlkGpVAqvnJycW7oeIqJGnTrwbmStVlHenMkcnONNRF0V72/UVvr06QMfHx/s3btX2FZTU4ODBw8iNDQUADBixAjY2dmJyuTl5eHMmTNCmZCQECiVShw7dkwok5ycDKVSKZQxRCaTwcXFRfQiImoLHX6Od3O0W0V79uwpbDfWKqrd611YWCjceFvbKiqTySCTydrkWoiIiIhuB+Xl5bhw4YLwPisrC6mpqXBzc4Ofnx8WLlyId955B/369UO/fv3wzjvvwMnJCZGRkQAAuVyOZ599FosXL4a7uzvc3NywZMkSBAUFCfl8Bg4ciIkTJ2LevHn4+OOPAQDPP/88Jk+ezNw9RGQVnbrH29qtokQt4QxvIrrdsO+bWnLixAkMHz4cw4cPBwAsWrQIw4cPx9///ncAwKuvvoqFCxdiwYIFGDlyJK5cuYI9e/age/fuwjnWrVuHadOmYcaMGRgzZgycnJzwww8/wNa2aamnbdu2ISgoCOHh4QgPD8eQIUOwdevW9r1YIqKbOnyPN1tFiYiIiLqOsLAwaDTGm6YlEgliYmIQExNjtIyDgwM2bNiADRs2GC3j5uaGuLi4W6kqEVGb6fCB94kTJ/DAAw8I7xctWgQAmDNnDjZt2oRXX30VVVVVWLBgAUpKShAcHGywVVQqlWLGjBmoqqrCuHHjsGnTJr1W0ejoaCH7+dSpU42uHU5kqmaeK4iIiIiI6DbR4QNvtopSZ9bczy4RERERdS6cTkOt1anneBMREVHHwgznRNSVsUuFWouBNxEREREREZEFMfAmsiC2ihIREREREQNvIiIiajMcaE5ERKSPgTeRBTG3GrWlmJgYSCQS0cvHx0fYr9FoEBMTA4VCAUdHR4SFheHs2bOic6hUKrz00kvw8PCAs7Mzpk6ditzc3Pa+FCIiok6JjYvUWgy8iYg6kcGDByMvL094paWlCfveffddvP/++9i4cSOOHz8OHx8fPPTQQygrKxPKLFy4EDt27EB8fDwOHz6M8vJyTJ48GWq12hqXQ0RE1KmwT4Vaq8MvJ0ZERE2kUqmol7uRRqPB+vXr8frrr2P69OkAgM2bN8Pb2xtffvkl5s+fD6VSic8++wxbt27F+PHjAQBxcXHw9fVFYmIiJkyY0K7XQkRERHS7YI83kQVp2C5KbSwzMxMKhQJ9+vTBzJkzcfHiRQBAVlYW8vPzER4eLpSVyWQYO3Ysjhw5AgBISUlBbW2tqIxCoUBgYKBQhuhWcTUxIurKeIuj1mKPN5ElMe6mNhQcHIwtW7agf//+KCgowIoVKxAaGoqzZ88iPz8fAODt7S06xtvbG5cvXwYA5Ofnw97eHj169NAr03i8ISqVCiqVSnhfWlraVpdEREREdFtg4E1kQYy7qS1FREQIXwcFBSEkJAR9+/bF5s2bMXr0aACARKe7UaPR6G3T1VKZVatW4a233rqFmhMRERHd3jjUnIiok3J2dkZQUBAyMzOFed+6PdeFhYVCL7iPjw9qampQUlJitIwhy5Ytg1KpFF45OTltfCXUlUg4EJOIiEgPA28iC/Lt4WTtKlAXplKpkJ6ejp49e6JPnz7w8fHB3r17hf01NTU4ePAgQkNDAQAjRoyAnZ2dqExeXh7OnDkjlDFEJpPBxcVF9CIyxttFZu0qEBFZTOAdcmtXgTopDjUnsiA/dydseWYU3JztrV0V6gKWLFmCKVOmwM/PD4WFhVixYgVKS0sxZ84cSCQSLFy4EO+88w769euHfv364Z133oGTkxMiIyMBAHK5HM8++ywWL14Md3d3uLm5YcmSJQgKChKynBO11vcvjEG5qg5eLg7WrgoRkcWM6uOG2KdGoo8HO1fIPAy8iSzs/v6e1q4CdRG5ubmYNWsWrl+/Dk9PT4wePRpJSUnw9/cHALz66quoqqrCggULUFJSguDgYOzZswfdu3cXzrFu3TpIpVLMmDEDVVVVGDduHDZt2gRbW1trXRZ1EUN9Xa1dBSKidvHQIOPTs4iMkWg0GuZ/aiOlpaWQy+VQKpUciknURfD3Wh+/J0RdE3+39fF7QtT1WOv3mnO8iYiIiIiIiCyIgTcRERERERGRBTHwJiIiIiIiIrIgBt5EREREREREFsTAm4iIiIiIiMiCGHgTERERERERWRADbyIiIiIiIiILklq7Al1J45LopaWlVq4JEbWVxt/nxt9v4r2OqKvi/U4f73dEXY+17nUMvNtQWVkZAMDX19fKNSGitlZWVga5XG7tanQIvNcRdW283zXh/Y6o62rve51Ew2bNNlNfX4+rV6+ie/fukEgkzZYtLS2Fr68vcnJy4OLi0k41vDWss+V1tvoCXb/OGo0GZWVlUCgUsLHh7BzAvHsd0Pl+RjpbfQHWub109TrzfqePz3YdD+tseZ2tvkDnuNexx7sN2djYoFevXmYd4+Li0ml+oBuxzpbX2eoLdO06s+dHrDX3OqDz/Yx0tvoCrHN76cp15v1OjM92HRfrbHmdrb5Ax77XsTmTiIiIiIiIyIIYeBMRERERERFZEANvK5HJZFi+fDlkMpm1q2Iy1tnyOlt9AdaZWtbZvt+drb4A69xeWGdqTmf8XrPO7aOz1bmz1RfoHHVmcjUiIiIiIiIiC2KPNxEREREREZEFMfAmIiIiIiIisiAG3kREREREREQWxMCbiIiIiIiIyIIYeBMRERERERFZEANvIiIiIiIiIgti4E1ERERERERkQQy8iYiIiIiIiCyIgTcRERERERGRBTHwJiIiIiIiIrIgBt5EREREREREFsTAm4iIiIiIiMiCGHgTERERERERWRADbyIiIiIiIiILYuBNREREREREZEFSa1egK6mvr8fVq1fRvXt3SCQSa1eHiNqARqNBWVkZFAoFbGzYVgnwXkfUVfF+p4/3O6Kux1r3Ogbebejq1avw9fW1djWIyAJycnLQq1cva1ejQ+C9jqhr4/2uCe93RF1Xe9/rGHi3oe7duwNo+E90cXGxcm2IqC2UlpbC19dX+P0m3uuIuire7/TxfkfU9VjrXsfAuw01DkFycXHhzZmoi+EQwya81xF1bbzfNeH9jqjrau97HSfwEBEREREREVkQA28iIiIiIiIiC2LgTURERERERGRBDLyJiIiIiIiILIiBNxGRhcXExEAikYhePj4+wv5vv/0WEyZMgIeHByQSCVJTUw2e5+jRo3jwwQfh7OwMV1dXhIWFoaqqSthfUlKCqKgoyOVyyOVyREVF4caNG6JzZGdnY8qUKXB2doaHhweio6NRU1NjicsmIiIiopsYeBMRtYPBgwcjLy9PeKWlpQn7KioqMGbMGKxevdro8UePHsXEiRMRHh6OY8eO4fjx43jxxRdhY9N0G4+MjERqaioSEhKQkJCA1NRUREVFCfvVajUmTZqEiooKHD58GPHx8di+fTsWL15smYsmIiIiIgBcToyIqF1IpVJRL7e2xuD40qVLRo9/5ZVXEB0djaVLlwrb+vXrJ3ydnp6OhIQEJCUlITg4GAAQGxuLkJAQZGRkICAgAHv27MG5c+eQk5MDhUIBAFi7di3mzp2LlStXcqkcIiIiIgthjzdRB/FjWh4+/eWitatBFpKZmQmFQoE+ffpg5syZuHjR9P/rwsJCJCcnw8vLC6GhofD29sbYsWNx+PBhoczRo0chl8uFoBsARo8eDblcjiNHjghlAgMDhaAbACZMmACVSoWUlBSjn69SqVBaWip6Een66Ww+Pjr4h7WrQUTUJtT1Gqzbex6/Xrhu7apQF8HAm6iDWLDtJFbsTkd6HoOariY4OBhbtmzBTz/9hNjYWOTn5yM0NBRFRUUmHd8YpMfExGDevHlISEjA3XffjXHjxiEzMxMAkJ+fDy8vL71jvby8kJ+fL5Tx9vYW7e/Rowfs7e2FMoasWrVKmDcul8vh6+trUr3p9jJ/awpW/+93nLhUbO2qEBHdsh2nruCfP2di9qfJ1q4KdREMvIk6mOIKJrrqaiIiIvDoo48iKCgI48ePx+7duwEAmzdvNun4+vp6AMD8+fPx9NNPY/jw4Vi3bh0CAgLw+eefC+UkEonesRqNRrTdlDK6li1bBqVSKbxycnJMqjfdnq6VqaxdBSKiW5ZdXGntKlAXwzneRETtzNnZGUFBQUJvdUt69uwJABg0aJBo+8CBA5GdnQ0A8PHxQUFBgd6x165dE3q5fXx8kJwsbrkvKSlBbW2tXk+4NplMBplMZlJdiYiIugLjzdFErcMebyKidqZSqZCeni4E1C3p3bs3FAoFMjIyRNvPnz8Pf39/AEBISAiUSiWOHTsm7E9OToZSqURoaKhQ5syZM8jLyxPK7NmzBzKZDCNGjLjVyyIiIiIiI9jjTURkYUuWLMGUKVPg5+eHwsJCrFixAqWlpZgzZw4AoLi4GNnZ2bh69SoACAG2j48PfHx8IJFI8Ne//hXLly/H0KFDMWzYMGzevBm///47vvnmGwANvd8TJ07EvHnz8PHHHwMAnn/+eUyePBkBAQEAgPDwcAwaNAhRUVF47733UFxcjCVLlmDevHnMaE5ERERkQQy8iYgsLDc3F7NmzcL169fh6emJ0aNHIykpSeit3rlzJ55++mmh/MyZMwEAy5cvR0xMDABg4cKFqK6uxiuvvILi4mIMHToUe/fuRd++fYXjtm3bhujoaISHhwMApk6dio0bNwr7bW1tsXv3bixYsABjxoyBo6MjIiMjsWbNGkt/C4iIiDqVXzKvWbsK1MUw8CYisrD4+Phm98+dOxdz585t8TxLly4VreOty83NDXFxcc2ew8/PD7t27Wrxs4iIiG5nJ7NvWLsK1MVwjjcRERERERGRBTHwJiIiIiIiMqJCVWftKlAXwMCbiIiIiIjopv+eyBG9/zI520o1oa6EgTcREREREdFNf/3mtOh9jbreSjWhroSBNxERERERkRESibVrQF2BVQPvmJgYSCQS0cvHxwcAUFtbi7/97W8ICgqCs7MzFAoFnnrqKWGdW21Hjx7Fgw8+CGdnZ7i6uiIsLAxVVVXC/pKSEkRFRUEul0MulyMqKgo3btwQnSM7OxtTpkyBs7MzPDw8EB0djZqaGotePxERUVfDB1TStmrVKkgkEixcuFDYVlBQgLlz50KhUMDJyQkTJ05EZmamweM1Gg0iIiIgkUjw3Xffifbx+Y6IOhOr93gPHjwYeXl5wistLQ0AUFlZiZMnT+LNN9/EyZMn8e233+L8+fOYOnWq6PijR49i4sSJCA8Px7Fjx3D8+HG8+OKLsLFpurTIyEikpqYiISEBCQkJSE1NRVRUlLBfrVZj0qRJqKiowOHDhxEfH4/t27dj8eLF7fNNICIi6iI0GmvXgDqK48eP45NPPsGQIUOEbRqNBtOmTcPFixfx/fff49SpU/D398f48eNRUVGhd47169dDYqQ1h893RNSZWH0db6lUKvRya5PL5di7d69o24YNGzBq1ChkZ2fDz88PAPDKK68gOjpatLZtv379hK/T09ORkJCApKQkBAcHAwBiY2MREhKCjIwMBAQEYM+ePTh37hxycnKgUCgAAGvXrsXcuXOxcuVKuLi4tPl1ExlTUlmDgtJqeLs4WLsqRERErVJeXo7Zs2cjNjYWK1asELZnZmYiKSkJZ86cweDBgwEAH374Iby8vPDVV1/hueeeE8r+9ttveP/993H8+HH07NlTdH4+31F7qq9niyLdOqv3eGdmZkKhUKBPnz6YOXMmLl68aLSsUqmERCKBq6srAKCwsBDJycnw8vJCaGgovL29MXbsWBw+fFg45ujRo5DL5cJNGQBGjx4NuVyOI0eOCGUCAwOFmzIATJgwASqVCikpKUbro1KpUFpaKnoR3aoXvzyF4Hd+Rll1rbWrQkRE1CovvPACJk2ahPHjx4u2q1QqAICDQ1Pjsq2tLezt7UXPb5WVlZg1axY2btxosIPGks93RLqDLNbsOW+dilCXYtXAOzg4GFu2bMFPP/2E2NhY5OfnIzQ0FEVFRXplq6ursXTpUkRGRgotlI1BekxMDObNm4eEhATcfffdGDdunDBXKD8/H15eXnrn8/LyQn5+vlDG29tbtL9Hjx6wt7cXyhiyatUqYV6RXC6Hr69v674RRAZkF1dauwpERGbjHG+Kj4/HyZMnsWrVKr19AwYMgL+/P5YtW4aSkhLU1NRg9erVyM/PR15enlDulVdeQWhoKB555BGDn2Gp5zt2qhAA2Nm2TYhUoapDRn5Zm5yLOj+rBt4RERF49NFHERQUhPHjx2P37t0AgM2bN4vK1dbWYubMmaivr8eHH34obK+vb0jtP3/+fDz99NMYPnw41q1bh4CAAHz++edCOUNzgzQajWi7KWV0LVu2DEqlUnjl5OQYLUtkLs6TJKLOiPeu21tOTg5efvllxMXFiXq1G9nZ2WH79u04f/483Nzc4OTkhAMHDiAiIgK2trYAgJ07d2Lfvn1Yv359s59liec7dqpQW5r4z0OYsP4Qjly4bu2qUAdg9aHm2pydnREUFCTKbFlbW4sZM2YgKysLe/fuFc3HaZzvM2jQINF5Bg4ciOzshoXufXx8UFBQoPdZ165dE1pBfXx89Fo+S0pKUFtbq9dSqk0mk8HFxUX0IiIiIrpdpaSkoLCwECNGjIBUKoVUKsXBgwfxwQcfQCqVQq1WY8SIEUhNTcWNGzeQl5eHhIQEFBUVoU+fPgCAffv24Y8//oCrq6twDgB49NFHERYWBsByz3fsVKG2lFPcsMrSrrS8FkrS7aBDBd4qlQrp6elCQN0YdGdmZiIxMRHu7u6i8r1794ZCoUBGRoZo+/nz5+Hv7w8ACAkJgVKpxLFjx4T9ycnJUCqVCA0NFcqcOXNGNMRpz549kMlkGDFihEWulYiIiKirGTduHNLS0pCamiq8Ro4cidmzZyM1NVXo1QYaEul6enoiMzMTJ06cEIaVL126FKdPnxadAwDWrVuHL774AoDlnu/YqUJtRVnZlKuHI4EIsHJW8yVLlmDKlCnw8/NDYWEhVqxYgdLSUsyZMwd1dXV47LHHcPLkSezatQtqtVpotXRzc4O9vT0kEgn++te/Yvny5Rg6dCiGDRuGzZs34/fff8c333wDoKH3e+LEiZg3bx4+/vhjAMDzzz+PyZMnIyAgAAAQHh6OQYMGISoqCu+99x6Ki4uxZMkSzJs3jzdcIiIiM3CO9+2te/fuCAwMFG1zdnaGu7u7sP2///0vPD094efnh7S0NLz88suYNm0awsPDATT0VBtKqObn5yf0ivP5jjq6y8Xay+Mx8iYrB965ubmYNWsWrl+/Dk9PT4wePRpJSUnw9/fHpUuXsHPnTgDAsGHDRMft379fGGq0cOFCVFdX45VXXkFxcTGGDh2KvXv3om/fvkL5bdu2ITo6WrihT506FRs3bhT229raYvfu3ViwYAHGjBkDR0dHREZGYs2aNZb9BhA1g62jRNQZ8d5FLcnLy8OiRYtQUFCAnj174qmnnsKbb75p9nn4fEdEnYlVA+/4+Hij+3r37g2NiX+9ly5dKlrHW5ebmxvi4uKaPYefnx927dpl0ucRERERkWkOHDggeh8dHY3o6GizzmHomZDPd9SRaf/IskGSgA42x5uImmg4LImIiIioU9J+imPgTQADb6IOizdpIuqMOMebiEisng91BAbeRERE1Ib4fElEXZGpU2ANledtkQAG3kREFhcTEwOJRCJ6aWfs/fbbbzFhwgR4eHhAIpEIS+cYotFoEBERAYlEgu+++060r6SkBFFRUZDL5ZDL5YiKisKNGzdEZbKzszFlyhQ4OzvDw8MD0dHRqKmpacOrJSIi6npSLpe0+lg2SBLAwJuoQzDUisp7dNcyePBg5OXlCa+0tDRhX0VFBcaMGYPVq1e3eJ7169dDYmQsb2RkJFJTU5GQkICEhASkpqYiKipK2K9WqzFp0iRUVFTg8OHDiI+Px/bt27F48eJbv0AiIqIurKpWbVZ57ec4TsEhwMpZzYmIbhdSqdTgurQAhOD40qVLzZ7jt99+w/vvv4/jx4+jZ8+eon3p6elISEhAUlISgoODAQCxsbEICQlBRkYGAgICsGfPHpw7dw45OTlQKBQAgLVr12Lu3LlYuXIl17WlNsEHTCLqiiQw7+Z2UquHnD3eBLDHm8gqCkqrkVNcKbznDbnry8zMhEKhQJ8+fTBz5kxcvHjRrOMrKysxa9YsbNy40WAAf/ToUcjlciHoBoDRo0dDLpfjyJEjQpnAwEAh6AaACRMmQKVSISUlxehnq1QqlJaWil5ExvB+RkSdXU1dvd42cxsVV+xOF77mSjUEMPAmsorgd37Gfe/uR2l1rdEy5ibxoI4rODgYW7ZswU8//YTY2Fjk5+cjNDQURUVFJp/jlVdeQWhoKB555BGD+/Pz8+Hl5aW33cvLC/n5+UIZb29v0f4ePXrA3t5eKGPIqlWrhHnjcrkcvr6+JtebiIiIiBh4E7U77YD66o2qhm3Wqgy1i4iICDz66KMICgrC+PHjsXv3bgDA5s2bTTp+586d2LdvH9avX99sOUNzvzUajWi7KWV0LVu2DEqlUnjl5OSYVG8iIqKuokJVZ+0qUCfHwJuonWl3ZDc3X4jBeNfl7OyMoKAgZGZmmlR+3759+OOPP+Dq6gqpVAqptCE9x6OPPoqwsDAAgI+PDwoKCvSOvXbtmtDL7ePjo9ezXVJSgtraWr2ecG0ymQwuLi6iF5ExnONNRJ1ddwf9NFgxO89aoSbUlTDwJmpn9VqR9/aTuUg4k89h5bcZlUqF9PR0vQRpxixduhSnT59Gamqq8AKAdevW4YsvvgAAhISEQKlU4tixY8JxycnJUCqVCA0NFcqcOXMGeXl5Qpk9e/ZAJpNhxIgRbXR1REREnZujna3etqvK6tY/r/Exj8Cs5kTtrl7r5vvJoYYEW+dXRFipNtQelixZgilTpsDPzw+FhYVYsWIFSktLMWfOHABAcXExsrOzcfXqVQBARkYGgIYeau2XLj8/P/Tp0wcAMHDgQEycOBHz5s3Dxx9/DAB4/vnnMXnyZAQEBAAAwsPDMWjQIERFReG9995DcXExlixZgnnz5rEXm4iI6Cb1zYc1iUQ8UrGoogYe3WRmn6+94+7S6lrYSiRwljHU60jY403UzuoNtJaq6vTXhmQveNeRm5uLWbNmISAgANOnT4e9vT2SkpLg7+8PoGEO9/DhwzFp0iQAwMyZMzF8+HB89NFHZn3Otm3bEBQUhPDwcISHh2PIkCHYunWrsN/W1ha7d++Gg4MDxowZgxkzZmDatGlYs2ZN210sERFRJ1erbshqPmuUn2h7qzu82/GZrlZdj5B3fsbdb+8VGhCoY2AzCFE7M3TvNbRsBe+VXUd8fHyz++fOnYu5c+eadU5Df8Td3NwQFxfX7HF+fn7YtWuXWZ9FRER0O2kMWG11kla0dlmw9nykKyqvQUVNQ4dOQWk1FK6O7fjp1Bz2eBO1M0M93jVq/cCbHd5ERERE7a+uMfC20Qm8W93jfas1Ml2t1jNlnrKq/T6YWsTAm6idGRxqXmuox5uRNxEREVF7awy87+vnYXB7R1ZZ0zR9MbeEgXdHwsCbqJ0Zumcb6vFm4E1ERETUvjQajTDUfKivq2ifWt26Z7Ps4spbrZbJqmqbAu+rN6rb7XOpZQy8idqZobm5huZ4c+kJIiIioval0nomk0nFoVJtvYHnNROk5ty4lSqZpUqrx7u0urbdPpdaxsCbqJ0Z6vFWMbkaERERkdVpP5PZS21Ea3p3hizhlTV1TV+r6popSe2NgTdROzN5OTF2eRMRERG1K+1RiPa2NqjWekara+VQcztbScuF2ki5VrBdUaP/fEnWw8CbqJ0ZzGrOHm8iIiIiq2vsDJFJbSCRSEQZyQ9fuNaqc04eomiLqplEO7madu83WZ9VA++YmBhIJBLRy8fHBwBQW1uLv/3tbwgKCoKzszMUCgWeeuopXL161eC5NBoNIiIiIJFI8N1334n2lZSUICoqCnK5HHK5HFFRUbhx44aoTHZ2NqZMmQJnZ2d4eHggOjoaNTU1lrhsus0Zypl28Lz+jZzJ1YiIiIjaV+NQc3upfpj0zo+/t+qcunPFLalCu8dbxR7vjkRq7QoMHjwYiYmJwntb24Z5FJWVlTh58iTefPNNDB06FCUlJVi4cCGmTp2KEydO6J1n/fr1kEgMD+OIjIxEbm4uEhISAADPP/88oqKi8MMPPwAA1Go1Jk2aBE9PTxw+fBhFRUWYM2cONBoNNmzY0NaXTLc5QwH1F79e0i/IuJuIiIioXTWOQpRJbVsoaTojIYpFaA81N9SxQ9Zj9aHmUqkUPj4+wsvT0xMAIJfLsXfvXsyYMQMBAQEYPXo0NmzYgJSUFGRnZ4vO8dtvv+H999/H559/rnf+9PR0JCQk4NNPP0VISAhCQkIQGxuLXbt2ISMjAwCwZ88enDt3DnFxcRg+fDjGjx+PtWvXIjY2FqWlpZb/JtBtxdQh5OzxJiKizm7VqlWQSCRYuHChsK2goABz586FQqGAk5MTJk6ciMzMTGF/cXExXnrpJQQEBMDJyQl+fn6Ijo6GUqkUnZsjGskSVELg3RAmeXSTtcFZ2y/yVlaJM5mfuFTcbp9NzbN64J2ZmQmFQoE+ffpg5syZuHjxotGySqUSEokErq6uwrbKykrMmjULGzduFIapazt69CjkcjmCg4OFbaNHj4ZcLseRI0eEMoGBgVAomuZfTJgwASqVCikpKUbro1KpUFpaKnoRtaTexMibc7yJiKgzO378OD755BMMGTJE2KbRaDBt2jRcvHgR33//PU6dOgV/f3+MHz8eFRUVAICrV6/i6tWrWLNmDdLS0rBp0yYkJCTg2WefFZ0/MjISqampSEhIQEJCAlJTUxEVFSXsbxzRWFFRgcOHDyM+Ph7bt2/H4sWL2+cbQJ2SqrZpjjcAPHFPL2tWx2zXy8UNS0f+KLJSTUiXVYeaBwcHY8uWLejfvz8KCgqwYsUKhIaG4uzZs3B3dxeVra6uxtKlSxEZGQkXFxdh+yuvvILQ0FA88sgjBj8jPz8fXl5eetu9vLyQn58vlPH29hbt79GjB+zt7YUyhqxatQpvvfWWyddLBBie4224HCNvIuqacksq0cPJHs4yq894IwspLy/H7NmzERsbixUrVgjbMzMzkZSUhDNnzmDw4MEAgA8//BBeXl746quv8NxzzyEwMBDbt28Xjunbty9WrlyJJ598EnV1dZBKpcKIxqSkJKFzJTY2FiEhIcjIyEBAQIAwojEnJ0foXFm7di3mzp2LlStXip4niRrVqI3P8QaAOnU9pLZW77s0qlxn7e5adevWHqe2Z9WfmoiICDz66KMICgrC+PHjsXv3bgDA5s2bReVqa2sxc+ZM1NfX48MPPxS279y5E/v27cP69eub/RxDc781Go1ouylldC1btgxKpVJ45eTkNFsPIsD0IeTs8SairujitXLc+4/9CFn1s7WrQhb0wgsvYNKkSRg/frxou0qlAgA4ODgI22xtbWFvb4/Dhw8bPZ9SqYSLiwuk0obGGkuNaORoRlLVioea66pt5ZJi7aWsumGO9wCf7gD0e8DJejpUc42zszOCgoJE83xqa2sxY8YMZGVlYe/evaLWyX379uGPP/6Aq6srpFKpcDN+9NFHERYWBgDw8fFBQUGB3mddu3ZN6OX28fHR69kuKSlBbW2tXk+4NplMBhcXF9GLqCWmBt7s8SairujQzWQ/pdVc5qario+Px8mTJ7Fq1Sq9fQMGDIC/vz+WLVuGkpIS1NTUYPXq1cjPz0deXp7B8xUVFeHtt9/G/PnzhW2WGtG4atUqYc64XC6Hr6+vyddNXUOZqqHHuLuDncH96lY8n1kjuVofD2cAwLWy6vb7cGpWhwq8VSoV0tPT0bNnTwBNQXdmZiYSExP1hp8vXboUp0+fRmpqqvACgHXr1uGLL74AAISEhECpVOLYsWPCccnJyVAqlQgNDRXKnDlzRnTD37NnD2QyGUaMGGHJS6bbkKk92Qy7iagr4r2ta8vJycHLL7+MuLg4Ua92Izs7O2zfvh3nz5+Hm5sbnJyccODAAURERAgr22grLS3FpEmTMGjQICxfvly0zxIjGjmakW5UNgTecifDgXdrkt/e4ep4S3UyR2OPdz/vhh7vqzc6fuB9MrsEr37zG5SVtS0X7sSsOrlqyZIlmDJlCvz8/FBYWIgVK1agtLQUc+bMQV1dHR577DGcPHkSu3btglqtFlon3dzcYG9vL2RC1+Xn54c+ffoAAAYOHIiJEydi3rx5+PjjjwE0LCc2efJkBAQEAADCw8MxaNAgREVF4b333kNxcTGWLFmCefPmsRebLMDUoeZ8PCUios4lJSUFhYWFoo4LtVqNQ4cOYePGjVCpVBgxYgRSU1OhVCpRU1MDT09PBAcHY+TIkaJzlZWVYeLEiejWrRt27NgBO7umQMjUEY3Jycmi/S2NaJTJZJDJ2iKLNXVWjYG3q2PDz5u9ToOQqUlytdm345zw0ptzvPt5dQMAnMsrRVWNGo72bbc82q0qKldh85FLiArpDUd7W0z/sGF6SK1ag3VPDLNu5SzIqj3eubm5mDVrFgICAjB9+nTY29sjKSkJ/v7+yM3Nxc6dO5Gbm4thw4ahZ8+ewqtx7o6ptm3bhqCgIISHhyM8PBxDhgzB1q1bhf22trbYvXs3HBwcMGbMGMyYMQPTpk3DmjVr2vqSiUzv8WbcTUREncy4ceOQlpYmGo04cuRIzJ49G6mpqaJebblcDk9PT2RmZuLEiROiRLmlpaUIDw+Hvb09du7cqdd7zhGNZCmNy3HJbwbec8f0Fu3vyDl4NBqNMNR8YM/uwvbPDhtfNcoaRqxIxAf7LmDC+kN458d0YfuZK8pmjur8rNrjHR8fb3Rf7969WzXH1dAxbm5uiIuLa/Y4Pz8/7Nq1y+zPIzKX6cnVOvCdnYiIyIDu3bsjMDBQtM3Z2Rnu7u7C9v/+97/w9PSEn58f0tLS8PLLL2PatGkIDw8H0NDTHR4ejsrKSsTFxYmSnHl6esLW1pYjGsliGgNv15tDzRsD8EZqA5F3QWk15nx+DLOD/RAV0ltvv6adJtlU1KiFjps7XJ2E7Wv2nMeLD/YD0NAjPjs2Ga9PGojRd7obOo1FVd9crg0Aiitq8GVytvC+qz/7dqg53kS3g3oTV3Xo4vceIrpN8d5GeXl5iIqKwoABAxAdHY2oqCh89dVXwv6UlBQkJycjLS0Nd911l2jUo/aca45oJEsoqWzIAu7qaG9wv3ZwqNFocK1MhbV7MvB7fhne/P6ssF1be933ym/O75baSOBgZ4OYKYOEfbXqehSWVmNIzB6kXVFi5idJ7VMpHQdvJtg05OL1CqHHviti4E3UzkzOas4URF1GTEwMJBKJ6KWdn+Lbb7/FhAkT4OHhAYlEIiSKbFRcXIyXXnoJAQEBcHJygp+fH6Kjo6FUiodklZSUICoqSsjGGxUVhRs3bojKZGdnY8qUKXB2doaHhweio6NRU8OlRqj9fHY4y9pVoHZ24MAB0dKv0dHRyMnJQU1NDS5fvoy3334b9vZNQU5YWBg0Go3BV+/evYVyjSMaG3vE4+Li4OrqKvrsxhGNlZWVKCoqwoYNGziHm5p1IKMhMLSxMZyAT/s5btX/fsc9KxPxnxO5ojK6j3rt9URXXNHw91zuaAeJRIInR/sL+wa8mYCnNx1vp5oYt+nXSwa3+7g4QKMB0vO67hJ+DLyJ2pmprZ6m9oxT5zB48GDk5eUJr7S0NGFfRUUFxowZg9WrVxs89urVq7h69SrWrFmDtLQ0bNq0CQkJCXj22WdF5SIjI5GamoqEhAQkJCQgNTUVUVFRwn61Wo1JkyahoqIChw8fRnx8PLZv347Fixdb5qKJDLhyo8raVSAiMqisuimrdl9PZ4NltIeaf3LI8Nxp3Ue9tu7xvnKjCgPe/B9+TBMvwXf15v1VcTOLulQrqZu6XoOzV60f1J64XAwAsLNtathIXDQWgXfIAQBpuV13nrdV53gT3Y44x/v2JJVKDa7CAEAIji9dumRwf2BgILZv3y6879u3L1auXIknn3wSdXV1kEqlSE9PR0JCApKSkhAcHAwAiI2NRUhICDIyMhAQEIA9e/bg3LlzyMnJgUKhAACsXbsWc+fOxcqVKznnkYiIbmv5yqalt4b79RC+jgj0wf/ONKyupNE0DCWvaybLmu4zXFuPYpzx0VFU19ZjwbaTcHGQ4nTMBABNDZvay5edeGM8Rq5I1DuHkxWynN+orEGtuuF78fOiMPi5N81DD7zDBYnpBThztesG3uzxJmpnpg81p64kMzMTCoUCffr0wcyZM3Hx4q1lGFUqlXBxcYFU2tB+evToUcjlciHoBoDRo0dDLpcLK0EcPXoUgYGBQtANABMmTIBKpUJKSsot1YeIiKgzuVxUgUX/ScWFwnJh2x/XGr52dxbP7w7t25SE7L5396PPsh8x7K09Rs+tF3jrPNRdvVGFAxmFrUokDYhHDpVW1+Fw5nVcul6h1+MNAB7dZFgS3l94/+lTDcv2VdY0JTmzpDp1PTQaDapr1Rj2f3sBAF7dZfB1E69tHnSzx/vbk1dECdgAoKauHov+k4rnt5xo9fesI2CPN1E7M305sc57YyGx4OBgbNmyBf3790dBQQFWrFiB0NBQnD17Fu7u5mcULSoqwttvv4358+cL2/Lz8+Hl5aVX1svLC/n5+UIZ3bVre/ToAXt7e6GMISqVCiqVSnjfmF2YiIios1r9v9/xvzP5OHKhCEmvjQMALPrPbwCAogpx7hO5k36itYpmAteWHuFCV+8DAHzx9D14IKDhb/fJ7BIs3X4aHz05Ar/nl8FZJsWo3m5wtLdFrboe/0zMRHcHqWjedqMnP2tYr36AT8MSYgpX8fJ7Lz7YDy88cBeApnngAFBZUwcne8uFg4Vl1bj3H/vRx90ZU4c1NfovjRgAiUQ8h36Ef9MIg61HL2Pe/XcK7/u/8T/h6z7LfsSl1ZMsVmdLYuBN1M5MDagZd3cdERERwtdBQUEICQlB3759sXnzZixatMisc5WWlmLSpEkYNGgQli9fLtqn+0cMaPh5095uShldq1atwltvvWVWPYmIiDqyxqHj+aVNw8sDfLrjVPYNvbKTgnoi+qtTJp/b1NGNSReLhMD7H//7HecLyvHg2oOiMmEBnggf5ION+y8AaEjoZszv+WUAxEPNGzX+nXfT6s3Pul6BwQq5SXVtjfhjOaipq0dGQRne+ylD2D797l56ZV2d7DFjZC/850Qu3tuTAW+5AzQaDV75OlWv7HObTyD2qRHNPrt0RBxqTtTOTO3xNrUcdT7Ozs4ICgpCZmamWceVlZVh4sSJ6NatG3bs2AE7u6a1RX18fFBQUKB3zLVr14Rebh8fH72e7ZKSEtTW1ur1hGtbtmwZlEql8NJezodIX+d6ECLqigytNU0tawy6G3uOG9kayXBuiEaj0XuGM9bpsi0pW9ifnFVssMyBjGt4bUeawX2rpgcZ3H6nZzej9dMOVrdpraHdVlR1alwvV6GwrBrv7z2vt//LecEGjmrwzp+CMMK/B2rq6hH91Sm8HJ9q8Hk4Mb0AaVc631xw9ngTtTMmVyOVSoX09HTcd999Jh9TWlqKCRMmQCaTYefOnXBwEA8jCwkJgVKpxLFjxzBq1CgAQHJyMpRKJUJDQ4UyK1euRF5eHnr27AkA2LNnD2QyGUaMGGH0s2UyGZffITPw3kVkLXXqeqxPzMSmI5fw+qSBmDXKz9pV6hTU9RphfjTQ1HPcGocvXMcwX1fRNmOPdI1rVp+4XGL25/y8eCz6enaDul6DN747I9p3p5GM7I183RyRU1yFqluc511SUYO5m47jt5wbJpW3tZEgtK+H0f1SWxt8MGs4xtwcit/o87kj8eAAb+zPKMTTXzQsiTZ146/YHX2vRXvs2xoDb6J2xuRqt58lS5ZgypQp8PPzQ2FhIVasWIHS0lLMmTMHQMM63dnZ2bh69SoAICOjYTiWj48PfHx8UFZWhvDwcFRWVorWrAUAT09P2NraYuDAgZg4cSLmzZuHjz/+GADw/PPPY/LkyQgICAAAhIeHY9CgQYiKisJ7772H4uJiLFmyBPPmzWNGcyKiTqhOXY+tSZex6cglXC6qFO1b9m0aaurqMWuUH+ylHOSqTbcH+tNfLuK71KvC+x5OdrqHmOyPwnIM6eUq/rxmyv/3RA5yS/SXWfxteTgOZBTi5fhUAA1Dzl+dMAC7065iSXiA0HP95Gh/9JQ74J4+bjiVfQPuzvaws23+/zv6wX746zensePUFcwO9sPI3m4mX9/sT5Pw64UibIwcjkVf/4Yadcvr377zpyDIpDZ4dIT+EHNdd7g64sxbE7DmpwyED/LG3f494GDXkIH9gQAvPHtvH3x2OAsA8NnhLLw/Y5jJdbc2Bt5E7czUjmwmV+s6cnNzMWvWLFy/fh2enp4YPXo0kpKS4O/fkCBl586dePrpp4XyM2fOBAAsX74cMTExSElJQXJyQ+KUu+66S3TurKws9O7dGwCwbds2REdHIzw8HAAwdepUbNy4UShra2uL3bt3Y8GCBRgzZgwcHR0RGRmJNWvWWOzaiXS5OduLkvsQkfnKVXVY81MGki4WNds7u3znWXx08A+E9vWAvdQGM0b2gkc3GVyd7NBNJkVFjRrdZNYNB25U1kDuaNeu83UPZV4XvdedN739L6GtPretrY3eUH/tRzrd57u/fnNa+FpqI0FdvQYDe7pA7miHR4bdgUeG3SEqP0ih31A+bmDDdLGx/T1NqmN/76ah9H/bfho/Lw4z6TgA+PVCEQDgxS9bnvP++sMDMXu0n9kJ3LrJpIiZOtjgvj+P7SsE3qq6loP+joSBN1E7M3moeSeYn7Xh50z0dHXEYya0YN7O4uPjm90/d+5czJ071+j+sLAwkxpi3NzcEBcX12wZPz8/7Nq1q8VzEbVe8w/P997lgZ2/XW22DFFXd61MhW9P5iLhbD4mBfXEhME+8HVzavYYdb0Gu05fxeYjl5BdXInr5U0NWM72tnhggBd83Zww6x4/eHaX4YsjWfji10vIU1Zj+8lcAMBXx0yb0+vj4oAfXroXv+eXYqivK1wcWt8DXFNXj8tFFUi5XIIN+y5g2nAFejjZ46ez+egpdxTuB9OH34GqWjUqa9SwtZEgT1kNBzsb4dpr1Rqo6+txvqBhya9JQ3rCzckel4oq4GhnixH+PXChsByncm7gQmE5Xp0YgAVhd0Gj0UBdr4HU1kZIJvrpL80v6dncHOmW2Eok+oG3Vp/3piOXjB773uNDMG3YHRZvhOjn3XR9OcX6ve2GaDQazL05zFvbHa6O0Gg0uKqsRsLC++DqaA9vF5nFrsGzuwwfzBqO6K9O4XqZquUDOhAG3kTtzOTlxCxbjVt2IKMQa28mzWDgTURNmr97mZGjiKjTulxUgVq1Bp7dZVi7JwM/nc2HrUQCZ5kUdfUaXCmpEobonsq+gRW702EjAdLfngiZ1FbvfMrKWoSvP4iC0qZAQyF3QFRIb4wb6CXqwWy0IOwuPHtvH3x/6ioOX7iO9LxSlFTWoLS6DjUt9BTml1bjnpWJwvsHAjyx7olhcHWyR++luw0ec6eHM8YN9MKoPu7o1cMRxy8V49L1Snz+a5ao3L/2/6H1rmlu87enrjRbJ127T+eJ3u85J04w+m5CBt5NyIAue6lNi9d/K6Q2BgLvm2/r6zV464dzRo91c7ZcwKrNyV6K7g5SlFXXoUZdj7lfHMO7jw6Bl4uD0WP+HJeCg+ev6W1PXDQWjvb6P7OW5NmtIe/MtXIG3kTUDNOTq1m4Ireocc4REZE5OtvyL0Tm+vZkLl795jTqWvhD7mBnA1dHe2E5q3oNEPBGAl5/eCCeu68PJBIJaurq8enhi6IA8g5XR0QG++GZMX1aDHhkUlvMuMcXM+7xFbZpNBqo6upxobAcdrY2uKqsQtIfRUi5XAIvFxl+TMvXO8/+jGsY9n97m/2si9crcPGXLMT+ktVsOQC4y6sbLhSWi7aNG+AFhasjLhVVYFRvN3jLHdBdJoWNjQR2thJIbWwgtZEgu7gSu9Py0N+7O5ztbXG+oBwJZ/MRPsgbJy6XtDiVRTvo/r9HBuPv359tsb5mkQBqI896LWXi9u2hvwyYpfzw4r0IW3MAQEPm9DV7MvDuY0ONlv/prP7KKQN8urd70A009HoDDSNHOhMG3kTtzPR1vDt25K2sqhW+rlPXQ9pCIg8iIgDQjrtbWkOeqLM5eP4aFv/3N718Lh89eTd6yh1RrqqDqk4NBztbjOrtBqmtDWrV9Qh77wCu3MyqvfLHdKz8MR1PjvbDrxeKkHW9QjjPB7OGY+pQxS3VUSKRwMHOFoF3NGSDDvDpLqwl3aisuhbXylRQuDri+9Qr+PSXLGTqBMrmGKxwwcbIu9HHQz/bdn29BtV1apPnAYcCmNlCtvYvfs1qtme50VMhvUWB99Becvxr9t0m1cMYO1sJ1GrdoeZAda0au9PyDB90k79789nI25Lu1Ib/nMg1GnhX3My+DgBThirwxqSB2LAvE/Pv72vROhrTGHiXVdehpKIGH+zLxOQhCozw72GV+piKgTdRO6s3cXRTB4+7RTp67zwRtafmA2mJ1v56DWDLuJu6iF8yr2HO58cAADNG9sKfhvdCyuViTBmqaDagsrO1wa9LH0S5qg5TNx7GxWsNgXbczTWeu8ukeHl8P8wa5QfndkqE1t3BDt1vzut+4h4/PD7CF9uSL+PNm0Fq1qqHUVJZCxsJ4OpkDwA4nHkdO3+7gmnD74AEEvT1coZMagu5Y/Pzw21sJGYn32rJ02P64OkxfUTbqmvVGPBmgvB+3ICGxoZLqyehoLQa3R2kbVKPbjI7/R5vjQarfkzH5qOX9crf6eks/J+bs174rbK1kWDt40Ox+L+/CduulamEoFZbY+OPm7M9NswaDgBYMc3wGuLtwcVBKkwZGP52w0iML369hA2zhmPKLTZMWRIDb6J21hXX8dZ0+BnpRNRRaHdwq+s17fqgSWQphWXVQtDt6+aI/3skEA52tgjp627yObrJpNi3OAynskuw63Qe7KU2UMgdMG34HUIQbC02NhJEhfRGVEhvYZubs72ozL39PHBvP+NrNFubg50tLq2ehNd3pOFQ5jV8HDVC2OfdzNxmc9Wp66HW6WXRANiSpB90Rz94FxaFB7TZZ5tr6jAF/vlzJrKLG5aiK66oMRh4f3dz/v1dt5B0ri1JJBJ4dpMJo0QavfTVKfSUO5i1PFp7YuBN1M5M7R3+4tdLmD/WOkN4WlJwcz5ao07URkBEVqYdZl+8Xo4BPlxDnjo/r+4OWDU9CL9kXsfL4/oJ6w63xnC/Hhju17GHzHZmK/9k2Z7aGnU9dJe21mgMPytZM+gGGkZbHHr1AQx9aw+UVbUG58er6zX49ObyXa63sL55W/Psrh94A0Bpda2B0h0DA2+idmbq3O18neC2I3lu8wnR+44eeF+9UYXTuTcQPsgHNuxdI7Iq7dtFeXWd0XJEnc0T9/jhiXuan3tMXZ+qth51ej3e+g9KW58d1V5ValFfT2eczL6BG5X6gffL8U3rdb/wwF3tWa1mlWvNO9/zyv04lV0CVyd7PDjA24q1ah4Db6J2ZmqPd0deoks3K2dHH2o+5h/7oNEA788Yiul3d9zvK9HthvkhiKirUdWp9fL56HZQzBjZC/f182y/SrWgcdrA6StKRAT1FO3bdXPZNhsJMNTXtb2rZpR2kt/+3t0NLqnX0TANMVE764pzvDv6w3Pjt/LXC0XWrQgRwUlr6RmfNpxXSUTUEajq9Hu8df3fI4HtVBvTNCaV+/eBP0S93srKpuD2wJIH2r1ezXn75vdw5Z861veyOVYNvGNiYiCRSEQvHx8fAEBtbS3+9re/ISgoCM7OzlAoFHjqqadw9epV4fji4mK89NJLCAgIgJOTE/z8/BAdHQ2lUtwbV1JSgqioKMjlcsjlckRFReHGjRuiMtnZ2ZgyZQqcnZ3h4eGB6Oho1NQ0vw4gUWvoBtTGRj6rO3o0q6WjL33W6OzV5tfPJCLL6yS3CyKiVqmuVes96+ne9m4lB4AlnC8oE75+cO1B4esTl4sBAL16OMLP3UnvOGuaGOiDP955GLOD/a1dFZNZvcd78ODByMvLE15paWkAgMrKSpw8eRJvvvkmTp48iW+//Rbnz5/H1KlThWOvXr2Kq1evYs2aNUhLS8OmTZuQkJCAZ599VvQZkZGRSE1NRUJCAhISEpCamoqoqChhv1qtxqRJk1BRUYHDhw8jPj4e27dvx+LFi9vnm0C3Fd2Hzvv7Gx5q1KkCb2tXwES/55e1XIiILEp7akpHn6ZCRGSuMlUd6nTX8e7gtzrtudvaCdZ+TMsHAIwf2DHnTXe2VTFMmuNdWlpq9oldXEzLUiqVSoVebm1yuRx79+4VbduwYQNGjRqF7Oxs+Pn5ITAwENu3bxf29+3bFytXrsSTTz6Juro6SKVSpKenIyEhAUlJSQgODgYAxMbGIiQkBBkZGQgICMCePXtw7tw55OTkQKFoWPtt7dq1mDt3LlauXGnytRCZQrsV1KObzOiKt50p8C6rrkNxeQ16exhfp5SICBA/gHb0h1EiIlMsCOuLDw/8AQCorlHrPcN19EbGyUN64qWvTultbxwpeO9dHXeZuM7EpB5vV1dX9OjRw+SXm5sbLl68aFIFMjMzoVAo0KdPH8ycObPZ45RKJSQSCVxdXZst4+LiAqm0oU3h6NGjkMvlQtANAKNHj4ZcLseRI0eEMoGBgULQDQATJkyASqVCSkqKSddBZCpT4+m6ThR4j1m9D2FrDiCDPcpE1AKNka+pa1q1ahUkEgkWLlwobCsoKMDcuXOhUCjg5OSEiRMnIjMzU3ScSqXCSy+9BA8PDzg7O2Pq1KnIzc0VleFUQuoo/johAFOGNsQRao0Gat1WRa23z4zp0441M41Eot8NpKpT40JhOQBgoIKdkG3B5Kzm33zzDdzcWl6MXKPR4OGHHzbpnMHBwdiyZQv69++PgoICrFixAqGhoTh79izc3d1FZaurq7F06VJERkYa7YEuKirC22+/jfnz5wvb8vPz4eXlpVfWy8sL+fn5Qhlvb/EQih49esDe3l4oY4hKpYJKpRLet2ZkAN1+tHu8JRLAxsDNDgDqO1Hg3ejQ+WsI8On4WSWJyHq0c0J0lvwQ1DrHjx/HJ598giFDhgjbNBoNpk2bBjs7O3z//fdwcXHB+++/j/Hjx+PcuXNwdm4YObVw4UL88MMPiI+Ph7u7OxYvXozJkycjJSUFtrYN82MjIyORm5uLhIQEAMDzzz+PqKgo/PDDDwCaphJ6enri8OHDKCoqwpw5c6DRaLBhw4Z2/m5QVzW0lxwSiQT9vboBaBixqNt5ov3s98IDfdu1fqa6r58Hfsm8DgCI2XkWm45cEvYp5EyE2RZMCrz9/f1x//336wXDxtx5552ws2t5gfWIiAjh66CgIISEhKBv377YvHkzFi1aJOyrra3FzJkzUV9fjw8//NDguUpLSzFp0iQMGjQIy5cvF+0z1Iqj0WhE200po2vVqlV46623jF8gkQG6D5raP2OLHuqP9/eeB9C5eryJ6PZmTgAtGmpugbpQx1BeXo7Zs2cjNjYWK1asELZnZmYiKSkJZ86cweDBgwEAH374Iby8vPDVV1/hueeeg1KpxGeffYatW7di/PjxAIC4uDj4+voiMTEREyZM4FRC6jAa5xnb2jb8q67X6HWeqOv1y3c0rz08EBH//AUAREE3YDhOIvOZNNQ8KyvL5KAbAM6cOQNfX1+zK+Ps7IygoCDRcKPa2lrMmDEDWVlZ2Lt3r8GbZFlZGSZOnIhu3bphx44doqDfx8cHBQUFesdcu3ZN6OX28fHR69kuKSlBbW2tXk+4tmXLlkGpVAqvnJwcs6+Zbj/a92IJAFut38Locf2w7omhN8t1vkfSrKIKa1eBiKyspeczzvG+PbzwwguYNGmSEDg3ahwp6ODQ1INma2sLe3t7HD58GACQkpKC2tpahIeHC2UUCgUCAwNF0wQtMZVQpVKhtLRU9CIyhe3Nm1+dgR5v7eXFbDpo4B1gZB3soDvk7VyTrsvkrOYPPvig3ryZtqZSqZCeno6ePRsWbm8MujMzM5GYmGgw+C8tLUV4eDjs7e2xc+dO0Y0cAEJCQqBUKnHs2DFhW3JyMpRKJUJDQ4UyZ86cQV5enlBmz549kMlkGDFihNH6ymQyuLi4iF5ELWlpqLmtTcOvpW5GzM7gy+Rsa1eBiDo4DWd5d3nx8fE4efIkVq1apbdvwIAB8Pf3x7Jly1BSUoKamhqsXr0a+fn5wnNYfn4+7O3t0aNHD9Gx3t7eommClphKuGrVKmHOuFwub1VHEt1e7u3XsDpNY0+2oR5v7UDctoP2HhtrEPh6/uh2rknXZXLgfeDAgTZPRrFkyRIcPHgQWVlZSE5OxmOPPYbS0lLMmTMHdXV1eOyxx3DixAls27YNarUa+fn5yM/PF+pRVlaG8PBwVFRU4LPPPkNpaalQRq1WAwAGDhyIiRMnYt68eUhKSkJSUhLmzZuHyZMnIyAgAAAQHh6OQYMGISoqCqdOncLPP/+MJUuWYN68eQymqc3pjiDXC7wlTTduIqLOwJyea/Z4d205OTl4+eWXERcXp9cZAgB2dnbYvn07zp8/Dzc3Nzg5OeHAgQOIiIgQ5m4b05ppguZOJeRoRjLXpKCGDkPtwFtvjrd24N1Be7wB4MPZd4vef/TkCDjZm5wSjFpg1e9kbm4uZs2ahevXr8PT0xOjR49GUlIS/P39cenSJezcuRMAMGzYMNFx+/fvR1hYGFJSUpCcnAwAuOuuu0RlsrKy0Lt3bwDAtm3bEB0dLQxZmjp1KjZu3CiUtbW1xe7du7FgwQKMGTMGjo6OiIyMxJo1ayx05XQ7054LKYFEb1imcOPmEykRdUHs7+7aUlJSUFhYKBoxqFarcejQIWzcuBEqlQojRoxAamoqlEolampq4OnpieDgYIwcORJAwxTAmpoalJSUiHq9CwsLhdGKpk4lbHxObNTSVEKZTAaZTHZr3wS6rTTG0VLtHm9NMz3eHTjwdnVqmq7bw8kOEwP1l3ym1jO5xxto6GHWnfdyK/Ng4uPjcfXqVdTU1ODKlSvYvn07Bg0aBADo3bs3NBqNwVdYWBgAICwszGiZxqAbANzc3BAXFyfUMS4uTm9JMj8/P+zatQuVlZUoKirChg0beOMli9Bu9dRAgwcHNAyVc7RraOlvvCEzuVrXERMTA4lEInr5+DT9Mfv2228xYcIEeHh4QCKRIDU1Ve8cXFqHugrRPZC3uS5n3LhxSEtLQ2pqqvAaOXIkZs+ejdTUVFGvtlwuh6enJzIzM3HixAk88sgjAIARI0bAzs4Oe/fuFcrm5eXhzJkzommClppKSGSOxtETwlTBeg2ulalEZeq0sqt11KHmAHC3X1ND16FXH7BiTboms3q8+/fvb3Rf47CdxiHeRGSYdjz94AAvTBt2B+SOdgi8mbyiscW0oy4ndpkJ1Fpl8ODBSExMFN5rP3xWVFRgzJgxePzxxzFv3jyDx3NpHeoKKlR1op4gDfu8u5zu3bsjMDBQtM3Z2Rnu7u7C9v/+97/w9PSEn58f0tLS8PLLL2PatGnCyES5XI5nn30Wixcvhru7O9zc3LBkyRIEBQUJydq0pxJ+/PHHABruecamEr733nsoLi7mVEJqc41xdGOyXEPPb9qdKR01uRoAONjZ4tLqSdauRpdlVuBt6lreRGSc9kPnG5MGwcZGgnEDm4a8NfZ416rrUaGqw8vxqXg4yAfT7+7V7nU15PGPjlq7Cq3W3cF6s2ukUqmol1tbVFQUAODSpUsG93NpHeroTAmft6fkYvF/fxMfx7j7tpSXl4dFixahoKAAPXv2xFNPPYU333xTVGbdunWQSqWYMWMGqqqqMG7cOGzatEnUaMmphNQR2Oj0eJdW1+qVaczbI+3AQTfpe/rpp1sso9FosGnTJpPOZ9ZT6JgxYwxmkCSi5i3//gw2H72MxEX3Cw+afxp+B5xl+r+CtTeHI/2eX4ZPDl1EYnoBEtMLOkzgXagzfKozqa613oiczMxMKBQKyGQyBAcH45133sGdd95p0rEtLa0zYcKEFpfWCQgIaHFpnQce4LAyshzdoBtg4H27OHDggOh9dHQ0oqOjmz3GwcEBGzZsaHY0TuNUwuY0TiUkulWhfd1x5I8ive2NoXRjj/fxSyXILakSlam9uVJNR+7tJn1KpdLoPrVajcTERFRVVVkm8Cai1tl89DIAYPz7h/DawwMAGF/rNqe4UvhaWaXfakqtV2ulJdqCg4OxZcsW9O/fHwUFBVixYgVCQ0Nx9uxZg8sk6rLm0jpAw/zyxrV3AXBdW2ozHGpORJ1F7FMjMXj5T3rbdXu8ASBPWS0qo765jndHnt9N+r799luD27///nu89tprcHBwwPLly00+n8nJ1fz9/Vtc5oGIWlZT13DztbMx/Os3MbBne1aH2kFERAQeffRRYX7i7t27AQCbN2++pfO2x9I6ANe1pbZh6EeMPd5E1FkYGqUINN3bmhtG3tjuz6Hmndsvv/yC0NBQzJo1C5MnT8bFixfx6quvmny8yYF3VlaWST0zRNREVafG4x8dEW2rujnc2dHecENWY3ZzAKirrzdYpiPTdLAn6Y5WH6Ah0VBQUBAyMzNNKq+9tI62wsJC0bI5piyto9uz3dLSOgDXtaWWmfJ7xgdOIurswgI8je6zaaYBu7HHm0PNO6czZ85gypQpGDduHAYPHowLFy7gH//4B+RyuVnnMWs5MQAoKChAVFQUFAoFpFIpbG1tRS8iarL7dB6OXxIHS5U1DYG3k5HA207adFOus9LQ6FvR0ZKxd7T6AA1Dt9PT09Gzp2mjG6y9tI5MJoOLi4voRWRM/LFs0fsLheU4cuE6pAZG+eiudUtE1JF9PuceRAb7ibaZ0uPdONWtI6/hTfqys7MxZ84cDBs2DFKpFKdPn0ZsbKwoV445zJ7jPXfuXGRnZ+PNN99Ez549mx2eSHS7U9Xp91g3JvjS7tnWpv1waq05ybeioeer49wX1DqRd329pt1bnJcsWYIpU6bAz88PhYWFWLFiBUpLSzFnzhwAQHFxMbKzs3H16lUAQEZGBoCGHmofHx8urUOdyv6Ma6L3498/aLQs424i6kxsbCRw0nl+a1rHW//ZQia1gaquXngWaa5XnDqegIAASCQSLF68GKGhocjIyBCe0bQ98sgjJp3P7MD78OHD+OWXXzBs2DBzDyW67Rh6qGzs8TY21NzOtummvP1krkXqZUkdrYf51wvXRe/r6jWwb+fAOzc3F7NmzcL169fh6emJ0aNHIykpCf7+/gCAnTt3ipasmDlzJgBg+fLliImJAcCldahr6mC3CyKiFu1N15/WBRgOvO1vBt51XE6sU6qtrYVGo2n2OUmj0aDexKmhZgfevr6+HXLOJFFHpJuxd1QfN1S1EHh39lEkHW3oaGGZOLNoXX097M2fZXNL4uPjm90/d+5czJ07t9kyXFqHOjJjv/WZBWXNH9fB7hdERC2pUNWJ3jc+tRkKqmVSG5QBqLu5VCyHmncudXV1LRcyg9lPn+vXr8fSpUtx6dKlNq0IUVek90yp0UquZmSouTHXyzvH+tkd7Tm6Rme4f11H65In6qJO597AQ+sONVtmVmwSfjbSe0RE1DEZDp4NTWOzu7m4tzDUvH3b/amDMbvH+4knnkBlZSX69u0LJycn2NnZifYXFxe3WeWIOjtDvTlVLSRXM2bDz5l465HANqmXJXW0dXkVro6i9+pOOG+eqDP6Ob2wxTLVtfV4dvMJXFo9qR1qRER063QHJjaXXK0x8P49v2H0D9fx7lwOHjSeo0Tb2LFjTSpnduC9fv16cw8hum3pd3hrhDneDmb2eDf2lFuTKcNCO1qHcjeddTfZ403UPjikkohuB42PRobueVdvVIne877YuTz44IPQaDSiaaCG3ltsjndjFl4iapnh5GoN80WcZeb9+qk7wJLeuhnCDeloc7x1A21TroGIzGPo157Pl0R0O2iMwRp7t7XpPoMw8O58MjIy4O3tDQC4dOkS7r33XuTk5EAikeDatWvo37+/yecy6cm/tLTUrKVmysrK0L17d5PLE3VVuj3EGg1QVF4DwPyh5moTW9MsSW1CUK2xfjVFdP/o1XaEFgyi20B7L9tHRGQNkptzvmXSlidwczmxzsfFxUWIg7t16waNRgO5XA4AqK6uNitJqElT/Hv06IHCwpbnajW64447cPHiRZPLE3VVup2rJy6XoOxmNkzdIdAt6QhDpE2J/Ttaj7dugwV7vInaBx8wieh2IpO23KHCHu/bm0lP/hqNBp9++im6detm0klra2tvqVJEXUVzIZ6TvXmBt6rOuj21dep6vPHdmRbLdbTAu1YnmVpHaMAguh3w+ZKIuiJjtzZT2hq5jnfn0tZLXpr05O/n54fY2FiTT+rj46OX7ZzodtTcL6yzzLyh5nVWHiL9XepVbD+Z22K5jhbW6vZws8ebqO0ZWs2APd5E1BUZe4rwdnFo8dgbVeyc7EwkOn/HpFIpevXq1WyZ5pgUeHPNbqK2Z+463ro9t+2toLTapHIdr8dbdx1vzvEmag/mPIwQEXV29ibM8b5cVNkONaG2cvToUbi7uwvv/fz8kJ6eLrz38vJCXl6eyefjMu5EFtRcDNrcQ+m7jw3R22btpGCmDrepUFl/2TNtuj3cdVzHm6hd2DLuJqLbgJuzvbWrQBYyatQoSKUN/dQajQaFhYW4du2a6JnYy8vL5PMx8CayIEPDL00xY6QvYp8aKdpm7cDbVA+sOWDtKojoBtqc403U9gy1yzGJEBF1dcdeH2dSTzd1Xjdu3MCCBQvg4eEBHx8feHt7w8PDAwsWLIBSqTTrXFb9SYmJiYFEIhG9fHx8ADQkaPvb3/6GoKAgODs7Q6FQ4KmnnsLVq1dF51CpVHjppZfg4eEBZ2dnTJ06Fbm54nmoJSUliIqKglwuh1wuR1RUFG7cuCEqk52djSlTpsDZ2RkeHh6Ijo5GTU2NRa+fur5bGXX90CBvUfDdkQJGewNrVXZUXMebyDr4m0ZEXZH2s53ckTmturKysjKMGTMGcXFxmDFjBtavX49169bhiSeeQFxcHMaMGYOysjKTz2deWmULGDx4MBITE4X3trYN814rKytx8uRJvPnmmxg6dChKSkqwcOFCTJ06FSdOnBDKL1y4ED/88APi4+Ph7u6OxYsXY/LkyUhJSRHOFRkZidzcXCQkJAAAnn/+eURFReGHH34AAKjVakyaNAmenp44fPgwioqKMGfOHGg0GmzYsKG9vhXUCe3/vRBSWwnu6+dpcL+xGO/r50ebdP6HBnkLX7fHHO8vfs3C+YJyrJwWqLcGr/YfGlsbCdCxRpQbpTunm3O8idoHG7mIqKuTGM1xTl3B6tWrUV5ejvPnzwudw42WL1+OUaNGYfXq1Vi5cqVJ57N64C2VSvUuBADkcjn27t0r2rZhwwaMGjUK2dnZ8PPzg1KpxGeffYatW7di/PjxAIC4uDj4+voiMTEREyZMQHp6OhISEpCUlITg4GAAQGxsLEJCQpCRkYGAgADs2bMH586dQ05ODhQKBQBg7dq1mDt3LlauXCksmk6kTVlZi6c3HQcAnF8RYXCokaGh5nNDeyP4Tne97S3xd3NqOq9Gg4c/OIwblTU4svTBNkti9NYP5wAA4YO88cAA43NWWhpC+sHPmXgqxB+uTtaf91Sqk0GUwQBR++DvGhF1ReY8cj052g9xSdmWqwxZ1Pbt27FixQqDsaq3tzdWrlwpvExh8njRzMxMzJo1C6WlpXr7lEolIiMjcfHiRVNPJzqvQqFAnz59MHPmzGbPoVQqIZFI4OrqCgBISUlBbW0twsPDhTIKhQKBgYE4cuQIgIZsdHK5XAi6AWD06NGQy+WiMoGBgULQDQATJkyASqVCSkqK2ddEt4d8rSzfxuZfGxpqbu4ajose6g8AkNk1/bre9+5+pOeVIk9ZjROXS8w6nzHay5UdPH9Nb7/2pbR0Ce/vPY/XdqSZ9fknLhXjp7P5KK5ouykeW49ewpo950Xbcoqr8OkvF1FWzSU9iCypI02PISKyBnNXsKGO5fLlyxg5cqTR/SNHjjRr9S+TA+/33nsPvr6+Bnt/5XI5fH198d5775n8wQAQHByMLVu24KeffkJsbCzy8/MRGhqKoqIivbLV1dVYunQpIiMjhTrk5+fD3t4ePXr0EJX19vZGfn6+UMZQtjkvLy9RGW9vb9H+Hj16wN7eXihjiEqlQmlpqejVWRy5cB37MwrbfGH428nbu84JX5vzXbQ1M9VvD6eG+UONwb1Go0FuSZWwv63yF10qqhC+3nTkkl5jgt5Q8xYc/UP/91iXul6DClUdNBoNHvvoKOZvTcHdb+/Fd6eumF7xZrz5/Vm9ba/tSMOK3en4u4F9RNR22ONNALBq1SpIJBIsXLhQ2FZeXo4XX3wRvXr1gqOjIwYOHIh///vfouPy8/MRFRUFHx8fODs74+6778Y333wjKsMcPmRtLfV+K7lud6fWo0cP2NkZn8cvlUr14tDmmBx4Hzp0CI8//rjR/TNmzMC+fftM/mAAiIiIwKOPPoqgoCCMHz8eu3fvBgBs3rxZVK62thYzZ85EfX09PvzwwxbPq9FoRENvDQ3DbU0ZXatWrRJu9o2ND53B7/mliPw0GU9/cRybjlyydnU6rcMXrgtfG1u7ut7Ag6e5Pd52NxOZ1dQ1nEv3o1R1bTNned/vhaL3E9YfMlq2rR6nB/09AYOX/6S3ruXCr1Pb6BOMM9SrT0Rt51/7L1i7CmRlx48fxyeffIIhQ8RLZL7yyitISEhAXFwc0tPT8corr+Cll17C999/L5SJiopCRkYGdu7cibS0NEyfPh1PPPEETp06JZSJjIxEamoqEhISkJCQgNTUVERFRQn7G3P4VFRU4PDhw4iPj8f27duxePFiy188EW4tyS5ZX1BQEA4dMv48fODAAQQGBpp8PpMD78uXLze7TpmHhwdycnJM/mBDnJ2dERQUhMzMTGFbbW0tZsyYgaysLOzdu1fU4+7j44OamhqUlIiH2hYWFgo92D4+PigoKND7rGvXronK6PZsl5SUoLa2Vq8nXNuyZcugVCqF161ef3tJ0uqJfOuHc/gmJbeZ0mQKjZHY19D91tbGvIzgjYF3Yw+0bpDf2nWzdXu0/3tC/HNw8VqF6L32fHVDDQq6bFpoBr5erhIaDcIMLEFm6dEYTIdCZFmVNZ0kAyNZRHl5OWbPno3Y2Fi9HqGjR49izpw5CAsLQ+/evfH8889j6NChouS5R48exUsvvYRRo0bhzjvvxBtvvAFXV1ecPHkSAIQcPp9++ilCQkIQEhKC2NhY7Nq1CxkZGQAg5PCJi4vD8OHDMX78eKxduxaxsbGdapQidV41nWQpWDLsxRdfxD/+8Q9UVlbq7ausrMS7776Lv/zlLyafz+QIQC6X448//jC6/8KFC7echEylUiE9PR09e/YE0BR0Z2ZmIjExEe7u4oRUI0aMgJ2dnSgJW15eHs6cOYPQ0FAAQEhICJRKJY4dOyaUSU5OhlKpFJU5c+YM8vLyhDJ79uyBTCbDiBEjjNZXJpPBxcVF9OroLl4rx4Z94l6IJf/9zUq16TqM9Xi3xRxvO6lu4C3e//Vx8xt8CkurMXJFIv6q9X8/aUjPZo8xNw4uU9U1u3+tztxrXZGxyc3ur6ypQ3WtGiezS3C5qALHsorxW84N0f7msBGaqO2wV4d0vfDCC5g0aZKQ/Fbbvffei507d+LKlSvQaDTYv38/zp8/jwkTJojKfP311yguLkZ9fT3i4+OhUqkQFhYGgDl8qGNo6YlON9dFZLCf5SpDbW7KlCk4fvw4ZDKZ3j4HBwecOHECf/rTn0w+n8mB9/3339/s0loffPAB7rvvPpM/GACWLFmCgwcPIisrC8nJyXjsscdQWlqKOXPmoK6uDo899hhOnDiBbdu2Qa1WIz8/H/n5+cLcHLlcjmeffRaLFy/Gzz//jFOnTuHJJ58Uhq4DwMCBAzFx4kTMmzcPSUlJSEpKwrx58zB58mQEBAQAAMLDwzFo0CBERUXh1KlT+Pnnn7FkyRLMmzevUwTT5lj2bRqKDCSvulHJ+U7myLou7g1WGwu8DYR3psyP1mZ/c064qq4e6noNfkzLE+0/eL7Q0GEorqgxOsdy+8krUFbV4r9aox2qa/VbZbV7nc19rq5pYQh8SQtJ1I5eLMKXydmoMBDAl1TUYNDff8KANxMw/cMjGPveAcz4+Cge+devKLyZ9C67WL91Ult79njHxMRAIpGIXtoZMjUaDWJiYqBQKODo6IiwsDCcPSueg875jkTUWcTHx+PkyZNYtWqVwf0ffPABBg0ahF69esHe3h4TJ07Ehx9+iHvvvVco8/XXX6Ourg7u7u6QyWSYP38+duzYgb59+wKwXA6fzpy/h9qHOc8PfT2cRe/dOsBqL2QeFxcXYYlqbTY2NmbHiSYH3suWLcP//vc/PPbYYzh27JgwvDo5ORmPPvoofvrpJyxbtsysD8/NzcWsWbMQEBCA6dOnw97eHklJSfD390dubi527tyJ3NxcDBs2DD179hRejS2ZALBu3TpMmzYNM2bMwJgxY+Dk5IQffvhB9A3atm0bgoKCEB4ejvDwcAwZMgRbt24V9tva2mL37t1wcHDAmDFjMGPGDEybNg1r1qwx63o6Mo1GgwuF5UjOKja4v7yF3kkSS7ooThxmTo+3nZnJ1WTShp/llMsl6Pvaj3rzn58e0wel1bVClm5lVS3OXFHi7rf3IijmJ4NDtn862/TA0Ricb0u6DAC4r5+HsO/KjaYkbrcShGvLul6BTw79AVVdy8NQX9uRZjA7enwzvfyj3vkZANo0O3pbGDx4MPLy8oRXWlrTdb377rt4//33sXHjRhw/fhw+Pj546KGHUFZWJpThfEfqbIb6ulq7CmQFOTk5ePnllxEXFwcHBweDZT744AMkJSVh586dSElJwdq1a7FgwQIkJiYKZd544w2UlJQgMTERJ06cwKJFi/D444+L7p2WyOHTWfP3UMd0bz9Pa1eBOhCT1/EePnw4vvnmGzzzzDPYsWOHaJ+7uzv+85//4O677zbrw+Pj443u6927t0lzPB0cHLBhw4Zme+Pd3NwQFxfX7Hn8/Pywa9euFj+vM1m39zz++XMmlkUMAACs+t/vABoyMH753GjMik0Sys75/BgUro74cPbd6O5gPHtfV1OnrsdvuUoE3SE3uA53as4NfH08G8unDIaD1pIQPeXihwljP6ptMcdbZqBe2j45dBGfHGpYhu9fkXfjhS9PCvsqa9Tos+xHfPTk3ZgY2BNv7zqH45eKcTpXKZS5UVkD924yYWi4dgbOdXszsXbGUAA6w6VMjLw//eUinrvvTuH99XIVHjAwn7s536dexT9nDkd1rRollTVQ1dbjHwm/N3uMRqNBdW3Hml8qlUoNrgOp0Wiwfv16vP7665g+fTqAhgST3t7e+PLLLzF//nwADUMm//3vf2PUqFEAGh5K161bh5MnT2L48OHCfMekpCRh6GVsbCxCQkKQkZGBgIAAYb5jTk6OMPRy7dq1mDt3LlauXNnlRviQddmb2chIXUNKSgoKCwtFU/XUajUOHTqEjRs3QqlU4rXXXsOOHTswadIkAMCQIUOQmpqKNWvWYPz48fjjjz+wceNGnDlzBoMHDwYADB06FL/88gv+9a9/4aOPPjI5h09ysnjaUks5fJYtW4ZFixYJ70tLSxl8k1HNJWEGAFudRzhDIyHp9mFWBDB58mRcvnwZ33zzDVavXo1Vq1Zh+/btuHTpEqZOnWqpOpKZcksqcd+7+/DPnxuS1K363+9C0A0ATwb7I6SvO354sWlI1x/XKvBL5nU8/cVxi9WrulatN0TbHNuSL+OLX7MANPTQt0WP5ns/ZeDRfx/BX7/5DZkFZRi39gC+T21aymrav37FV8dy8Jc48Vyw6+XizzY2pNtQ45G5c7y11+9uiXbQre3PcSdRVaPGZ4ezREE30NQzfLefKwDgydH+wr5ePRyFa9Be57u8hfnTjVbsTsexrGJh2HnoavNWPmhUUFqNAW8mIGTVPkz8p/HskkL9VHWoqml+qHtLS4C0tczMTCgUCvTp0wczZ87ExYsNjSVZWVnIz89HeHi4UFYmk2Hs2LGi0T2c70gdmaGHyRo1HzBvR+PGjUNaWhpSU1OF18iRIzF79mykpqZCrVajtrYWNjqN0La2tqivb7hvNyYyaq6MpXL4dMb8PdRxLH6oPwb4dEdfT2eMG+ClF5gzH8btzeQe70aOjo5mTSKntvf18WwcyryOBwK8MG2YAtKbzWkFpdUoKK3G1I2/Gj3206dGIvSuhiR1Qb3kCB/kjT3nmlqMT1wuwcA3E/D2tEA8NqIXgIYM1t+lXsGYuzzg7WJ42Jgppm48jPMF5fj0qZH47HAWvFxkePbePhjSy7XFY/OUVXh9xxkADZnYG8U+NRIPDWpqtW5pCThdH9/sKf4+9SpyS6rwx7UKvByfikeG3SEqtz/jmnB+jUY/IZ05Q83bat1tcw38e4LB7dfLa9Dbox4ns28AALrJpPjT8Duw49QV/PPnTGxLvowfXroXnx7OEo4x5w/HjI+PAgAurIwwOu87fJA3DmVeMzjPHACCbw4fB8Rz0YPukGPni2Pw5GfJyFdW44+bmdgvXqvoUD3ewcHB2LJlC/r374+CggKsWLECoaGhOHv2rDDPULf3xdvbG5cvXxbef/3113jiiSfg7u4OqVQKJyendpnvCDTMeVSpVMJ7znkkU9Qxm+9tqXv37nrL6zg7O8Pd3V3YPnbsWPz1r3+Fo6Mj/P39cfDgQWzZsgXvv/8+AGDAgAG46667MH/+fKxZswbu7u747rvvsHfvXmF0onYOn48//hgA8PzzzxvN4fPee++huLi4y+bwIevQfaR7aVw/vDSun/A8eiq7xOBxdHsyOfB++OGH8dVXX0EulwMAVq5ciRdeeAGurq4AgKKiItx33304d+5cM2ehW6XRaPC37Q3zm3afzms2I/noO93wj0eHYOYnSchTVmPxQ/0xfpD4oVvuqD+svKpWjSX//Q0PDvDCwfOFeOVr8WdMHtITCldHjO3viTF3eegdb8jJ7BKcLygHADy3pWm5kO9Tr+L7F8ZgkMIFZdV1uPvtpgz1Y+5yx4TBPrh4rcLoeuPztpyA1EaCKUMVCPDpjg/3X8CLD96FJ+7xw9C39gAAdr10LwLvkLdYx9wS48m4/N2dcOaKEpM3HIZXd/3MhvVGlxO79abNO1ydbvkczTlxqRiFZdXCewc7G+w41dTrf728BiGrWtdTrS28mXXBn7vvThxoxbra/37ybkgkEmx7bjQ0Gg36LPsRAPDIv37FimnNr6uom2nUkiIiIoSvg4KCEBISgr59+2Lz5s0YPXo0AP3harqNSNrzHT08PPDdd9/h8ccfxy+//IKgoCCD5zB0HnPnOwINcx7feustE6+WqIHukoVEjeLj47Fs2TLMnj0bxcXF8Pf3x8qVK/HnP/8ZAGBnZ4cff/wRS5cuxZQpU1BeXo677roLmzdvxsMPPyycZ9u2bYiOjhZGDE2dOhUbN24U9jfm8FmwYAHGjBkDR0dHREZGdqkcPtQxNf5N1V1alR3enZNKpcLx48dx7733ir42l8mB908//STq8fjHP/6BWbNmCYF3XV2dsG4ita2/f38GW45ehr+7E5ztTfsve2PSQGFu7dFl44yW0w68/zy2Lz462LRknHYQrG3X6YYhW43ziu/0dMa+xWFGP+PS9QpM//CI0f2P/MtwD/2vF4rw64Uig/u01dVrRIHiOz/+jnd+bBpaP3nDYVH5yUN6Il9ZjROXxa2QBaUqGHO5qFI4T2GZfjlzerzN5SNv/SgDU/yWq0SVVu9wTZ1l/izorguuzau7TPTXSCa1Edb4NuaJkb7o1aOpUUI3cGypx/tGZW2z+y3J2dkZQUFByMzMxLRp0wA09EY3LqUIAIWFhULvtDXnOwKc80itU8uh5nTTgQMHRO99fHzwxRdfNHtMv379sH379mbL3K45fKjz0G3T5lDzzunKlSuIiIhAWVmZ6GtzmTx5VHeuqimJz+jW5SmrsOVow3DTy0WVOJfX8hDPiYN98Oy9fUw6v4tW4P1UiD/6e3czu44Xr1Xg3YTf0XvpbuzP0F/a6oObc807il2n8/SCbl0pl4sR9Vnz60hrMxp4G9hmzlB4S/K5OW2gv3c3/J7fdPPIul6BZ8Y0//Mztn/bZun0d3cSjQ7QTV5nyI2q5uf4V9V0nKHmulQqFdLT09GzZ0/06dMHPj4+2Lu3qaGrpqYGBw8eFOYpWnO+I8A5j9QyQ7fAlpYUJCLq7Fp6pNPt8Xay11+Wim4fZs/xJssqqajBqZwS3N/PE1JbG2zcd6HZ8r+/PVGUbdvcOc4OWom7ujtIseeVsQCA5ItFOHG5BGP7e2JQTxcUV9agm0yK3/PL8OH+CyiuqBEFrx8eaOgpf/qL4/hi7j14YIAX6us1uPO1H02ui7bn778TF6+VIzVHiUEKF/x98kB8cugi/nOiYd3prFUPQyKR4Pf8Ukxc/wsAYMbIXhjp74ZXt59u1Wdqe/TfR80qb06Pd2vi7gVhfYXvcVu509MZ+aXVqFXXY9/vTQ0mT9zji+4OUnz+a5aovIOdjTC/2twEcc3xcXEQ1rZubKq4UdVyb/RPZ/V7d+/r54FfMq8DANbuPd9mdbxVS5YswZQpU+Dn54fCwkKsWLECpaWlmDNnDiQSCRYuXIh33nkH/fr1Q79+/fDOO+/AyckJkZGRADjfkTqnOmNzcIiIbkNO9raYO6a3tatBVmRy4N30YCzeRm3n7FUlJn3QNCx623PB2JacrVdu3AAvqOrqMXWoQhR0A+b/n2i3xGkPYw++0x3Bd7oL7z26NcxrHubrik+eGils7710t945n950HL8tD8dbP5w1+rmLHuoPJ3tbPDaiF/6RkIGvjmXjt+Xh+OlsPr5PvYK/TRwAW53gTnu6YON1DvBxwaXVk0TlZtzje7O8Bn21Av+zb03A4OU/Ce+XRgzA6v81vyxVS5zsbVFZo4ax6cKG5nj/UWh+ZvdXJw4wGHgfe30cVuxKx5BecqzYna6338/NCdnFhueuN85Vr1Vr8OIDd2Hj/gvwd3eCm7O9wfJ3enQTRlyY8nMmkbQ8pGr7X0Jwt1+PhvJa20tNCLwNeeWh/kLgrau7gxRl1eJs7DV19QaXkWtrubm5mDVrFq5fvw5PT0+MHj0aSUlJ8PdvyCD/6quvoqqqCgsWLEBJSQmCg4OxZ88edO/eHQDnO1LnxKHmRNQVmfOorf2c/WP0fXC5jZbsJX0mB94ajQZz586FTNbwsF5dXY0///nPcHZ2BgDR/G9qnQ/3iwOr2Z82DXX+64QAvPDAXW3+mdoBlE0rejFPx4RjSMweve2Nic0M0U12tmp6EFZNb0gONWOkL2aMNDx39KkQf2w/mYuHg/TXQjbE1kaCXj0ckVtSBQBwlknxy6sP4PvUK5g/ti/sbG3w6S8X9ZYGM9X2v4Rg/tYUVNaom1lOTH/bpaLWL6mmy6u7Az6YNRy16nqDgfcPL96Lof/X9H/x0ZMj8OebS6M1ZqivUdfDSdbQgDOqt5vRz9JOlPTEPb5ITNfvcdZ28Z2HhWRnjeaPvRMfH7wovB/h3/R52qMG3p4WKGSxN0dfT/2pEg8H+eCNSYPw+eEsUWZ2oOHa2yPwjo+Pb3a/RCJBTEwMYmJijJbhfEfqbNpiyUcioo6spY4I7Rliuh1KdPsx+Ylzzpw58PLyglwuh1wux5NPPgmFQiG89/LywlNPPWXJunZ5zQUA4YOMJz66FQ8ENMzV9WnlMmEuDnY489YE/CvybsQ/P7rF8hdWRpiUYdyQob6u+HXpg1j3xDCTj5kU1JCsqvF76+vmhBcf7Ae7m0uwaQfGv7890eTzvjoxACP83YSWTONDzfW3r3l8qMmfo83f3Xh2cztbG/y2PBynY8JF2+VOTS2rUhsJJgb6YPmUQfi/RwYL+2rr6lF3s2eqcWk6APB1cxSdqzHwfntaIMYP1F+2SpehP0bJF4uxMXI4AOD9GeLvw79nN8wx7u/dDbOD/Vv8DEN/v1wc9NsSE9MLoXB1xKFM/azptZyDStQmdO90lTV1BssBwKXVk/QaUC2dN6amrh4//HYV18tVmP1pEnov3Y2rN6os+plERBKt8XwMvMnkHu+Wsk9S64xamYjCMhXSYsKRcTPBlULugKvKpuWdDv31Afg1E3Tdijs9u2HPK/ejh5Ph4cWm6CaTYtKQhgD3y3nBiIzVT0o20r8H/jM/pFW96trucHVsuZCW6HH9IJPa4HEjvejaAbODnS3+EtYX/25mLvVghQt2R98nvG8MvI09M+pu1x0Wb471TwzDn7Syw/95bF/RfkNLw2lrXD7r6ZuJ0z79paHnuVZdL6y3qz13WzchiPrmxQQqXEye0vDsvX3wmVYvc68ejpg8RIHwQT56DU3jB3nj/IoIYfuihwKQmK6frK/RqTfD9bYZqpfnzWkSjcvZaavhckdEFtGYD8IY3d/Veg1ga8Fn0n/tv4B//pwJuaMdlDensrzw5UnsWDDGch9qJnW9Bn+JS0F/7+5YMiHA2tUhojag/djLwJuYXM2K6us1wtJUsb9kCfNntzwbjApVHWxtJLjT0xlOJi4h1lr9vbu32blC+3rgbj9XnMy+IWybG9obfwnre8tBd2s4y6RYFG78AUZ3hHiBVoOHIX8JEwe7jTdRo0PNTaijqbTn8+sm1TPF/TqZyBt7/WvVGuTdvG7tOem6/1uNeZLMySPwxqSByC2pFBKhxUxtWArL2OgO7e3NNTYlLrpf1Juv7Z7ePXD8UlPivylDFUbPw6zLRKbTaBr+ZnmbMEKqpcRqug179RoNbPXuOm3n21MNiTmVWvkjdHM+WFvSxSLsOVeAPecK8MpD/fmQTtRBScy4V2nf6toyMS21P+3n39bmOTM5onvmmWdMqtBnn33Wqorcjoq05r9pL7l1p4ezVYLUtvLig3fhmU0nhPfz7r/TpAc1a9AdIv6t1nrghugmHmv8vTM21NxYQN4ad3o6w7O7DO7O9pCZMS/5t7+H439n8vDIsDtE2xuD3Bp1PXanNCwvFZeUjRXTGubbXyoSJ2VrHApqzo+mRCLBxsi7MfqdnzG2v6eQpM8U3WTi21N/725Cr3VzjQ6bnh4lSqIXPa4hN8LjI3rhvym5orLmjqAgup2982M6Yn/JwusPD8S8++8U7dMdKt7SvU+vYc/CQ83zDTSqtjRKqL1pry6hrKqFTGqDdXvPIyrEH/7uzlasGRG1lvatUGpj+ZwyZBlubm547bXX9L42l8mBd0mJ8XWP1Wo1EhMToVKpGHiboaDUcO9qZw66AeDBAeL56N0NzLvtKJ69tw/WJ2ZiwuCGOnu7yFBQajxRYC9XcS9sY4+EoYfG+noNNh251GZ1lUltcfhvD8DGwAoD2ubffyc+PnQRU2/29Mqd7DBzlJ9eucYe78NGsoDravzjodtT1RI7WxukvPmQWccYcr6gHPPH3omauvpmA2ZnnYC9ccTIQ4O89QLvzv67RtSeYn9pmDay8sd0PDaiF3oYWQEBgJA3whjdXz0Lx92Q2tigVq0WbUu5bPy5xhq0p+UUV9TgmU3HkV1ciS1HL+P8yggr1oyItPm5OyHfyDO8Lu1GSFtLzqchi3J1dcXSpUv1vjaXyRHRjh07DG7//vvv8dprr0Emk+Hvf/97qypxu7pWph/gRQSalrG7M+lm4aHyt+KlB/vhvn6eCLyjYQ3jL+eNxri1B0Vl/jy2Lz462DDvW3f4c1NyNf1zHzyvn8zrVsmkLQ8vXzIhAA8O8MJQX9dmy9nd/ANQVdv0MDqqj/Gs5o2NC6bE3YMVllkTelnEwFYfy+UPiUxTXatucSpL0sUiRNxMXmlIXQs93roNeJYOvNWW/oBbdL1c/DyQcCZPWAqSuSiIOhZne9On+qm0prTZ27LH+3bX6p+AX3/9Fffeey8iIyMxefJkXLx4sdXR/+1q7d4MvW1BvVqX8buj+Wnh/QCAqNH+HbpX0dZGghH+PYSAtq9nNyS/Nk5U5sUH70L0uH74759D9I5vvLR6Aw+Zug9S7cXO1gbBd7q3+OBs6A/ArFGGk9ABTfPVTenxtsQSXQq5+dMV7vJqWl7snt49RPuau1ai29XaPRkY8GYCUnNuNFuupVk06hbmeOs2hP1r/wWs3ZNhsezmdUaC1yIr3ad1PfHxUdH7NXvOW6kmRNSWPLo1jQxqj+VLqWMz+yfg7NmzmDJlCsLCwhAQEICMjAz84x//QI8ePVo+mERyihuWMgm8wwUPDvDCoJ4uWBDW9mt1W0OAT3dcfOdhvD0t0NpVMZu3iwNW31xX/OEgH3STSbHoof64x8Aa141BqKHelI7ew2pnIPCubWZ4aNMc75avy9YC196aBpwArcSBrk72+M/8psaTZ25mdyeiJhv2XQAArNh1rtlyuvc83TtHyz3e4vcb91/Ahn0X9HJLtBVj1dly9LLRaV+WtC35Mnov3Y3/nsgBAPxxraLZ8iVcE52oU+rVwwlbnx2FXS/da+2qUAdgcuCdk5ODp59+GsOGDYNUKsXp06fx2WefoVevXpasX5e191yBkF31ramD8fnce/Djy/e1cFTn0pF7ulsyc5QfLq2ehA9vri1tTHPLiVk6WdCtsjPQ8pr0R5HwdT+t3mJAe453y+c2dx64KVqV4VfnEDfnpmRKnfnnk6i9qerE86Nb6plueY634d+/8nbONP7PnzMR/M7PqG3n4dyv7zgDAPjrN6cBtDyiJ6fEMg0SRGR5DVMau8aIVro1Jk++DQgIgEQiweLFixEaGorMzExkZmbqlZs6dWqbVrArKq2uxbwtTVm/fd0ss0Y3WZ5Nc8uJdey4G3YGAk9XrfXcP597D+57d7/wvmmOd8sB66zgth/G3ZowWfcYW62MopbolSfqKnRvX9/prPjQUsNiSz3exn79yqprDe+wsH6v/w8XVkZAaqU5mGEDvPBlcjbsbW0Mzum+UlKFIb1c279iRETUZkwOvKurG4Zivfvuu0bLSCQSqHWyhpI+3ecND2fTl1iijkWY423gIfTsVWU718Y8hnp8tZfX0W0QapzHbkq8Ok1n6TJr0f1f0Q62uUYuken+tj1N9L6FKdxmz/FuVFJpncAbAMa+dwCJi8bC0YzESa1RUyf+3lTW1KFS1dDTP6qPGw5f0F9pIrekyuC5fr1wHU72thjux+l+RESW8p///Adffvklzp8/D4lEgn79+iEyMhIzZsww6zwmN+3W19e3+GLQbZruDuK1QznktfNqDN4Mdf5sPnpZ9D58kLd+ISsyNNRT2sxSF6U3h4A2Hrc7WjxfqXH5sshgP4vMb2/VOXX+X7SX8mDgTdR6uo2NuvdAY0PNG1dOMPbrV1J563OZq2tNexb57e/h+GDWcOH9lRtVmPvFsVv+/JYUVYgTur2x4wz2nCsAoN/g2XjbW/ljut55CkqrMfvTZPzpwyPC1DUiImpbs2bNwqxZs5CRkYEBAwagf//+OH/+PGbOnIknn3zSrHNZbEzVpEmTkJeXZ6nTE3UIjcGgwaHmOtY9MczCtTGPoQffu3TmdTd33GCFXLSkxruPDcEXT9+Dv08e1FZVFHFvZs1gY3q5idf71u7xljLwJjJKdw739LvFo1i+PSkeeq7L2PJdW54ZBcD4HO83vjuD3aebnh3yldUIX3cQq/6nH3g2+ujgH/j6eDYA4Pf8Ugx4MwG9l+7G/t8LjR7j0c0ecic7TBnSE0+F+Avbk7OKjV9UG9FdSvTbU1dQWdPQWOCvs2TlvXd5CF+/v0e8EsoMrUzoGfllbV1NIjKig88kpDb0ySef4IcffsB3332H9PR0fPvtt9ixYwfOnTuHnTt34rvvvsMnn3xi8vksFngfOnQIVVWGh0YRsPmZUegukyJx0f3WrgrdAttmhprrle1ggZ5uD7KdrcSkXnntB2btczjY2eKBAK8WlzFrrUUP9Te57JfPBSMy2A/RD/YTbdf+L+ho/x9EHYn2He16uUov0D56sQjNMTbSvPH+0Nyv3wtfnhS+XvrtaZwvKMfHBy/iPydyUFnTMPLmdO4N5CmrcKGwHKv/9zv+tj0NGo0GE9f/Ihz79KbjRpPAvTGpoYFQIpHg0bvbN0ns281kjO/j4Sx6/8HMph75D25mnAcaGkYua2WAzyhg4E1E1NY+//xzvPHGG5gyZYrevsmTJ+PNN9/E559/bvL5rLqgXExMDCQSiejl4+Mj7P/2228xYcIEeHh4QCKRIDU1Ve8c+fn5iIqKgo+PD5ydnXH33Xfjm2++EZUpKSlBVFQU5HI55HI5oqKicOPGDVGZ7OxsTJkyBc7OzvDw8EB0dDRqaiy3fMfY/p5Ie2sC7vLq3nJh6rAag1BTAu+OlstLtz7z7rvTpOHc2kUsteZuo8dGND0Qh/R1N/m40Ls88M6fguAsE6ex0O6Fk9pwPc3bycVr5ei9dDf+kfC7tavS6fx5a4rZx7R0TzR16siBjGvC169+cxqD/v4Tei/djakbf0XIqn2YsuGwsH/zkUt6x/dZ9iOG/98eBGllFA650x3Thjf14Hd3MDndzS371/4LOH6pxOh+mdQG0eMaGgy/+XMIejjb45FhCmF/nboeqjo1lu88Kzru5/QCy1SYiPR0sMc5sqCzZ8/ioYceMrp//PjxOHv2rNH9uqz+5Dl48GDk5eUJr7S0pgQuFRUVGDNmDFavXm30+KioKGRkZGDnzp1IS0vD9OnT8cQTT+DUqVNCmcjISKSmpiIhIQEJCQlITU1FVFSUsF+tVmPSpEmoqKjA4cOHER8fj+3bt2Px4sWWuWjqMpoC75bLSjrYrVp3qKe9geXFTDnOku7v7yl83Rbzxh21euNldla//VE7Wbn7HB5cexAA8O8Df1i5Np3PicvGA0WBzj3Q0FDzd/4UJHzd0q9zucq0ZcWqtOZzx/xguCe5pLIWaVeakl266Uxb6dZOgfecz4/hvZ+ahouPuauhMbG7TIp+Xt0wfqA3Rt/pjkUP9cel1ZMwsnfDfPiF45tG+/z6RxEmrDuELTo5RA5kXMNvOTcsfxFExKHmtxGpVApPT0+j+z09PSGVmv43pP2aeY1VQCoV9XJrawyOL126ZPT4o0eP4t///jdGjWqYN/bGG29g3bp1OHnyJIYPH4709HQkJCQgKSkJwcHBAIDY2FiEhIQgIyMDAQEB2LNnD86dO4ecnBwoFA0ty2vXrsXcuXOxcuVKuLi4tOEVU1fS2GnaGXu8dYd62pm4jI524G3pPz5tPRrc1cke658YBqmtxGJD4qljyS6qROwvWaJt//fDObw5eaBFkgB2ZvUGWhArTAyAdRkaDRMZ7Cd83VID3pQNh7F/SRgG+HTH7208f3nykJ6i917dm19D21Sl1bWQSW0gk+rfW37LuYGD56+Jtm19Jtik5Kp9PJzh6+aInOIqzPlcnPzt/x4ZjL9/39Db8vauc/jmL6G3cAVERKStX79+OH36NPz8/Azu/+2339CvXz+D+wyxepdPZmYmFAoF+vTpg5kzZ+LixYtmHX/vvffi66+/RnFxMerr6xEfHw+VSoWwsDAADYG5XC4Xgm4AGD16NORyOY4cOSKUCQwMFIJuAJgwYQJUKhVSUowPsVOpVCgtLRW96PZi00xyteF+rqL3HW3daN0HX0MPwn+dEKC3TTzUvM2rJTLSv6HHx66ZbOvmmjb8Dkweomi5IHVqGo0GXyZn4/739uvt+/zXLBzK1F+y6Xan3Xt8KvsGntl0HIOX/9Sqc71lpPe5UUvxZtb1CgBAN1nb9g+snh6EiYH6jf1bn21ovG/tvUZZVYshMXsQ8EYC6us1+PSXi+i9dDeWbj+NclUdFmw7KSo/O9jPrBVNlk8erLctarQ/ngrpLby/t5+HXhkiansd62mOLGnOnDlYv3690f3r16/H7NmzTT6fVXu8g4ODsWXLFvTv3x8FBQVYsWIFQkNDcfbsWbi7mzaf8+uvv8YTTzwBd3d3SKVSODk5YceOHejbty+AhjngXl5eesd5eXkhPz9fKOPtLU4q1aNHD9jb2wtlDFm1ahXeeustUy+XuqDmlhM7lX1D9L6jLRunG2cbqt6CsL6ioZFA+2YD95E74MjSB+HiaNdyYaKbzheU4a0fzuLXC00JwB4a5A1lVS2O3cxa/ffvz+DgXx+wVhWt4r2ffscPv+Xh+xfG4P2951FcUYONkcOFnn/t+dQAsK+ZrOAt0U78ZYipU1ZMHXKu7bsXxqCypg6RscnCtkUP9UdljRpP3ONrcKTDAJ+GkW119RpoNBqzR0Oczr3R9PUVJVbsbsjCHn88B/HHc0RlL62eZNa5AWDcQPFzjKuTHd6eFggAeCrEH1uOXkZartLQoUTUxjjU/Pbx3HPPwdfXF6WlpXojoMvKyvDyyy83Owdcl8V6vF977TW4ubk1WyYiIgKPPvoogoKCMH78eOzevRsAsHnzZpM/54033kBJSQkSExNx4sQJLFq0CI8//rhorrihP6C6f1hNKaNr2bJlUCqVwisnJ8doWeqazFlOrKPRffA1lOXb0M+/9nxITTv8+VG4OrZ5r1d7aymRpEajQUxMDBQKBRwdHREWFmYwWcfRo0fx4IMPwtnZGa6urggLCxOtHtERE0laSn29Br9kXsNzm09gzOp9eOLjo/j792fwl7gUhK87JAq6I4P98PGTI7DuiWF46cG7ADQEhv/afwH/PvAHSiosc/0ajcbkNaUNyS2pNOv4lpId/mv/H8gursSnhy9ia9Jl7E7LQ3pe0zDu3JLmg+X+3saXGzT3XqB7b3llvOFVC8qqxYH33NDeorW3ASAi0AfeLjLhfR93Z4Tc6S7M5d7+lxBEj+uHpREDjP5Nd7iZ80GjAVR1RlKyN+NKSdPv4faUXLOPb4lEIsEhrYaixEVjha9dHBoaJn/+vRCzP01q88++VatWrYJEIsHChQuFbeXl5XjxxRfRq1cvODo6YuDAgfj3v/+tdyzveURkTTKZDFOnTjU47bh79+6YOnUqHB0dDRxpmNlPs0VFRUJvdE5ODmJjY1FVVYWpU6fivvvuE8otW7bM3FPD2dkZQUFByMzMNKn8H3/8gY0bN+LMmTMYPLhhGNbQoUPxyy+/4F//+hc++ugj+Pj4oKBAP9vntWvXhF5uHx8fJCcni/aXlJSgtrZWrydcm0wmg0wmM7qfuj5zlhPraHSfP03t4dGev9gJL9tqBg8ejMTEROG9ra3WGujvvov3338fmzZtQv/+/bFixQo89NBDyMjIQPfuDSsfHD16FBMnTsSyZcuwYcMG2Nvb47fffoONVnb2yMhI5ObmIiEhAQDw/PPPIyoqCj/88AOApkSSnp6eOHz4MIqKijBnzhxoNBps2LChPb4NLUq+WIRtydkoLKtG0kXT11S+cqNKtAazRNIQkP3fI4Hw6NZwn77D1RGLHuqP07lKHDx/TRjN8a/9F/D0mN5Q12tw8Pw1nL1aCh8XB+SXVmPWKD94dZfh6MUiKOQOeOWh/vB3d8bv+aU4llWMyFF+kBrIj5BTXIn73hUPc//yuWAM7OkCR3tbZOSXYfPRS6hTaxAR6AN/d2cUV9Rg8X9TUVCq0juftpH+PeDezR4uDnaoq9fgWpkKhy9cF66xt4eT0PDw08L7cSyrCD+mNY3eUlbVCl//nl8KGxvgelkNfmlh+P0DA7xwvqC82TKm0r3duHezN1iurLqhrvf07oGM/DK89vBA2Ett4NvDEX/68Ai6y6T495MjAAB5yipU1aghd2oIRFPeGA9lVS1cnQyfW5t2cskadb3ZOSCWftvU2L816bLRcrFPjTTrvNr83J1wYEkYujtI4d6t6dlDrjUiSLvBqSM4fvw4PvnkEwwZMkS0/ZVXXsH+/fsRFxeH3r17Y8+ePViwYAEUCgUeeeQRALfPPY+Ibh8mB95paWmYMmUKcnJy0K9fP8THx2PixImoqKiAjY0N1q1bh2+++QbTpk1rdWVUKhXS09NFAXxzKisbWudtdJYFsrW1Rf3NRURDQkKgVCpx7NgxIQFbcnIylEolQkNDhTIrV65EXl4eevZsSLqyZ88eyGQyjBgxotXXQ11fY69xZwxA9Xq8TYi7n7u3j4Vq0/UZSySp0Wiwfv16vP7665g+fTqAhlE/3t7e+PLLLzF//nwADQ+q0dHRWLp0qXCsdkKPzppI8kZlDS4XVeLqjSpkFVXg3YSMlg9qwd8mDsBfwvoa3CeRSPDZnJFYsO0k9pxraJQtV9Vhg9YayQCQX1oNAPjqWLZo+3epV0Xv69QaPKP1e/HWD2fxxa+XDH525KfJBrfv/O2qwe3GNJdl/MqNKly50dQjOGH9Ib0ycUlN17ToP7+Z9JlPj+ndpisz6A6wkRlYVUGj0QhDzTdG3g1vl6YkaMP9emDHglD06uEkbOspF/c6SCQSk4JuALDTeo6oMbPH+0Kh4eRvz4zpgxuVNXCWSVGrrkdxRQ0eCDCeHdcUvXXW+QaAO3qY3tvSnsrLyzF79mzExsZixYoVon1Hjx7FnDlzhHw8zz//PD7++GOcOHFCCLy76j2POr+ONXGQOhOTh5q/+uqrCAoKwsGDBxEWFobJkyfj4YcfhlKpRElJCebPn9/ssl+GLFmyBAcPHkRWVhaSk5Px2GOPobS0FHPmzAEAFBcXIzU1FefONSRpycjIQGpqqjDvesCAAbjrrrsw///bu/OwKMv9f+DvYV+EUWQZCFlSRBFcsmLRAhMBI5ejlYqRtJAeXEntm9VJLLdKrdRzWqxcjhqdMpOyH2EZmAlGJuaWmvsCkojgynr//iAemWFmAGFW3q/rmutinueeZz4z4ofn3idOxC+//ILjx49j6dKl2LZtm9QA0LNnT8TFxSE5ORl5eXnIy8tDcnIyHnnkEQQG1i0cFRMTg6CgICQmJmLv3r344YcfMGvWLCQnJzMpk1b187arTXKoufJzdUPNVY25r4vSc9P71IajaSHJkydPoqioCDExMVJZW1tbREZGSgtAFhcXY/fu3XB3d0dERAQ8PDwQGRmJnTtv72Gsy4UkdeHYxavwe3Er+r62DSP+/TP+ueG3Zle6B/dwx8MhCiwaFYJTi+OVHicXPayx0l3PytIC7z/RH99OewD75sbglfie+Ee/u/BYf29piyffzg5ar1GvvmI+9N2f4PfiVo2V7rZW3252j09HPByifmeQO/WPfndh779uz1l7Jb4n5gzt2aY7MzRs+Au/u7PaOd9XK6qlrRrVTTfp59MJbk5tM+qs4RocP//ZsoX3opc1btwAgOmDA7BsTF+8PjIYi0f3xodP3qt2dERrqS6q9tXe823+Hndi8uTJiI+PR3R0dKNzAwcOREZGBs6fPw8hBH788UccPXoUsbGxAAyb87hwLjWF9z50p5rd452fn4/t27ejd+/e6Nu3Lz788EOkpKRIvc1Tp05FWFhYi9783LlzGDduHC5dugQ3NzeEhYUhLy8Pvr6+AICMjAw89dRTUvmxY8cCAObOnYu0tDRYW1vj22+/xYsvvohhw4bh2rVr6NatG9auXYuHH35Yet2GDRswbdo06cZ2+PDhWLlypXTe0tISW7duRUpKCgYMGAB7e3skJCRgyZIlLfo81P7Y/H0TVV2r3EPS1FxLY6A6tLw5Q80b7fVt/B/TKGhbSLK+IVF1WouHhwdOn64bslpfSU9LS8OSJUvQt29frFu3DoMHD8aBAwcQEBCg04UkKyoqUFFxe/jznd6I/namFBt3n8HEB+/G1E/3aiw39aFuCO/aGff7ucBCJsPhonJ4d3RA8dVbCPBw0voezZ0yYWEhQ5BXXcPqsw/c3WT5XX9eUttjfaz4Gj7/9SwOF6r/To4vfBj/XL9H6l2vFx/iia37CwEAX0wKx9nSG/ij8Coeu7cLurl3wLAVO3Hm8g38v+kPwKtj4x5NdWuQ/FFUjg15Z5A2vBcsLWSY9fk+fLHnHLbPjIQAMPjvvcyb4uFsh06ONtj90mDYWVtKQ5m1tc21NOU1jP3JcF+lFdXrlVyrlN7XwUZ/2/9lHbyIEX3valbZv66qnxYw9r4u0pB3XXO2s8ZPLwySpjbM+KwAI/s1L35dSU9Px2+//Yb8/Hy155cvX47k5GR4e3vDysoKFhYW+OijjzBw4EAAhs15XDiXiHSl2RXvy5cvS8MkO3ToAEdHR6XF0zp16oSrV1u212Z6errW80lJSUhKStJaJiAgAJs2bdJaxsXFBevXr9daxsfHB998843WMkSq6reeUR2aWFWjfBfqJW+bfWLbUnMWV1PVqOJNzTJ06FDp55CQEISHh6Nr165Yu3at1GCpWolqWLGqnzozceJEqTGyX79++OGHH/DJJ59g0aJFaq+hep3mllHVVjeir245gAPny/GFyuJTcb0U8OnsgM6ONnhqgH+j37NeXnIA0FtFRp2Ibq5KleXDr8Wh56t180pnf/G7UtmB3Vyx889LcLSxhKWFDItH94aFbD/G3NcFg3rcrij8u8Fr7vVzARqsGfb5pHBUVNcqzd9tSNPK3PUrXQPAksf6YMljfVr6UVHfKdtwaDcAnQ01t7K0ANRUvH89VTdnv4OtlV73XN+6vxBLq2ogk9VVrBf9vz8wsJsrxt3feB/XXcfV9463VU98czka0QKUZ8+exfTp05GVlQU7O/V/+5YvX468vDxkZGTA19cXO3bsQEpKCjw9PREdHW3QnDdnzhw8//zz0vPy8nJ06dJFbVkiopZoUaa+kx4yInNm/fcdqmpFW7UHvMYIe8BV//c2Z5cwG5VhkvpY1dwcNVxIsn5aTFFRkbTGBFA31LK+p6b+eFBQkNJ1evbsiTNn6oY663Ihyba4ET156ToOnFfuFR7R1wvvju2n4RXG5+0xffF8THd0datb3Tslqiv+k31cqcyxBUNhbWmBU5euo+PfDQUujjZ4P7Fl64XYWVu2eIGvppxY+DBOlVyH/9/zhP3nfKu2nKWF+ga2O/mTb20pw92uHZD8oPKogoYNf5YWwI3KxhXv+gYNJzv9N7j84z+7YG0pw+9/b9G19fdCtRXvs5fr1pp5IMAVMUEe+NeWut0IyhssYKcPjrbKvys1taJZjam6sGfPHhQXFyutkVNTU4MdO3Zg5cqVKCsrw0svvYTNmzcjPr5ua7XevXujoKAAS5YsQXR0tEFzHhfOJSJdaVH3VVJSEkaNGoVRo0bh1q1bmDRpkvT86aef1lWMREbL2qq+4q1c0Vbt0TPGKeCqPd7N2VdXtSfSCNsTTEL9QpKenp7w9/eHQqHAtm3bpPOVlZXIycmRFoD08/ODl5cXjhxRngN99OhRaWpOw4Uk66lbSPLAgQMoLCyUyjRnIUlbW1s4OzsrPVrq+0ONb5CH9fZSU9J42VhZSJVuoG5v6IY+nxQuNcb5uTo2e2EvfbGwkOFutw7SlnZrnroP9/u7YKlKr7iVhgqbtgyhKRX4uDjgu9QH8Wh/b43XkslkOHpR84g5W2v9j7Q5XFguVbq1qV8hvqenM6KDblfkent31FVoaqk2irZ0gbi2NHjwYOzfvx8FBQXS495778X48eNRUFCAmpoaVFVVaV0Y19A5j4hIF5rd412/4Fm9J554olGZJ598svUREZkQG8vGFe8jRVfx6hblPZiNcc63aj2bQ811Z9asWRg2bBh8fHxQXFyM+fPnSwtJ1u9vu3DhQgQEBCAgIAALFy6Eg4MDEhISANRVTGbPno25c+eiT58+6Nu3L9auXYs//vgDX3zxBQDlhSQ/+OADAHUrBWtaSPKtt97C5cuX9baQZObBxvMpB3RzVVPSdFhZWuDU4ni8l30ct6pqcJ+fS9MvMiJRge6ICqwb+j77i31SA2F8b0/1L9DSOKcpx2kaGafaWPlEmC/W5WrehstYld+sW3Vdbm8NhbMdQu6So+xmFUb01W+jkkwmw+h7vLHpt7pG38rqWtjrcV58Q05OTggODlY65ujoiM6dO0vHIyMjMXv2bNjb28PX1xc5OTlYt24dli1bBsA8ch4RkapmV7xXr16tyziITJI0x7vBTeSFBlv51DPKHm+LO+jxbjTUnJqjqYUkX3jhBdy8eRMpKSkoLS1FaGgosrKypD28AWDGjBm4desWUlNTcfnyZfTp0wfbtm1D1663V/A21oUky29V4bczdVtgZaU+iEMXyhEd5GGwikFba2oVdVOQMWUg3ss5jn9GdlXq1W9I6+JqLXy/S9crpZ/Pld7EoMDGi2TVq6gyXO9tU+p7vJ3t6uahb5k8AALNa8hsa0se640v956DEEBFTQ0Aw62J0JT09HTMmTMH48ePx+XLl+Hr64sFCxZg0qRJUhlTznlEROoYz2ocRCbo6q263o79DYckqrnfqjXCHm/V+0LViriqHgonrutwh5paSFImkyEtLQ1paWlay7344otKe9qqMtaFJAvOXIEQQBcXe3T3cEL3JlYmJ/0LvkuOfyfco7WMtsXVNKW40gYV7IZyjvwl/Xy0qG6Y+dLH+mDm5433FS++ektrXIZUfuvvinf9yu8GmlcN1OURG0sLVFTXGnSouTrZ2dlKzxUKRbM6dEw15xERqcNxo0StkJ5/FgCw63iJdOx48bVG5WqNsMu70armTVSqrSxZ6aY7s/98XcNUvy6dDBwJtYZqiqhpkNc0LbRYoqHifb7ByKD63uEOdur7AlQXr9QV9ztYiVy14m1o9dOBjK3iTURErHgTtbn5Ww83OmZ81e6Wr2qurkfLGOeuk/GpHxEScpfcwJFQa6imiNe+vr2WhaZU8P4T2nvRG9I03eX1Eb2afY3W+GbawBa/5vZQc+OoeNvWV7xrWPEmIjI2HGpO1Ap9u3REwdkrTZYzxvqp6rDxpoZIqq14t2VAZLYOXKirePe6i4sZmTLVevHa3NOYN6JusSx1+eGtR3sjLljDQm0N1DfgVTeoLE4fHAAbKwvE9vLQOOe8rbk7qd9zup7qFl1CCFy+Vtej38mAe8w3VL8OB3u8iYiMDyveRK1wXs1CauqYxBzvJoaaG+NnION34q9rOFda9/8kmD3eJk3bGg/qhpo3dxeER/vX7Qmfe+L2lJ3e3nIM7ql5b3lDqKqphaXF7QUBr9yowvW/9x/36mhvqLCUcKg5EZHx4lBzolZo7qxnY6y0NprjfQfZwAg/FhmZ1M8KANQtrGYsw3Hpzmhrm7twpfECaFYWmpNKw0p5iHddg8zNvyuxAKT90PWtT5eOGs9Vq6zVUd+g5O5kCztr41ihv/57ffT9XJy6dN3A0RCZJ9770J1ixZuoFZqzBRdgpNuJqQ4154rlpANvPdYHA7u54vURwU0XJqOmbVXz0e/tanRM24KMbh0aL2Q2ou9dt9/LQOnov8/cr/FcjUoi/+XUZQCNK+SG1LBBI2pJNv7f/kIDRkNERA2x4k2kBy/EBho6hMZaONSc6E5093DC+mdDEaVln2YyDS1NEVZa1o0I8mo83/9ev9ur3huqMqttVEbD3SmEEHj9m0MAgMsaVm43BBuVkQL/3PAbnlv3q4GiITJPvF2iO8U53kStoG17HQCYGHk3Eu73gY+Lgx6jah7Ve2LLJhZX4x7eRO1bSzOAtpyi7oxtwznhxtOJLKlpML604Xz0kX29DBGOWurm1WcdumiASIiISBV7vIlaQfXmUXVBGxtLC/h2djTKSqtqD3dTIRrfJyAifdKWI9RVsrXN8VZ3rYZ5Um7AVcJPLnpY7fGaWoGzl2+guqYWJddu93Ib11Bz45hrTkREjbHHm6gVVCvUFdU1Ss+b6kU2pEaLqzVR8zbCtgMi0iNtc7zdOtiiqFx5gTUt9W6N13p9ZDAKr9xEPy2LnOmaTCbDzCHdsXTbUaXjL2/ej+8PF2NQoBse6nF76kRzV2/XB9Wh5vVqa0WTW0YSEZFuseJN1IYqVHq8+/l00lDS8FQr0k0PNddhMERk0gI8OjSqeGtbmVxTPkkM823LsO7Y1MEBkDtY49UtB6Vj3x8uBgD8eOQvhHh3lI4/P6S7vsPTyFZDI0DpjUp0VrOgHRER6Y/xNNMSmSDVm8eGQ82tLWWI7O6m54iaTzV2YxwOT0TGQ1uKUF3fAtC+YKMppBttWwZdulYBAJg+OADenYxnDQ/V3ncHm7qh5xfLKwwRDpFZ4nZidKdY8SZqBdWbx4ZDzXe/FK3naFqm8T7eTfR4c5Y3EWlQXdP4TlT74mrGn09Uh2YrnO2kn0v+rni7drDRa0xNUR1qfuPvvdGnbPzNEOEQEVEDrHgTtaH6oebuTrZwcTSuGzJVnONNRG2lura20TFt24mZQL0bUSojlmytb98yld6oAgB0MrI8r2m++YlL1/UcCZH54v0Q3SlWvIlaQbXXpr7i3fAGzVip3hNzVXMi0kbb6t0tHWpuCrq4OCBzxgPS84a9+mV/V7w72htvxXvusCCsfyYUAPDRk/caKiQis8Oh5nSnuLgaUStomuOtaWVZY6I6p7vJFdhN/CaaiFon93iJxnPqKuVWli3bx9sY9VA4Sz+fv3JT+rl+jndHA257pk7DPD6y713o5GiDU4vjDRgRERHVM2jtIC0tDTKZTOmhUCik819++SViY2Ph6uoKmUyGgoICtdfJzc3FQw89BEdHR3Ts2BFRUVG4efP2H8jS0lIkJiZCLpdDLpcjMTERV65cUbrGmTNnMGzYMDg6OsLV1RXTpk1DZWUliLRpePN4/K9r2HvmCgDg8nXT+90x9d4pItKtWi3dPOrmeGvLKYMC67bj6urm2PrADKDk7xxvbBVv0eDfyM6ae3oT6QJvl+hOGbzHu1evXvj++++l55aWt/9QXL9+HQMGDMBjjz2G5ORkta/Pzc1FXFwc5syZgxUrVsDGxgb79u2DRYMNRBMSEnDu3DlkZmYCAJ577jkkJibi66+/BgDU1NQgPj4ebm5u2LlzJ0pKSjBhwgQIIbBixQpdfGwyQ2dKbuCNzD8A3J7/Z0qa6qTn3xki0qSlc7xH3XMX5PbWCPGW6zIsnevoYFxDzRsOPDCm/cWJzAmHmtOdMnjF28rKSqmXu6HExEQAwKlTpzS+PjU1FdOmTcOLL74oHQsICJB+Pnz4MDIzM5GXl4fQ0Lq5TqtWrUJ4eDiOHDmCwMBAZGVl4dChQzh79iy8vLwAAEuXLkVSUhIWLFgAZ2dnEKljTr3ETX0WM/qoRHQHtN1sqpvjrXVVc5kM0UEebRGWQTnaGFevctahIunnJqcPERGRXhm8OfTYsWPw8vKCv78/xo4dixMnTjT7tcXFxdi9ezfc3d0REREBDw8PREZGYufOnVKZ3NxcyOVyqdINAGFhYZDL5di1a5dUJjg4WKp0A0BsbCwqKiqwZ88eje9fUVGB8vJypQe1L3d1spd+FjDtJtAmK956isMcNTWtRgiBtLQ0eHl5wd7eHlFRUTh48KDaawkhMHToUMhkMnz11VdK5zithgxF3Rzv9lDxU10rw9DGh/oaOgQiItLAoBXv0NBQrFu3Dt999x1WrVqFoqIiREREoKRE8wIuDdVX0tPS0pCcnIzMzEzcc889GDx4MI4dOwYAKCoqgru7e6PXuru7o6ioSCrj4aHc8t6pUyfY2NhIZdRZtGiRdIMrl8vRpUuXZsVN5uPR/t7Szxeu3DJgJK3X1E1ydw8nPUVinnr16oXCwkLpsX//funcm2++iWXLlmHlypXIz8+HQqHAkCFDcPXq1UbXeeeddzTe7CckJKCgoACZmZnIzMxEQUGBNHIIuD2t5vr169i5cyfS09OxadMmzJw5s+0/MLUrLd3H2xyM6OvVdCE9mxTZFauevBc/vTDI0KEQEZEKgw41Hzp0qPRzSEgIwsPD0bVrV6xduxbPP/98k6+v/XtO2cSJE/HUU08BAPr164cffvgBn3zyCRYtWgRAfYu0EELpeHPKqJozZ45SnOXl5ax8tzPlt6qln1/56oABI2k9Tb/qWyYPwFcF5zEjunujc+NDfbBh9xnEmMGQUV3TNK1GCIF33nkHL7/8MkaNGgUAWLt2LTw8PLBx40ZMnDhRKrtv3z4sW7YM+fn58PT0VLoOp9WQrmkb1dMee7wdbQ0+W0+tIczHRERGyeBDzRtydHRESEiI1FvdlPobz6CgIKXjPXv2xJkzZwAACoUCFy9ebPTav/76S+rlVigUjXq2S0tLUVVV1agnvCFbW1s4OzsrPah9MafbSk03yX26dMTcYb0gt2+8eu+rw4Kw5qn78O7YfroOz+RpmlZz8uRJFBUVISYmRipra2uLyMhIaToMANy4cQPjxo3DypUr1VbgdTmthghoao5348XVLI1sGHZbM7b53cZq0aJFkMlkmDFjhnTs2rVrmDJlCry9vWFvb4+ePXvivffeU/t6Tq8hInNhVBXviooKHD58uFFPjiZ+fn7w8vLCkSNHlI4fPXoUvr5185zCw8NRVlaGX375RTq/e/dulJWVISIiQipz4MABFBYWSmWysrJga2uL/v37t/ZjUTtyv58LAOCpAX6GDeQO3MlNsq2VJaIC3WHPG1CttE2rqW/0U23k8/DwUGoQTE1NRUREBEaMGKH2PXQ5rYbrWRCgveKtdqi5ln28zYG9jXH2eBuT/Px8fPjhh+jdu7fS8dTUVGRmZmL9+vU4fPgwUlNTMXXqVGzZsqXRNTi9hojMhUH/asyaNQvDhg2Dj48PiouLMX/+fJSXl2PChAkAgMuXL+PMmTO4cOECAEgVbIVCAYVCAZlMhtmzZ2Pu3Lno06cP+vbti7Vr1+KPP/7AF198AaCu9zsuLg7Jycn44IMPANRtJ/bII48gMDAQABATE4OgoCAkJibirbfewuXLlzFr1iwkJyezF5taxPnvXmFTnA9tbIsEmRNt02rCwsIANP7+G051ycjIwPbt27F3716t76OraTWLFi3CvHnztL43tW9qh5qbeU5xYIOjVteuXcP48eOxatUqzJ8/X+lcbm4uJkyYgKioKAB192UffPABfv31V6XGRU6vISJzYtAe73PnzmHcuHEIDAzEqFGjYGNjg7y8PKm3OiMjA/369UN8fDwAYOzYsejXrx/ef/996RozZszAnDlzkJqaij59+uCHH37Atm3b0LVrV6nMhg0bEBISgpiYGMTExKB3797473//K523tLTE1q1bYWdnhwEDBuDxxx/HyJEjsWTJEj19E2SqVO8ra//uEjLFG05zn49pTBpOq6kfNq7a41xcXCz1Tm/fvh3Hjx9Hx44dYWVlBSurujbT0aNHSzeuupxWM2fOHJSVlUmPs2fP3tkHJ7PV0u3EzAEr3tpNnjwZ8fHxiI6ObnRu4MCByMjIwPnz5yGEwI8//oijR48iNjZWKmOo6TUc4UNEumLQHu/09HSt55OSkpCUlNTkdV588UWlfbxVubi4YP369Vqv4ePjg2+++abJ9yJqSKYyy3v7H8UAAAsTvOE0wZBNVv20mgceeAD+/v5QKBTYtm0b+vWrmytfWVmJnJwcvPHGGwDqctyzzz6rdI2QkBC8/fbbGDZsGADlaTX3338/APXTahYsWIDCwkKp96g502psbW1ha2vbtl8CmRxNi6vtOn4JlTVq5nibeVKxt2bFW5P09HT89ttvyM/PV3t++fLlSE5Ohre3N6ysrGBhYYGPPvoIAwcOlMoYanoNR/gQka5wghJRK2jq2DaV+00rC5k0RNQUGwtMhbZpNfWLDi1cuBABAQEICAjAwoUL4eDggISEBAC3p9eo8vHxgb+/PwBOqyHdUzfH+8/ia0hYtVtteVMc+aNOD4UT/ihqvLWfs5oFJwk4e/Yspk+fjqysLNjZ2akts3z5cuTl5SEjIwO+vr7YsWMHUlJS4OnpiejoaINOr+GONUSkK6x4E7WCpttKU+np+Xb6A4h5ewcA87lJNkb102ouXboENzc3hIWFKU2reeGFF3Dz5k2kpKSgtLQUoaGhyMrKgpNTy9YK2LBhA6ZNmyatkD58+HCsXLlSOl8/rSYlJQUDBgyAvb09EhISOK2GmkW14u1ka4VjFxtXSOuZS2Ne2N2d1Va8nex4C6XOnj17UFxcrDSKpqamBjt27MDKlStRVlaGl156CZs3b5amEvbu3RsFBQVYsmQJoqOjlabXNDR69Gg88MADyM7Obvb0mt27lRuGmppewxE+RKQr/KtBpAMWJlKJbdhAYCoxm6KmptXIZDKkpaUhLS2t2dcUarofOa2GdKlG5XeuVtsy52ZEU0Oqsx17vNUZPHgw9u/fr3TsqaeeQo8ePfB///d/qKmpQVVVFSwslJcZsrS0RO3f29IZenoNEZEusOJN1Aqa6qqm0uPdkIVRbS5IRMamg63yLYOa9dTMEiveLePk5ITg4GClY46OjujcubN0PDIyErNnz4a9vT18fX2Rk5ODdevWYdmyZQA4vYaIzBNvtYlaQXVxtXqmUu9uuCove7yJSBvXDsrDb9tLj3eVmoXjAA41b4309HTcd999GD9+PIKCgrB48WIsWLAAkyZNatF1uGsNEZkS/tUgag2Ni6uZRiXWU26PyYO6wsHGCtaWbIcjIs1UVzUXAhrWOTcvO49dUnucFe/my87OVnquUCiwevXqFl2D02uIyNTxrwZRK5j64moAMDu2h6FDICIToFrvqRWiXfR6Hyu+pva4FRsridol8896pCv8q0HUCpq2Iznx13U9R0JEpFv/jOoKAHioR93eyXUVb0NGpB+m1JBKRETGixVvolbQdD9WVat+TiARkanq7uGEw6/F4Y3RvQHULa6mbvivubnb1VHpuYujDV4cypFCRO0Vm+LoTnGoOVEraJrKbcMhiERkhuxtLHGzqkZ6Pj29wHDB6Inq4mqfJochUOFkoGiIyNDMv7mRdIW1A6JW0LSquY0V/2sRkXlqbyOveyiUt52yZX4nIqI7wL8eRK1gTvt4ExE1h6a1LczVy/E9lZ6zYZWofWtfGZDaEv96EOlAR3sbQ4dARKQT7a1dsYuLA7p7dJCeO9hYGjAaIjI0DjWnO8WKN1EraOr5iQtW6DkSIiL9sGhnPd4AUN1g+XYHGy6PQ0RELceKN1ErqLv9XJ10H4eaE5HZapcV75rbFW8ONSciojvBvx5EraDu/tOClW4iMmPtsN6N6hpuEUlERK3DijdRK6hb1dyyPd6VElG7YaWhcXFCuK+eI9GfqlrO6iQiotZhxZuoFdTdf1rwfxURmTErS/VJTm5vDdcO5rmwJHu8iYiotVhFIGoFdYurWWu4KSUiMme21ua72nfpjSpDh0BERCaONQSiVnggwLXRMS6sRkTtkY2lBfMfERGRBqx4E7WCo23jbWU0zX8kIjJnMpn5jvix5UrmRETUSgb9S5KWlgaZTKb0UChu73/85ZdfIjY2Fq6urpDJZCgoKNB4LSEEhg4dCplMhq+++krpXGlpKRITEyGXyyGXy5GYmIgrV64olTlz5gyGDRsGR0dHuLq6Ytq0aaisrGzDT0vtBXt8iKg9OnnputlWvFeM6wcAePWRIANHQkREpsrgfyF79eqFwsJC6bF//37p3PXr1zFgwAAsXry4yeu88847aufbAkBCQgIKCgqQmZmJzMxMFBQUIDExUTpfU1OD+Ph4XL9+HTt37kR6ejo2bdqEmTNntv4DUrtjxdXVSEVTjYxCCKSlpcHLywv29vaIiorCwYMHpfOXL1/G1KlTERgYCAcHB/j4+GDatGkoKytTeh82MpIhTR8cAGtL82x4jOmlwKHXYvH0QH9Dh0JERCaq8ThZfQdgZaV0A9pQfeX41KlTWq+xb98+LFu2DPn5+fD09FQ6d/jwYWRmZiIvLw+hoaEAgFWrViE8PBxHjhxBYGAgsrKycOjQIZw9exZeXl4AgKVLlyIpKQkLFiyAs7NzKz8ltSdWZnrjSa3Tq1cvfP/999JzS8vbC1G9+eabWLZsGdasWYPu3btj/vz5GDJkCI4cOQInJydcuHABFy5cwJIlSxAUFITTp09j0qRJuHDhAr744gvpOgkJCTh37hwyMzMBAM899xwSExPx9ddfA7jdyOjm5oadO3eipKQEEyZMgBACK1as0NM3QebK3dnOrBseHWwMfstEREQmzOB/RY4dOwYvLy/Y2toiNDQUCxcuxN13393s19+4cQPjxo3DypUr1Vbgc3NzIZfLpUo3AISFhUEul2PXrl0IDAxEbm4ugoODpUo3AMTGxqKiogJ79uzBoEGDWvchqV3hHG9SR1MjoxAC77zzDl5++WWMGjUKALB27Vp4eHhg48aNmDhxIoKDg7Fp0ybpNV27dsWCBQvwxBNPoLq6GlZWVmxkJIOy+XuIuTXnQhMREall0L+QoaGhWLduHb777jusWrUKRUVFiIiIQElJSbOvkZqaioiICIwYMULt+aKiIri7uzc67u7ujqKiIqmMh4eH0vlOnTrBxsZGKqNORUUFysvLlR5EnONN6tQ3Mvr7+2Ps2LE4ceIEAODkyZMoKipCTEyMVNbW1haRkZHYtWuXxuuVlZXB2dkZVlZ17adNNTLWl9HWyEjUWtbMf0RERGoZtMd76NCh0s8hISEIDw9H165dsXbtWjz//PNNvj4jIwPbt2/H3r17tZZTN/dbCKF0vDllVC1atAjz5s1rMk5qX8x1cSG6c/WNjN27d8fFixcxf/58RERE4ODBg1Ljnmrjn4eHB06fPq32eiUlJXj99dcxceJE6ZiuGxkrKiqk52xkJE3k9taGDoGIiMgoGVUNwdHRESEhITh27Fizym/fvh3Hjx9Hx44dYWVlJfX8jB49GlFRUQAAhUKBixcvNnrtX3/9Jd2AKhSKRjedpaWlqKqqanST2tCcOXNQVlYmPc6ePdusuMm82dtYNl2I2pWhQ4di9OjRCAkJQXR0NLZu3Qqgbkh5PdVGPk0Nf+Xl5YiPj0dQUBDmzp2rdE6XjYz1C7bJ5XJ06dJFY1lqn+p/fdKG90KAewcsHhVi2ICIiIiMjFFVvCsqKnD48OFGC6Rp8uKLL+L3339HQUGB9ACAt99+G6tXrwYAhIeHo6ysDL/88ov0ut27d6OsrAwRERFSmQMHDqCwsFAqk5WVBVtbW/Tv31/j+9va2sLZ2VnpQWRtxosLUdto2MhYP+9btfGvuLi4UcPf1atXERcXhw4dOmDz5s2wtr7du8hGRjKk+n2uu7g4YNvzkRh7v4+BIyJjsWjRIshkMsyYMUM6du3aNUyZMgXe3t6wt7dHz5498d5770nnuZMDEZkjg9YQZs2ahZycHJw8eRK7d+/Go48+ivLyckyYMAFAXeItKCjAoUOHAABHjhxBQUGBdOOoUCgQHBys9AAAHx8f+PvXbfnRs2dPxMXFITk5GXl5ecjLy0NycjIeeeQRBAYGAgBiYmIQFBSExMRE7N27Fz/88ANmzZqF5ORkVqapxbiqOTWlYSOjv78/FAoFtm3bJp2vrKxETk6O1DgI1PV0x8TEwMbGBhkZGbCzs1O6JhsZyZCSIvwMHQIZofz8fHz44Yfo3bu30vHU1FRkZmZi/fr1OHz4MFJTUzF16lRs2bIFAJR2cti/fz/WrFmDzMxMPPPMM0rX4XaxRGRShAGNGTNGeHp6Cmtra+Hl5SVGjRolDh48KJ1fvXq1ANDoMXfuXI3XBCA2b96sdKykpESMHz9eODk5CScnJzF+/HhRWlqqVOb06dMiPj5e2NvbCxcXFzFlyhRx69atFn2esrIyAUCUlZW16HVk2nz/7xulB5mXtvh/PXPmTJGdnS1OnDgh8vLyxCOPPCKcnJzEqVOnhBBCLF68WMjlcvHll1+K/fv3i3HjxglPT09RXl4uhBCivLxchIaGipCQEPHnn3+KwsJC6VFdXS29T1xcnOjdu7fIzc0Vubm5IiQkRDzyyCPS+erqahEcHCwGDx4sfvvtN/H9998Lb29vMWXKFL1/J2TaVPNeVXWNoUOiNtCW/7evXr0qAgICxLZt20RkZKSYPn26dK5Xr17itddeUyp/zz33iFdeeUXj9f73v/8JGxsbUVVVJYQQ4tChQwKAyMvLk8rk5uYKAOKPP/4QQgjx7bffCgsLC3H+/HmpzKeffipsbW2b/RmZ70hV4se7ec9n4gz1/9qgi6ulp6drPZ+UlISkpKQWXVMI0eiYi4sL1q9fr/V1Pj4++Oabb1r0XkREzXHu3DmMGzcOly5dgpubG8LCwpCXlwdfX18AwAsvvICbN28iJSUFpaWlCA0NRVZWFpycnAAAe/bswe7duwEA3bp1U7r2yZMn4efnBwDYsGEDpk2bJq2QPnz4cKxcuVIqa2lpia1btyIlJQUDBgyAvb09EhISsGTJEl1/BWTmrLioJKmYPHky4uPjER0djfnz5yudGzhwIDIyMvD000/Dy8sL2dnZOHr0KN59912N12vpTg7cLpZ0RV1dg6g5DL6PNxGRuWuqkVEmkyEtLQ1paWlqz0dFRTXrDz0bGYnIGKSnp+O3335Dfn6+2vPLly9HcnIyvL29YWVlBQsLC3z00UcYOHCg2vL63MmBuzgQka6w4k1EREREbeLs2bOYPn06srKyGq1FUW/58uXIy8tDRkYGfH19sWPHDqSkpMDT0xPR0dFKZfW9kwO3iqWmaNsFhEgbVryJiIiIqE3s2bMHxcXFSgs21tTUYMeOHVi5ciXKysrw0ksvYfPmzYiPjwcA9O7dGwUFBViyZIlSxbstdnKon6ZTr6mdHObMmYPnn39eel5eXs4tFEkJh5rTneKkLCIiImqRkLvkhg6BjNTgwYOxf/9+pa1e7733XowfPx4FBQWoqalBVVUVLFS23rS0tERtba303FA7OXAXByLSFfZ4ExERUYtYcKQlaeDk5CRt71rP0dERnTt3lo5HRkZi9uzZsLe3h6+vL3JycrBu3TosW7YMQF1Pd0xMDG7cuIH169ejvLxcmmvt5uYGS0tLpe1iP/jgAwDAc889p3G72LfeeguXL1/mdrFEZDCseBO1UmwvD3x3sPFwNyIic8U5jtQa6enpmDNnDsaPH4/Lly/D19cXCxYswKRJkwBwJwciMk+seBO10rtj+yHx493IP1Vq6FCIiPTCkl3e1ALZ2dlKzxUKBVavXq2xPHdyICJzxDneRK1kZ22J+/xcDB0GEZHesOJNRETUMqx4E7UBrm9JRO2JJYeaExERtQgr3kRERNQiVpaseBNR+8TdxOhOseJN1AZ4C0pE7YkFe7yJqJ0SHOdId4gVbyIiImoRK87xJiIiahFWvImIiKhFLFjxJiIiahFWvImIiKhFWO8movaKc7zpTrHiTdQGON2RiNqTyO7u0s/TBgcYMBIiIiLTwIo3URsY1scLABDo4WTgSIiIdO/xe72ln6cM6mbASIiI9OvZB/wBAA/1cG+iJJEyK0MHQGQOeiicsfulwejkYGPoUIiIdM7K0gL75sYAArCxYhs+EbUfD/XwwM8vPgSFs52hQyETw4o3URvxYAImonZEbm9t6BCIiAziro72hg6BTBCbqYmIiIiIiIh0iBVvIiIiIiIiIh1ixZuISMfS0tIgk8mUHgqFQjovhEBaWhq8vLxgb2+PqKgoHDx4UOkaFRUVmDp1KlxdXeHo6Ijhw4fj3LlzSmVKS0uRmJgIuVwOuVyOxMREXLlyRanMmTNnMGzYMDg6OsLV1RXTpk1DZWWlzj47ERERERm44t3UzeiXX36J2NhYuLq6QiaToaCgQOn1ly9fxtSpUxEYGAgHBwf4+Phg2rRpKCsrUyrHm1EiMrRevXqhsLBQeuzfv1869+abb2LZsmVYuXIl8vPzoVAoMGTIEFy9elUqM2PGDGzevBnp6enYuXMnrl27hkceeQQ1NTVSmYSEBBQUFCAzMxOZmZkoKChAYmKidL6mpgbx8fG4fv06du7cifT0dGzatAkzZ87Uz5dARERE1E4ZfHG1Xr164fvvv5eeW1paSj9fv34dAwYMwGOPPYbk5ORGr71w4QIuXLiAJUuWICgoCKdPn8akSZNw4cIFfPHFF1K5hIQEnDt3DpmZmQCA5557DomJifj6668B3L4ZdXNzw86dO1FSUoIJEyZACIEVK1bo6qMTUTtiZWWl1LBYTwiBd955By+//DJGjRoFAFi7di08PDywceNGTJw4EWVlZfj444/x3//+F9HR0QCA9evXo0uXLvj+++8RGxuLw4cPIzMzE3l5eQgNDQUArFq1CuHh4Thy5AgCAwORlZWFQ4cO4ezZs/DyqtsCb+nSpUhKSsKCBQvg7Oysp2+DiIiIqH0xeMVb080oAKmn5tSpU2rPBwcHY9OmTdLzrl27YsGCBXjiiSdQXV0NKysr3owSkVE4duwYvLy8YGtri9DQUCxcuBB33303Tp48iaKiIsTExEhlbW1tERkZiV27dmHixInYs2cPqqqqlMp4eXkhODgYu3btQmxsLHJzcyGXy6U8BwBhYWGQy+XYtWsXAgMDkZubi+DgYCnPAUBsbCwqKiqwZ88eDBo0SD9fBhEREVE7Y/A53vU3o/7+/hg7dixOnDjRquuVlZXB2dkZVlZ1bQpN3YzWl9F2M0pE1BqhoaFYt24dvvvuO6xatQpFRUWIiIhASUkJioqKAAAeHh5Kr/Hw8JDOFRUVwcbGBp06ddJaxt3dvdF7u7u7K5VRfZ9OnTrBxsZGKqNORUUFysvLlR5ERERE1HwG7fGuvxnt3r07Ll68iPnz5yMiIgIHDx5E586dW3y9kpISvP7665g4caJ0TNc3oxUVFdJz3owSkTpDhw6Vfg4JCUF4eDi6du2KtWvXIiwsDAAgk8mUXiOEaHRMlWoZdeXvpIyqRYsWYd68eVpjISIiIiLNDFrx1nYz+vzzz7foWuXl5YiPj0dQUBDmzp2rdE7fN6OsgBOZj/r/z0KINrumo6MjQkJCcOzYMYwcORJAXQOgp6enVKa4uFhqEFQoFKisrERpaalSr3dxcTEiIiKkMhcvXmz0Xn/99ZfSdXbv3q10vrS0FFVVVY0aHxuaM2eOUk4uKyuDj48Pcx2RmdFFvjN19d8F8x2R+TBUrjP4HO+GGt6MtsTVq1cRFxeHDh06YPPmzbC2tpbO6fNm9Pz58wgKCkKXLl1aFD8RGb+rV69CLpe3ybUqKipw+PBhPPDAA/D394dCocC2bdvQr18/AEBlZSVycnLwxhtvAAD69+8Pa2trbNu2DY8//jgAoLCwEAcOHMCbb74JAAgPD0dZWRl++eUX3H///QCA3bt3o6ysTKqch4eHY8GCBSgsLJQq+VlZWbC1tUX//v01xmtrawtbW1vpef0fLOY6IvPUlvnO1NXvLsF8R2R+9J3rjKri3fBmtLnKy8sRGxsLW1tbZGRkwM7OTum8Pm9GO3TogLNnz8LJyanJIaLl5eXo0qULzp49azKLtzFm3TO1eAHzj1kIgatXryqtAdFSs2bNwrBhw+Dj44Pi4mLMnz8f5eXlmDBhAmQyGWbMmIGFCxciICAAAQEBWLhwIRwcHJCQkAAAkMvleOaZZzBz5kx07twZLi4umDVrFkJCQqRVznv27Im4uDgkJyfjgw8+AFC3g8MjjzyCwMBAAEBMTAyCgoKQmJiIt956C5cvX8asWbOQnJzcon87Ly+vZuc6wPR+R0wtXoAx64u5x9wW+c7ctCTfmfvvh7FgzLpnavECppHrDFrx1nYzCtTt033mzBlcuHABAHDkyBEAdT3UCoUCV69eRUxMDG7cuIH169crLfrj5uYGS0tLvd6MWlhYwNvbu0XfgbOzs8n8QtdjzLpnavEC5h1za1tDz507h3HjxuHSpUtwc3NDWFgY8vLy4OvrCwB44YUXcPPmTaSkpKC0tBShoaHIysqCk5OTdI23334bVlZWePzxx3Hz5k0MHjwYa9asUdqCccOGDZg2bZq0+vnw4cOxcuVK6bylpSW2bt2KlJQUDBgwAPb29khISMCSJUta9HnuJNcBpvc7YmrxAoxZX8w5ZvZ0K+O9nfFizLpnavECxp3rDFrxbupmNCMjA0899ZRUfuzYsQCAuXPnIi0tDXv27JGGiHfr1k3p2idPnoSfnx8A/d2MEhGpk56ervW8TCZDWloa0tLSNJaxs7PDihUrsGLFCo1lXFxcsH79eq3v5ePjg2+++UZrGSIiIiJqWwateDd1M5qUlISkpCSN56Oiopo1KZ43o0RERERERGQoBt/Hu72ytbXF3LlzleaIGzvGrHumFi/AmKlppvZ9m1q8AGPWF8ZM2pjid82Y9cPUYja1eAHTiFkmuGcEERERERERkc6wx5uIiIiIiIhIh1jxJiIiIiIiItIhVryJiIiIiIiIdIgVbx3bsWMHhg0bBi8vL8hkMnz11VdK55OSkiCTyZQeYWFhhgn2b03FDACHDx/G8OHDIZfL4eTkhLCwMJw5c0b/waLpeFW/3/rHW2+9ZZB4gaZjvnbtGqZMmQJvb2/Y29ujZ8+eeO+99wwT7N+aivnixYtISkqCl5cXHBwcEBcXh2PHjhkmWACLFi3CfffdBycnJ7i7u2PkyJE4cuSIUhkhBNLS0uDl5QV7e3tERUXh4MGDBorYtDHX6QfznX4w35E2zHe6x1ynH8x1+sWKt45dv34dffr0Udo3XFVcXBwKCwulx7fffqvHCBtrKubjx49j4MCB6NGjB7Kzs7Fv3z7861//gp2dnZ4jrdNUvA2/28LCQnzyySeQyWQYPXq0niO9ramYU1NTkZmZifXr1+Pw4cNITU3F1KlTsWXLFj1Hepu2mIUQGDlyJE6cOIEtW7Zg79698PX1RXR0NK5fv26AaIGcnBxMnjwZeXl52LZtG6qrqxETE6MUz5tvvolly5Zh5cqVyM/Ph0KhwJAhQ3D16lWDxGzKmOv0g/lOP5jvSBvmO91jrtMP5jo9E6Q3AMTmzZuVjk2YMEGMGDHCIPE0h7qYx4wZI5544gnDBNQEdfGqGjFihHjooYf0E1AzqIu5V69e4rXXXlM6ds8994hXXnlFj5FpphrzkSNHBABx4MAB6Vh1dbVwcXERq1atMkCEjRUXFwsAIicnRwghRG1trVAoFGLx4sVSmVu3bgm5XC7ef/99Q4VpFpjr9IP5Tj+Y70gb5jvdY67TD+Y63WOPtxHIzs6Gu7s7unfvjuTkZBQXFxs6JI1qa2uxdetWdO/eHbGxsXB3d0doaKjaIUvG6OLFi9i6dSueeeYZQ4ei1cCBA5GRkYHz589DCIEff/wRR48eRWxsrKFDU6uiogIAlFrGLS0tYWNjg507dxoqLCVlZWUAABcXFwDAyZMnUVRUhJiYGKmMra0tIiMjsWvXLoPEaO6Y6/SL+U43mO+oOZjv9Ie5TjeY69oeK94GNnToUGzYsAHbt2/H0qVLkZ+fj4ceekj6ZTc2xcXFuHbtGhYvXoy4uDhkZWXhH//4B0aNGoWcnBxDh9ektWvXwsnJCaNGjTJ0KFotX74cQUFB8Pb2ho2NDeLi4vCf//wHAwcONHRoavXo0QO+vr6YM2cOSktLUVlZicWLF6OoqAiFhYWGDg9CCDz//PMYOHAggoODAQBFRUUAAA8PD6WyHh4e0jlqO8x1+sd8pxvMd9QU5jv9Yq7TDea6tmdl6ADauzFjxkg/BwcH495774Wvry+2bt1qlAmktrYWADBixAikpqYCAPr27Ytdu3bh/fffR2RkpCHDa9Inn3yC8ePHG3SOZnMsX74ceXl5yMjIgK+vL3bs2IGUlBR4enoiOjra0OE1Ym1tjU2bNuGZZ56Bi4sLLC0tER0djaFDhxo6NADAlClT8Pvvv6ttoZXJZErPhRCNjlHrMdfpH/OdbjDfUVOY7/SLuU43mOvaHiveRsbT0xO+vr4GXTFQG1dXV1hZWSEoKEjpeM+ePY1m2IkmP/30E44cOYLPPvvM0KFodfPmTbz00kvYvHkz4uPjAQC9e/dGQUEBlixZYpTJGQD69++PgoIClJWVobKyEm5ubggNDcW9995r0LimTp2KjIwM7NixA97e3tJxhUIBoK511NPTUzpeXFzcqKWU2h5znW4x3+kW8x21BPOd7jDX6RZzXdviUHMjU1JSgrNnzyr9shgTGxsb3HfffY2W7j969Ch8fX0NFFXzfPzxx+jfvz/69Olj6FC0qqqqQlVVFSwslP97WlpaSq3Sxkwul8PNzQ3Hjh3Dr7/+ihEjRhgkDiEEpkyZgi+//BLbt2+Hv7+/0nl/f38oFAps27ZNOlZZWYmcnBxEREToO9x2h7lOt5jv9IP5jpqD+U53mOv0g7mubbDHW8euXbuGP//8U3p+8uRJFBQUwMXFBS4uLkhLS8Po0aPh6emJU6dO4aWXXoKrqyv+8Y9/GGXMPj4+mD17NsaMGYMHH3wQgwYNQmZmJr7++mtkZ2cbZbwAUF5ejs8//xxLly41SIyqmoo5MjISs2fPhr29PXx9fZGTk4N169Zh2bJlRhvz559/Djc3N/j4+GD//v2YPn06Ro4cqbTAhT5NnjwZGzduxJYtW+Dk5CTN7ZHL5bC3t4dMJsOMGTOwcOFCBAQEICAgAAsXLoSDgwMSEhIMErMpY64zjpgB5jt9xMx8174x3xk+XoC5Th8xM9e1McMspt5+/PjjjwJAo8eECRPEjRs3RExMjHBzcxPW1tbCx8dHTJgwQZw5c8ZoY6738ccfi27dugk7OzvRp08f8dVXXxl1vB988IGwt7cXV65cMVicDTUVc2FhoUhKShJeXl7Czs5OBAYGiqVLl4ra2lqjjfndd98V3t7e0u/yK6+8IioqKgwWr7pYAYjVq1dLZWpra8XcuXOFQqEQtra24sEHHxT79+83WMymjLlOP5jvjCNm5rv2jfnOOOJlrtN9zMx1bUsmhBDNqqETERERERERUYtxjjcRERERERGRDrHiTURERERERKRDrHgTERERERER6RAr3kREREREREQ6xIo3ERERERERkQ6x4k1ERERERESkQ6x4ExEREREREekQK95EREREREREOsSKN5m8tLQ09O3b19BhmK1Fixbhvvvug5OTE9zd3TFy5EgcOXJEqYwQAmlpafDy8oK9vT2ioqJw8OBBpTIffvghoqKi4OzsDJlMhitXrjR6Lz8/P8hkMqXHiy++qDW+7OxsyGQydOrUCbdu3VI698svv0jXITIHzHe6w1xHZDyY63SL+c4wWPEmo6b6H1X1kZSUhFmzZuGHH34waJzm/AciJycHkydPRl5eHrZt24bq6mrExMTg+vXrUpk333wTy5Ytw8qVK5Gfnw+FQoEhQ4bg6tWrUpkbN24gLi4OL730ktb3e+2111BYWCg9XnnllWbF6eTkhM2bNysd++STT+Dj49OCT6teZWVlq69B1BTmO8NirmOuI/1grjM85jsD5TtBZMQKCwulxzvvvCOcnZ2Vjl25csXQIQohhJg7d67o06ePocPQi+LiYgFA5OTkCCGEqK2tFQqFQixevFgqc+vWLSGXy8X777/f6PU//vijACBKS0sbnfP19RVvv/12i+Kpv94rr7wioqOjpeM3btwQcrlc/Otf/xINU92lS5fE2LFjxV133SXs7e1FcHCw2Lhxo9I1IyMjxeTJk0Vqaqro3LmzePDBB1sUE9GdYL4zLsx1RLrBXGd8mO/0gz3eZNQUCoX0kMvlkMlkjY6ptkgmJSVh5MiRWLhwITw8PNCxY0fMmzcP1dXVmD17NlxcXODt7Y1PPvlE6b3Onz+PMWPGoFOnTujcuTNGjBiBU6dOSeezs7Nx//33w9HRER07dsSAAQNw+vRprFmzBvPmzcO+ffuk1to1a9YAAJYtW4aQkBA4OjqiS5cuSElJwbVr16RrrlmzBh07dsQ333yDwMBAODg44NFHH8X169exdu1a+Pn5oVOnTpg6dSpqamqk1/n5+eH1119HQkICOnToAC8vL6xYsUIn/waqysrKAAAuLi4AgJMnT6KoqAgxMTFSGVtbW0RGRmLXrl0tvv4bb7yBzp07o2/fvliwYEGzWyQTExPx008/4cyZMwCATZs2wc/PD/fcc49SuVu3bqF///745ptvcODAATz33HNITEzE7t27lcqtXbsWVlZW+Pnnn/HBBx+0+HMQtRTznXHlO+Y6It1grjOuXAcw3+mN3qv6RHdo9erVQi6XNzqu2iI5YcIE4eTkJCZPniz++OMP8fHHHwsAIjY2VixYsEAcPXpUvP7668La2lqcOXNGCCHE9evXRUBAgHj66afF77//Lg4dOiQSEhJEYGCgqKioEFVVVUIul4tZs2aJP//8Uxw6dEisWbNGnD59Wty4cUPMnDlT9OrVS2qtvXHjhhBCiLffflts375dnDhxQvzwww8iMDBQ/POf/1T6TNbW1mLIkCHit99+Ezk5OaJz584iJiZGPP744+LgwYPi66+/FjY2NiI9PV16na+vr3BychKLFi0SR44cEcuXLxeWlpYiKytLN1/+32pra8WwYcPEwIEDpWM///yzACDOnz+vVDY5OVnExMQ0uoa2VtFly5aJ7OxssW/fPrFq1Srh6uoqnnnmGa0xNbzeyJEjxbx584QQQgwaNEi8++67YvPmzaKpVPfwww+LmTNnSs8jIyNF3759tb6GSJeY7wyb75jriPSDuY73duqYa75jxZtMRkuSs6+vr6ipqZGOBQYGigceeEB6Xl1dLRwdHcWnn34qhBDi448/FoGBgaK2tlYqU1FRIezt7cV3330nSkpKBACRnZ2tNrbmDkf63//+Jzp37qz0mQCIP//8Uzo2ceJE4eDgIK5evSodi42NFRMnTpSe+/r6iri4OKVrjxkzRgwdOrTJGFojJSVF+Pr6irNnz0rH6pPzhQsXlMo+++yzIjY2ttE1tCVnVV988YUAIC5duiSEECIoKEg4OjoKR0dH6fM3vF5GRobw9/cXx48fF3Z2duLSpUuNknN1dbWYP3++CAkJES4uLsLR0VFYWVmJxx57TCoTGRkpnn322RZ9N0RtifnOsPmOuY5IP5jreG/XnvIdh5qTWerVqxcsLG7/ent4eCAkJER6bmlpic6dO6O4uBgAsGfPHvz5559wcnJChw4d0KFDB7i4uODWrVs4fvw4XFxckJSUhNjYWAwbNgzvvvsuCgsLm4zjxx9/xJAhQ3DXXXfByckJTz75JEpKSpQWr3BwcEDXrl2VYvXz80OHDh2UjtXHWi88PLzR88OHDzfzG2q5qVOnIiMjAz/++CO8vb2l4wqFAgBQVFSkVL64uBgeHh6tes+wsDAAwJ9//gkA+Pbbb1FQUICCggJ89NFHjco//PDDuHXrFp555hkMGzYMnTt3blRm6dKlePvtt/HCCy9g+/btKCgoQGxsbKNhT46Ojq2KnUhfmO/aFnMdkXFirmt7zHf6xYo3mSVra2ul5zKZTO2x2tpaAEBtbS369+8v/cevfxw9ehQJCQkAgNWrVyM3NxcRERH47LPP0L17d+Tl5WmM4fTp03j44YcRHByMTZs2Yc+ePfj3v/8NAKiqqrrjWLXRxdYKQghMmTIFX375JbZv3w5/f3+l8/7+/lAoFNi2bZt0rLKyEjk5OYiIiGjVe+/duxcA4OnpCQDw9fVFt27d0K1bN9x1112NyltaWiIxMRHZ2dl4+umn1V7zp59+wogRI/DEE0+gT58+uPvuu3Hs2LFWxUlkSMx3bYO5jsi4Mde1HeY7w7AydABExuCee+7BZ599Bnd3dzg7O2ss169fP/Tr1w9z5sxBeHg4Nm7ciLCwMNjY2CgtkAEAv/76K6qrq7F06VKphfZ///tfm8Ws+ochLy8PPXr0aLPr15s8eTI2btyILVu2wMnJSWr9lMvlsLe3h0wmw4wZM7Bw4UIEBAQgICAACxcuhIODg/SHDahrNS0qKpJaOPfv3w8nJyf4+PjAxcUFubm5yMvLw6BBgyCXy5Gfn4/U1FQMHz68RdtGvP7665g9e7baFlEA6NatGzZt2oRdu3ahU6dOWLZsGYqKitCzZ89WfEtEpoP5Tj3mOiLzwlynGfOdYbDHmwjA+PHj4erqihEjRuCnn37CyZMnkZOTg+nTp+PcuXM4efIk5syZg9zcXJw+fRpZWVk4evSo9B/az88PJ0+eREFBAS5duoSKigp07doV1dXVWLFiBU6cOIH//ve/eP/999ss5p9//hlvvvkmjh49in//+9/4/PPPMX369Da7fr333nsPZWVliIqKgqenp/T47LPPpDIvvPACZsyYgZSUFNx77704f/48srKy4OTkJJV5//330a9fPyQnJwMAHnzwQfTr1w8ZGRkA6lbL/OyzzxAVFYWgoCC8+uqrSE5OxqefftqieG1sbODq6qqxhfhf//oX7rnnHsTGxiIqKgoKhQIjR45s4bdCZLqY79RjriMyL8x1mjHfGYhBZ5gTtUBLFuAYMWKEUpnIyEgxffp0pWOq+woWFhaKJ598Uri6ugpbW1tx9913i+TkZFFWViaKiorEyJEjhaenp7CxsRG+vr7i1VdflRb5uHXrlhg9erTo2LGjACBWr14thKhbydHT01PY29uL2NhYsW7dOqXFJ9R9JnWLeah+Jl9fXzFv3jzx+OOPCwcHB+Hh4SHeeeedJoRbaDcAAADCSURBVL5BIjIVzHe3PxPzHZH5Yq67/ZmY68yfTAghDFnxJ6KW8/Pzw4wZMzBjxgxDh0JEpFPMd0TUHjDXmT8ONSciIiIiIiLSIVa8iYiIiIiIiHSIQ82JiIiIiIiIdIg93kREREREREQ6xIo3ERERERERkQ6x4k1ERERERESkQ6x4ExEREREREekQK95EREREREREOsSKNxEREREREZEOseJNREREREREpEOseBMRERERERHpECveRERERERERDr0/wFHJsPCZzjlxwAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1000x900 with 9 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "ds_ground_obs[\"B_NEC\"].plot.line(x=\"Timestamp\", row=\"NEC\", col=\"IAGA_code\", sharey=False);"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ee674e26",
   "metadata": {},
   "source": [
    "Let's calculate $|\\frac{dB}{dt}|$ and plot that instead. This is a good indication of the GIC risk, as a more rapidly changing magnetic field will induce a larger electric field in the ground."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "5998953f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-06-21T21:48:42.416312Z",
     "iopub.status.busy": "2025-06-21T21:48:42.415845Z",
     "iopub.status.idle": "2025-06-21T21:48:43.194606Z",
     "shell.execute_reply": "2025-06-21T21:48:43.194044Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAKyCAYAAAA6kpdwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xTVf8H8E9W06aTUrqgQJEhW5ZsAYGiLBUVfRAVlOFCEJRHfohWZSggoKDiQDbiQHwEGS17r0KBMsoqtEBL90ybeX9/hIakTdp0pGmbz/v14kVzc+69597k3CTfc+73iARBEEBERERERERERERERMWIHV0BIiIiIiIiIiIiIqLqikF0IiIiIiIiIiIiIiIrGEQnIiIiIiIiIiIiIrKCQXQiIiIiIiIiIiIiIisYRCciIiIiIiIiIiIisoJBdCIiIiIiIiIiIiIiKxhEJyIiIiIiIiIiIiKygkF0IiIiIiIiIiIiIiIrpI6ugLPQ6/W4e/cuPD09IRKJHF0dIiIiIiIiIiIiIqcmCAJycnIQHBwMsdj6eHMG0avI3bt3ERIS4uhqEBEREREREREREZGJhIQENGjQwOrzDKJXEU9PTwCGF8TLy8vBtalaGo0GERERCAsLg0wmc3R1iMjO2OaJnAfbO5FzYZsnch5s70TOxZnbfHZ2NkJCQoyxW2sYRK8ihSlcvLy8nDKIrlAo4OXl5XQNkcgZsc0TOQ+2dyLnwjZP5DzY3omcC9s8Sk2/zYlFiYiIiIiIiIiIiIisYBCdiIiIiIiIiIiIiMiKGh1EP3DgAIYNG4bg4GCIRCL8/fffZs8LgoDw8HAEBwfDzc0Nffv2xYULF8zKqFQqTJo0CX5+fnB3d8fw4cNx+/ZtszIZGRl4+eWX4e3tDW9vb7z88svIzMy089ERERERERERERERkaPV6JzoeXl5aN++PcaOHYtnn3222PPz58/HokWLsGrVKjRv3hyzZ8/GwIEDERsba0wWP2XKFGzZsgUbN25E3bp1MW3aNAwdOhRRUVGQSCQAgFGjRuH27dvYsWMHAGDChAl4+eWXsWXLlqo7WCIiIiIiIiIiqnV0Oh00Go2jq0FOTKPRQCqVoqCgADqdztHVqVQymcwY462IGh1Ef/LJJ/Hkk09afE4QBCxZsgQzZ87EiBEjAACrV69GQEAANmzYgIkTJyIrKwsrVqzA2rVrMWDAAADAunXrEBISgl27dmHQoEG4dOkSduzYgWPHjqFr164AgJ9++gndu3dHbGwsWrRoUTUHS0REREREREREtYYgCEhKSmK2A3I4QRAQGBiIhISEUifYrIl8fHwQGBhYoWOr0UH0ksTFxSEpKQlhYWHGZXK5HH369MGRI0cwceJEREVFQaPRmJUJDg5GmzZtcOTIEQwaNAhHjx6Ft7e3MYAOAN26dYO3tzeOHDliNYiuUqmgUqmMj7OzswEYenacrXex8Hid7biJnBXbPJHzYHsnci5s80TOg+29aty7dw/Z2dmoV68eFApFrQxeUs0gCALy8vLg7u5eq96HgiBAqVQiJSUFOp0OAQEBxcrYep2rtUH0pKQkACh2cgICAnDr1i1jGRcXF9SpU6dYmcL1k5KS4O/vX2z7/v7+xjKWzJs3D59++mmx5REREVAoFGU7mFoiMjLS0VUgoirENk/kPNjeiZwL2zyR82B7tx+RSISgoCAEBgZCJpOxw4IczsXFpVa+D2UyGTw9PZGYmIjTp09DEASz55VKpU3bqbVB9EJFe08EQSi1R6VoGUvlS9vOjBkzMHXqVOPj7OxshISEICwsDF5eXrZWv1bQaDSIjIzEwIEDIZPJHF0dIrIztnki58H2TuRc2OaJnAfbu/2pVCrEx8fD19cXbm5ujq4OOTlBEJCTkwNPT89aNRK9kEwmQ05ODh5//HHI5XKz5wqzh5Sm1gbRAwMDARhGkgcFBRmXJycnG0enBwYGQq1WIyMjw2w0enJyMnr06GEsc+/evWLbT0lJsXgLQCG5XF7sRQEML5qzfgA587ETOSO2eSLnwfZO5FzY5omcB9u7/eh0OohEIkgkEojFYkdXh5ycXq8HYBhIXBvfjxKJBCKRCFKptNg1zdZrXO07K/eFhoYiMDDQ7NYjtVqN/fv3GwPknTp1gkwmMyuTmJiImJgYY5nu3bsjKysLJ06cMJY5fvw4srKyjGWIiIiIiIiIiIiIqHaq0UH03NxcREdHIzo6GoBhMtHo6GjEx8dDJBJhypQpmDt3LjZv3oyYmBiMGTMGCoUCo0aNAgB4e3vj9ddfx7Rp07B7926cOXMGo0ePRtu2bTFgwAAAQMuWLfHEE09g/PjxOHbsGI4dO4bx48dj6NChVicVJSIiIiIiIiIiIvtZsWIFwsLCHF0NcrBly5Zh+PDhdt9PjQ6inzp1Ch06dECHDh0AAFOnTkWHDh3w8ccfAwCmT5+OKVOm4K233kLnzp1x584dREREwNPT07iNxYsX4+mnn8bIkSPRs2dPKBQKbNmyBRKJxFhm/fr1aNu2LcLCwhAWFoZ27dph7dq1VXuwRERERERERERE1cSRI0cgkUjwxBNPFHvu5s2bEIlExn8uLi5o2rQpZs+ebTaxY3h4OB555BGzdQ8ePAgfHx9MmjSp2CSQhVQqFT7++GPMmjWrxG2Vxb59+yASiZCZmVlqWUEQsHDhQjRv3hxyuRwhISGYO3euWZn169ejffv2UCgUCAoKwtixY5GWlmZ1m2fPnsV//vMfhISEwM3NDS1btsTXX39d5uOo6Hkoj8TERIwaNQotWrSAWCzGlClTLJZbsmQJWrRoATc3N4SEhOC9995DQUFBidveuXMnunXrBk9PT9SrVw/PPvss4uLijM+PHz8eJ0+exKFDhyrzkIqp0TnR+/bta7UxAYY8PuHh4QgPD7daxtXVFUuXLsXSpUutlvH19cW6desqUlUiIiIiIiIiIqJa45dffsGkSZPw888/Iz4+Hg0bNixWZteuXWjdujVUKhUOHTqEcePGISgoCK+//rrFbf777794/vnn8cEHH+DTTz+1uu9NmzbBw8MDvXv3rrTjKYvJkycjIiICCxcuRNu2bZGVlYXU1FTj84cOHcIrr7yCxYsXY9iwYbhz5w7eeOMNjBs3Dps3b7a4zaioKNSrVw/r1q1DSEgIjhw5ggkTJkAikeCdd96pqkMrF5VKhXr16mHmzJlYvHixxTLr16/Hhx9+iF9++QU9evTAlStXMGbMGACwus6NGzfw1FNPYerUqVi/fj2ysrLw3nvvYcSIEThz5gwAw7yUo0aNwtKlS9GrVy+7HB9Qw4PoREREREREREREVLXy8vLw+++/4+TJk0hKSsKqVauMmSFM1a1bF4GBgQCARo0a4ZdffsHp06ctBtE3bNiAsWPHYsGCBXj33XdL3P/GjRvLnMJj3bp1WLJkCWJjY+Hu7o7HH38cS5Ysgb+/P27evIl+/foBAOrUqQMAePXVV7Fq1api27l06RK+//57xMTEWE31fOzYMTRu3Nh4HKGhoZg4cSLmz59vtX6vvfaa2eMmTZrg6NGj+Ouvvyo1iH7+/HlMnjwZR48ehUKhwLPPPouFCxcanx8zZgwyMzPRq1cvfPXVV1Cr1XjxxRexZMkSq5NwNm7c2Dhq/pdffrFY5ujRo+jZs6cxzXbjxo3xn//8x2weyqJOnz4NnU6H2bNnGyc8ff/99/HUU09Bo9EY6zN8+HCEhYUhPz8fbm5uZT8pNqjR6VyIiIiIiIiIiIhqA0EQoFRrHfKvpEwPlvz2229o0aIFWrRogdGjR2PlypWlbuPUqVM4ffo0unbtWuy5b7/9FmPHjsWKFStKDaADhpQvnTt3LlOd1Wo1Pv/8c5w9exZ///034uLijCOhQ0JCsGnTJgBAbGwsEhMTraZS2bJlC5o0aYKtW7ciNDQUjRs3xrhx45Cenm4s06NHD9y+fRvbtm2DIAi4d+8e/vzzTwwZMqRMdc7KyoKvr2+Z1imJUqnEE088gTp16uDkyZP4448/sGvXLkyaNMms3N69e3H9+nXs3bsXq1evxqpVqyx2KJRFr169EBUVZQya37hxA9u2bSvxnHTu3BkSiQQrV66ETqdDVlYW1q5di7CwMLOAfufOnaHRaEoMyFcUR6ITERERERERERE5WL5Gh1Yf73TIvi9+NggKF9vDhCtWrMDo0aMBAE888QRyc3Oxe/duDBgwwKxcjx49IBaLoVarodFoMGHCBLzyyitmZS5duoR33nnHbJslyczMRGZmJoKDg22uL2A+0rtJkyb45ptv8OijjyI3NxceHh7GYLW/vz98fHysbufGjRu4desW/vjjD6xZswY6nQ7vvfcennvuOezZs8d43OvXr8cLL7yAgoICaLVaDB8+vMR00kUdPXoUv//+O/79998yHWdJ1q9fj/z8fKxZswbu7u4ADBNzDhs2DDNnzoSXlxcAw2j8ZcuWQSKR4OGHH8aQIUOwe/dujB8/vtz7fvHFF5GSkoJevXpBEARotVq8+eab+PDDD62u07hxY0REROD555/HxIkTodPp0L17d2zbts2snLu7O3x8fHDz5k306dOn3HUsCUeiExERERERERERkU1iY2Nx4sQJvPjiiwAAqVSKF154wWIaj99++w3R0dE4e/YsfvvtN/zvf/8rFjRt0KABOnbsiPnz5yMxMbHU/efn5wMwzHNYFmfOnMFTTz2FRo0awdPTE3379gUAxMfHl2k7er0eKpUKa9asQe/evdG3b1+sWLECe/fuRWxsLADg4sWLePfdd/Hxxx8jKioKO3bsQFxcHN544w2b9nHhwgU89dRT+PjjjzFw4MAy1a8kly5dQvv27Y0BdADo2bMn9Ho9rl69alzWunVrSCQS4+OgoCAkJydXaN/79u3DnDlz8N133+H06dP466+/sHXrVnz++edW10lKSsK4cePw6quv4uTJk9i/fz9cXFzw3HPPFbvzwc3NDUqlskJ1LAlHohMRERERERERETmYm0yCi58Ncti+bbVixQpotVrUr1/fuEwQBMhkMmRkZBhzigOGNClNmzYFALRs2RI3btzArFmzEB4ebgyCe3p6YteuXQgLC0Pfvn2xd+/eEkeZ161bFyKRCBkZGTbXOS8vD2FhYQgLC8O6detQr149xMfHY9CgQVCr1TZvBzAElKVSKZo3b25c1rJlSwCGgHyLFi0wb9489OzZEx988AEAoF27dnB3d0fv3r0xe/ZsBAUFWd3+xYsX8fjjj2P8+PH46KOPylS30giCAJFIZPE50+VFc5+LRCLo9foK7XvWrFl4+eWXMW7cOABA27ZtkZeXhwkTJmDmzJnGnOemvv32W3h5eZnlki+cePX48ePo1q2bcXl6ejrq1atXoTqWhCPRiYiIiIiIiIiIHEwkEkHhInXIP2uB1aK0Wi3WrFmDr776CtHR0cZ/Z8+eRaNGjbB+/foS15dIJNBqtcUC13Xq1MGuXbtQp04d9O3bF3fu3LG6DRcXF7Rq1QoXL160qc4AcPnyZaSmpuKLL75A79698fDDDxcbWe3i4gIA0Ol0JW6rZ8+e0Gq1uH79unHZlStXABgmTwUMuceLBoULR3aXlDv+woUL6NevH1599VXMmTPHxqOzXatWrRAdHY28vDzjssOHD0MsFhs7O+zF2jkRBMHqOVEqlWYj4gvXAWAW1L9+/ToKCgrQoUOHSq71AwyiExERERERERERUam2bt2KjIwMvP7662jTpo3Zv+eeew4rVqwwK5+WloakpCTcvn0b27dvx9dff41+/foZc2+b8vb2RkREBPz8/NC3b1/cvn3baj0GDRqEQ4cOFVuen59vFtyPjo7GtWvX0LBhQ7i4uGDp0qW4ceMG/vnnn2JpRBo1agSRSIStW7ciJSUFubm5Fvc9YMAAdOzYEa+99hrOnDmDqKgoTJw4EQMHDjSOTh82bBj++usvfP/997hx4wYOHz6Md999F48++qhxlP3mzZvx8MMPG7dbGEAfOHAgpk6diqSkJCQlJSElJcXqebDG2nl46aWX4OrqildffRUxMTHYu3cvJk2ahNGjR8Pf37/M+zFVuJ/c3FykpKQgOjrarKNj2LBh+P7777Fx40bExcUhMjISs2bNwvDhw42B8WXLlqF///7GdYYMGYKTJ0/is88+w9WrV3H69GmMHTsWjRo1MguYHzx4EE2aNMFDDz1UoWMoCYPoREREREREREREVKoVK1ZgwIAB8Pb2Lvbcs88+i+joaJw+fdq4bMCAAQgKCkLjxo0xYcIEDB48GL/99pvV7Xt5eWHnzp0ICAhA3759kZCQYLHc+PHjsW3bNmRlZZktv3LlCjp06GD2b9y4cahXrx5WrVqFP/74A61atcIXX3yBhQsXmq1bv359fPrpp/jwww8REBCAd955x+K+xWIxtmzZAj8/Pzz22GMYMmQIWrZsiY0bNxrLjBkzBosWLcKyZcvQpk0bPP/882jRogX++usvY5msrCxjDnUA+OOPP5CSkoL169cjKCjI+K9Lly5m+xeJRFi1apXVc1jSeVAoFNi5cyfS09PRpUsXPPfcc+jfv3+ZJjy1pnA/UVFR2LBhAzp06IDBgwcbn//oo48wbdo0fPTRR2jVqhVef/11DBo0CD/88IOxTGpqqtkI/8cffxwbNmzA33//jQ4dOuCJJ56AXC7Hjh074ObmZiz366+/VmjSU1uIhJLuIaBKk52dDW9vb2RlZVnsbavNNBoNtm3bhsGDBxfLqUREtQ/bPJHzYHsnci5s80TOg+3d/goKChAXF4fQ0NAyT5BJBiNHjkSHDh0wY8YMR1elyty8eRPNmjXDxYsX0axZs0rbrl6vR3Z2Nry8vCzmJq/OYmJi0L9/f1y5csVi5w5QcnuzNWZbs84KEREREREREREROb0FCxbAw8PD0dWoUjt27MCECRMqNYBe0929exdr1qyxGkCvLFK7bp2IiIiIiIiIiIiokjVq1AiTJk1ydDWq1BtvvOHoKlQ7YWFhVbIfjkQnIiIiIiIiIiIiIrKCQXQiIiIiIiIiIiIiIisYRCciIiIiIiIiInIAQRAcXQWiWq8y2hmD6ERERERERERERFVIJpMBAJRKpYNrQlT7FbazwnZXHpxYlIiIiIiIiIiIqApJJBL4+PggOTkZAKBQKCASiRxcK3JWer0earUaBQUFEItrz5hrQRCgVCqRnJwMHx8fSCSScm+LQXQiIiIiIiIiIqIqFhgYCADGQDqRowiCgPz8fLi5udXKzhwfHx9jeysvBtGJiIiIiIiIiIiqmEgkQlBQEPz9/aHRaBxdHXJiGo0GBw4cwGOPPVahlCfVkUwmq9AI9EIMohMRERERERERETmIRCKplCAfUXlJJBJotVq4urrWuiB6Zak9SW6IiIiIiIiIiIiIiCoZg+hERERERERERERERFYwiE5EREREREREREREZAWD6EREREREREREREREVjCITkRERERERERERERkRa0Pomu1Wnz00UcIDQ2Fm5sbmjRpgs8++wx6vd5YRhAEhIeHIzg4GG5ubujbty8uXLhgth2VSoVJkybBz88P7u7uGD58OG7fvl3Vh0NEREREREREREREVajWB9G//PJLLF++HMuWLcOlS5cwf/58LFiwAEuXLjWWmT9/PhYtWoRly5bh5MmTCAwMxMCBA5GTk2MsM2XKFGzevBkbN27EoUOHkJubi6FDh0Kn0znisIiIiIiIiIiIiIioCkgdXQF7O3r0KJ566ikMGTIEANC4cWP8+uuvOHXqFADDKPQlS5Zg5syZGDFiBABg9erVCAgIwIYNGzBx4kRkZWVhxYoVWLt2LQYMGAAAWLduHUJCQrBr1y4MGjTIMQdHRERERERERERERHZV60ei9+rVC7t378aVK1cAAGfPnsWhQ4cwePBgAEBcXBySkpIQFhZmXEcul6NPnz44cuQIACAqKgoajcasTHBwMNq0aWMsQ0RERERERERERES1T60fif7f//4XWVlZePjhhyGRSKDT6TBnzhz85z//AQAkJSUBAAICAszWCwgIwK1bt4xlXFxcUKdOnWJlCtcvSqVSQaVSGR9nZ2cDADQaDTQaTeUcXA1ReLzOdtxEzoptnsh5sL0TORe2eSLnwfZO5Fycuc3besy1Poj+22+/Yd26ddiwYQNat26N6OhoTJkyBcHBwXj11VeN5UQikdl6giAUW1ZUSWXmzZuHTz/9tNjyiIgIKBSKchxJzRcZGenoKhBRFWKbJ3IebO9EzoVtnsh5sL0TORdnbPNKpdKmcrU+iP7BBx/gww8/xIsvvggAaNu2LW7duoV58+bh1VdfRWBgIADDaPOgoCDjesnJycbR6YGBgVCr1cjIyDAbjZ6cnIwePXpY3O+MGTMwdepU4+Ps7GyEhIQgLCwMXl5elX6c1ZlGo0FkZCQGDhwImUzm6OoQkZ2xzRM5D7Z3IufCNk/kPNjeiZyLM7f5wuwhpan1QXSlUgmx2Dz1u0QigV6vBwCEhoYiMDAQkZGR6NChAwBArVZj//79+PLLLwEAnTp1gkwmQ2RkJEaOHAkASExMRExMDObPn29xv3K5HHK5vNhymUzmdG/GQs587ETOiG2eyHmwvZMzsOVOVWfBNk/kPNjeiZyLM7Z5W4+31gfRhw0bhjlz5qBhw4Zo3bo1zpw5g0WLFuG1114DYEjjMmXKFMydOxfNmjVDs2bNMHfuXCgUCowaNQoA4O3tjddffx3Tpk1D3bp14evri/fffx9t27bFgAEDHHl4RERERERkZ4eupuKt9VGYN6IdhrQLKn0FIiIiIqpVan0QfenSpZg1axbeeustJCcnIzg4GBMnTsTHH39sLDN9+nTk5+fjrbfeQkZGBrp27YqIiAh4enoayyxevBhSqRQjR45Efn4++vfvj1WrVkEikTjisIiIiIiIqIqMXnEcAPD2htMY0m6Ig2tDRERERFWt1gfRPT09sWTJEixZssRqGZFIhPDwcISHh1st4+rqiqVLl2Lp0qWVX0kiIiIiIiIiIiIiqpbEpRchIiIiIiIiIiIiInJODKITEREREREREREREVnBIDoRERERERERERERkRUMohMRERERERERERERWcEgOhERERERERERERGRFQyiExERERERERERERFZwSA6EREREREREREREZEVDKITEREREREREREREVnBIDoRERERERERERERkRUMohMRERERERERERERWcEgOhERERERERERERGRFQyiExERERERERERERFZwSA6EREREREREREREZEVDKITEREREREREREREVnBIDoRERERERERERERkRXSqtjJiBEjyrzO8uXL4e/vb4faEBERERERERERERHZpkqC6H///TdGjhwJNzc3m8pv2LABubm5DKITERERERERERERkUNVSRAdAL755hubg+J//vmnnWtDRERERERERERERFS6KsmJvnfvXvj6+tpcfvv27ahfv74da0REREREREREREREVLoqGYnep0+fMpXv1auXnWpCRERERERERERERGS7KkvnYkqv1+PatWtITk6GXq83e+6xxx5zRJWIiIiIiIiIiIiIiIqp8iD6sWPHMGrUKNy6dQuCIJg9JxKJoNPpqrpKREREREREREREREQWVXkQ/Y033kDnzp3x77//IigoCCKRqKqrQERERERERERERERkkyoPol+9ehV//vknmjZtWtW7JiIiIiIiIiIiIiIqE3FV77Br1664du1aVe+WiIiIiIiIiIiIiKjMqjyIPmnSJEybNg2rVq1CVFQUzp07Z/bPHu7cuYPRo0ejbt26UCgUeOSRRxAVFWV8XhAEhIeHIzg4GG5ubujbty8uXLhgtg2VSoVJkybBz88P7u7uGD58OG7fvm2X+hIRERERERERERFR9VDl6VyeffZZAMBrr71mXCYSiSAIgl0mFs3IyEDPnj3Rr18/bN++Hf7+/rh+/Tp8fHyMZebPn49FixZh1apVaN68OWbPno2BAwciNjYWnp6eAIApU6Zgy5Yt2LhxI+rWrYtp06Zh6NChiIqKgkQiqdQ6ExEREREREREREVH1UOVB9Li4uCrd35dffomQkBCsXLnSuKxx48bGvwVBwJIlSzBz5kyMGDECALB69WoEBARgw4YNmDhxIrKysrBixQqsXbsWAwYMAACsW7cOISEh2LVrFwYNGlSlx0REREREREREREREVaPK07k0atSoxH+V7Z9//kHnzp3x/PPPw9/fHx06dMBPP/1kfD4uLg5JSUkICwszLpPL5ejTpw+OHDkCAIiKioJGozErExwcjDZt2hjLEBEREREREREREVHtUyUj0f/55x88+eSTkMlk+Oeff0osO3z48Erd940bN/D9999j6tSp+L//+z+cOHEC7777LuRyOV555RUkJSUBAAICAszWCwgIwK1btwAASUlJcHFxQZ06dYqVKVy/KJVKBZVKZXycnZ0NANBoNNBoNJV2fDVB4fE623ETOSu2eSLnwfZOzsiZ3+9s80TOg+2dyLk4c5u39ZjLFUSPj49HSEgIRCKR2XJBEJCQkICGDRuaLX/66aeRlJQEf39/PP3001a3a4+c6Hq9Hp07d8bcuXMBAB06dMCFCxfw/fff45VXXjHbt6nCHO0lKanMvHnz8OmnnxZbHhERAYVCUdbDqBUiIyMdXQUiqkJs80TOg+2dar8HP5u2bdvmwHpUD2zzRM6D7Z3IuThjm1cqlTaVK1cQPTQ0FImJifD39zdbnp6ejtDQ0GKBcL1eb/HvqhAUFIRWrVqZLWvZsiU2bdoEAAgMDARgGG0eFBRkLJOcnGwcnR4YGAi1Wo2MjAyz0ejJycno0aOHxf3OmDEDU6dONT7Ozs5GSEgIwsLC4OXlVTkHV0NoNBpERkZi4MCBkMlkjq4OEdkZ2zyR82B7J2cx+WiE8e/Bgwc7sCaOxTZP5DzY3omcizO3+cLsIaUpVxDd2gjs3NxcuLq6lmeTdtOzZ0/ExsaaLbty5Yox/3poaCgCAwMRGRmJDh06AADUajX279+PL7/8EgDQqVMnyGQyREZGYuTIkQCAxMRExMTEYP78+Rb3K5fLIZfLiy2XyWRO92Ys5MzHTuSM2OaJnAfbOzkTvtfZ5omcCds7kXNxxjZv6/GWKYheOLJaJBJh1qxZZmlJdDodjh8/jkceeaTU7Zw4cQL79u1DcnJysZHpixYtKkuVSvXee++hR48emDt3LkaOHIkTJ07gxx9/xI8//mg8lilTpmDu3Llo1qwZmjVrhrlz50KhUGDUqFEAAG9vb7z++uuYNm0a6tatC19fX7z//vto27YtBgwYUKn1JSIiIiIiIiIiIqLqo0xB9DNnzgAwjEQ/f/48XFxcjM+5uLigffv2eP/990vcxty5c/HRRx+hRYsWCAgIMBvRXloO8vLo0qULNm/ejBkzZuCzzz5DaGgolixZgpdeeslYZvr06cjPz8dbb72FjIwMdO3aFREREfD09DSWWbx4MaRSKUaOHIn8/Hz0798fq1atgkQiqfQ6ExEREREREREREVH1UKYg+t69ewEAY8eOxddff12u3N5ff/01fvnlF4wZM6bM65bX0KFDMXToUKvPi0QihIeHIzw83GoZV1dXLF26FEuXLrVDDYmIiIiIiIiIiIioOipXTvSVK1eWe4disRg9e/Ys9/pERERERERERERERFXF5iD6iBEjbN7oX3/9ZfW59957D99++y2WLFli8/aIiIiIiIiIiIiIiBzB5iC6t7e38W9BELB582Z4e3ujc+fOAICoqChkZmaWGmx///33MWTIEDz00ENo1apVsRlQSwrAExERERERERERERFVJZuD6KYpXP773/9i5MiRWL58uXFiTZ1Oh7feeqvUPOmTJk3C3r170a9fP9StW9cuk4kSEREREREREREREVWGcuVE/+WXX3Do0CFjAB0AJBIJpk6dih49emDBggVW112zZg02bdqEIUOGlGfXRERERERERERERERVRlyelbRaLS5dulRs+aVLl6DX60tc19fXFw899FB5dktEREREREREREREVKXKNRJ97NixeO2113Dt2jV069YNAHDs2DF88cUXGDt2bInrhoeH45NPPsHKlSuhUCjKs3siIiIiIiIiIiIioipRriD6woULERgYiMWLFyMxMREAEBQUhOnTp2PatGklrvvNN9/g+vXrCAgIQOPGjYtNLHr69OnyVImIiIiIiIiIiIiIqNKVKYiem5sLDw8PiMViTJ8+HdOnT0d2djYAlDqhaKGnn366zJUkIiIiIiIiIiIiInKEMgXR/fz80K9fPwwfPhzDhw9H/fr1bQ6eF/rkk0/KVJ6IiIiIiIiIiIiIyFHKNLFobGwsBg8ejE2bNqFJkybo0qULPv/8c5w7d85e9SMiIiIiIqIqkJarQkK60tHVICIiIqp2yhREb9SoESZNmoRdu3YhOTkZU6dOxYULF/DYY48hNDQUkydPxp49e6DT6exVXyIiIiIiIrKDTrN3off8vUjPUzu6KkRERETVSpmC6Ka8vb3xn//8Bxs3bkRqaip++OEH6PV6jB07FvXq1cP69esrs55ERERERERUBa4l5zq6CkRERETVSplyolvdiFSKsLAwhIWFYenSpThz5gy0Wm1lbJqIiIiIiIiqkEjk6BoQERERVS8VDqLn5eXht99+Q35+PsLCwtCsWTN06NChWLnu3bvj6aefxvDhw9GyZcuK7paIiIiIiIjsgDF0IiIiInNlSucSHx+PPn36wNPTEwMHDkR8fDw6duyIcePGYdKkSXjkkUdw4MABi+u+8cYbOHHiBB599FE0b94cH3zwAQ4ePAhBECrlQIiIiIiIiIiIiIiIKluZgujvv/8+1Go1vv/+eygUCgwaNAjNmjVDYmIi7t27h8GDByM8PNziuq+++io2bdqE1NRULFmyBNnZ2XjhhRfg7++PMWPGYPPmzVAqORM8ERERERGRIzGdCxEREZG5MgXRDxw4gK+//hqjR4/GypUrERsbi5kzZyIgIAD16tXDRx99hHPnzpW4DblcjsGDB+OHH37A3bt3sXXrVtSvXx8ff/wx/Pz8MHToUBw+fLhCB0VERERERETlxSg6ERERkakyBdFTUlLQqFEjAICvry8UCgUCAgKMzwcGBiIjI6NMFejatSvmzJmD8+fP4/z58+jfvz8SExPLtA0iIiIiIiIqP9M0mxyJTkRERGSuTBOLCoIAkck3KlElf7t66KGH8N5771XqNomIiIiIiKhknKqKiIiIyLoyBdEB4OOPP4ZCoQAAqNVqzJkzB97e3gDAnOZEREREREQ1kN50JLoD60FERERUHZUpiP7YY48hNjbW+LhHjx64ceNGsTJERERERERUc5gORK/sO46JiIiIaroyBdH37dtnp2oQERERERGRo3AkOhEREZF1NgfRp06davNGFy1aVGxZkyZNcPLkSdStW9fm7RAREREREZH9meZEj7mbhfYhPg6rCxEREVF1Y3MQ/cyZM2aPo6KioNPp0KJFCwDAlStXIJFI0KlTJ4vr37x5EzqdrgJVJSIiIiIiInswDaLP3ByDl7o2clxliIiIiKoZsa0F9+7da/w3bNgw9O3bF7dv38bp06dx+vRpJCQkoF+/fhgyZIg961sh8+bNg0gkwpQpU4zLBEFAeHg4goOD4ebmhr59++LChQtm66lUKkyaNAl+fn5wd3fH8OHDcfv27SquPRERERERkX0IZlnRiYiIiMhUmXKiF/rqq68QERGBOnXqGJfVqVMHs2fPRlhYGKZNm2ZxvYsXLyIpKanEbbdr1648VSrVyZMn8eOPPxbb/vz587Fo0SKsWrUKzZs3x+zZszFw4EDExsbC09MTADBlyhRs2bIFGzduRN26dTFt2jQMHToUUVFRkEgkdqkvERERERFRVdEzhk5ERERkVbmC6NnZ2bh37x5at25ttjw5ORk5OTlW1+vfvz8Eofi3M5FIBEEQIBKJ7JLyJTc3Fy+99BJ++uknzJ4927hcEAQsWbIEM2fOxIgRIwAAq1evRkBAADZs2ICJEyciKysLK1aswNq1azFgwAAAwLp16xASEoJdu3Zh0KBBlV5fIiIiIiKiqmTpdxoRERERGZQriP7MM89g7Nix+Oqrr9CtWzcAwLFjx/DBBx8Yg9GWHD9+HPXq1StfTSvg7bffxpAhQzBgwACzIHpcXBySkpIQFhZmXCaXy9GnTx8cOXIEEydORFRUFDQajVmZ4OBgtGnTBkeOHLEaRFepVFCpVMbH2dnZAACNRgONRlPZh1itFR6vsx03kbNimydyHmzv5Ixq6/tdrTY/LkvHyTZP5DzY3omcizO3eVuPuVxB9OXLl+P999/H6NGjjTuSSqV4/fXXsWDBAqvrNWzYEP7+/uXZZblt3LgRp0+fxsmTJ4s9V5haJiAgwGx5QEAAbt26ZSzj4uJilrqmsExJqWnmzZuHTz/9tNjyiIgIKBSKMh9HbRAZGenoKhBRFWKbJ3IebO9U+z342bRt2zYH1sN+lFrA1uNkmydyHmzvRM7FGdu8Uqm0qVy5gugKhQLfffcdFixYgOvXr0MQBDRt2hTu7u7l2ZzdJCQkYPLkyYiIiICrq6vVciKRyOxxYWqZkpRWZsaMGZg6darxcXZ2NkJCQhAWFgYvLy8bj6B20Gg0iIyMxMCBAyGTyRxdHSKyM7Z5IufB9k7OYvLRCOPfgwcPdmBN7CdDqQZO7jM+tnScbPNEzoPtnci5OHObL8weUppyBdELubu72zwRaJ8+feDi4lKR3ZVZVFQUkpOT0alTJ+MynU6HAwcOYNmyZYiNjQVgGG0eFBRkLJOcnGwcnR4YGAi1Wo2MjAyz0ejJycno0aOH1X3L5XLI5fJiy2UymdO9GQs587ETOSO2eSLnwfZOzqS2vtelUvOc6CUdJ9s8kfNgeydyLs7Y5m09XrGd62G0d+9e+Pj4GB+r1Wrcvn0b8fHxZv8qU//+/XH+/HlER0cb/3Xu3BkvvfQSoqOj0aRJEwQGBprdqqBWq7F//35jgLxTp06QyWRmZRITExETE1NiEJ2IiIiIiKim0HNiUSIiIiKrKjQSvTyuXr2K1157DUeOHDFbXpgeRafTVdq+PD090aZNG7Nl7u7uqFu3rnH5lClTMHfuXDRr1gzNmjXD3LlzoVAoMGrUKACAt7c3Xn/9dUybNg1169aFr68v3n//fbRt2xYDBgyotLoSERERERE5CmPoRERERNZVeRB9zJgxkEql2Lp1K4KCgkrNPW5v06dPR35+Pt566y1kZGSga9euiIiIgKenp7HM4sWLIZVKMXLkSOTn56N///5YtWoVJBKJA2tORERERERUOQRG0YmIiIisqvIgenR0NKKiovDwww9X9a4BAPv27TN7LBKJEB4ejvDwcKvruLq6YunSpVi6dKl9K0dEREREROQADKETERERWVdlOdELtWrVCqmpqVW9WyIiIiIiIrKCA9GJiIiIrKvyIPqXX36J6dOnY9++fUhLS0N2drbZPyIiIiIiIqpanFiUiIiIyLoqT+dSOBln//79zZbbY2JRIiIiIiIiKh1D6ERERETWVXkQfe/evVW9SyIiIiIiIiqBXs8wOhEREZE1VR5E79OnT1XvkoiIiIiIiIiIiIioXKokJ/q5c+eg1+ttLn/hwgVotVo71oiIiIiIiIgKMSc6ERERkXVVEkTv0KED0tLSbC7fvXt3xMfH27FGREREREREVIgxdCIiIiLrqiSdiyAImDVrFhQKhU3l1Wq1nWtEREREREREhTgSnYiIiMi6KgmiP/bYY4iNjbW5fPfu3eHm5mbHGhEREREREVEhhtCJiIiIrKuSIPq+ffuqYjdERERERERUDgJHohMRERFZVSU50YmIiIiIiKj6YgydiIiIyDoG0YmIiIiIiJycnkF0IiIiIqsYRCciIiIiInJyArOiExEREVnFIDoREREREZGT0+sdXQMiIiKi6otBdCIiIiIiIifHkehERERE1jGITkRERERE5OQ4sSgRERGRdQyiExEREREROTkG0YmIiIisYxCdiIiIiIjIyekZRSciIiKyikF0IiIiInJqgiAgIV0JgUFEcmJF3/1sD0REREQPMIhORERERE5t+f4b6D1/L77YcdnRVSFymKIj0Q9dS3VQTYiIiIiqHwbRiYiIiMipfXk/eP7D/hsOrgmR4xQdeJ6ep3ZMRYiIiIiqIQbRiYiIiIioysQm5aDxh/9iwc6aMfK/aFqTS4nZDqqJfRU9TuZIJyIiInqAQXQiIiIicmoikaNr4FwGLTkAAPh273UH18Q2RWPJU38/65iK2FnxnOgOqQYRERFRtcQgOhERERE5NamYUXSyrmgsWa3VOaQe9qbXmx8pg+hERERED9T6IPq8efPQpUsXeHp6wt/fH08//TRiY2PNygiCgPDwcAQHB8PNzQ19+/bFhQsXzMqoVCpMmjQJfn5+cHd3x/Dhw3H79u2qPBQiIiIisgMxh6JTCYqmNfGQSx1UE2BvbDKeX34EN1JyK33bxUaiV/oeiIiIiGquWh9E379/P95++20cO3YMkZGR0Gq1CAsLQ15enrHM/PnzsWjRIixbtgwnT55EYGAgBg4ciJycHGOZKVOmYPPmzdi4cSMOHTqE3NxcDB06FDpd7RyJQkREROQsOBKdSlJ0RLaL1HE/ocauPImTNzMw/c9zlb7top0FzIlORERE9IDjhlFUkR07dpg9XrlyJfz9/REVFYXHHnsMgiBgyZIlmDlzJkaMGAEAWL16NQICArBhwwZMnDgRWVlZWLFiBdauXYsBAwYAANatW4eQkBDs2rULgwYNqvLjIiIiIqLKIZWIAXBgBFkmoGhw2UEVMZFdoKn8jVaD4yKiyhFzJwv5Gh26NPZ1dFWIiGqNWj8SvaisrCwAgK+v4cMkLi4OSUlJCAsLM5aRy+Xo06cPjhw5AgCIioqCRqMxKxMcHIw2bdoYyxARERFRzcSR6FSS6jgg21UmqfRtFuscqIbHTUS2Gbr0EJ5ffhQpOSpHV4WIqNao9SPRTQmCgKlTp6JXr15o06YNACApKQkAEBAQYFY2ICAAt27dMpZxcXFBnTp1ipUpXL8olUoFlerBB1Z2djYAQKPRQKOxw8iRaqzweJ3tuImcFds8kfOoLe3dNCV6TT+WmqYmnG+12vwuBb1e7/B6u0hElV4HjVZb7HHRfdSWNk9UmwkmPX8JaTnwcS3f2Em2dyLn4sxt3tZjdqog+jvvvINz587h0KFDxZ4TFZlQShCEYsuKKqnMvHnz8OmnnxZbHhERAYVCUYZa1x6RkZGOrgIRVSG2eSLnUdPbu0olAWD4Trdt2zbHVqaWM8R2HvwEqQnnW6UDTOucnpHpwHob6pGdmV7pdbiUKQLwYIT7ufPn4ZFsOfd6TW/zRLWZ3uQ6e+DQYSR4Vmx7bO9EzsUZ27xSqbSpnNME0SdNmoR//vkHBw4cQIMGDYzLAwMDARhGmwcFBRmXJycnG0enBwYGQq1WIyMjw2w0enJyMnr06GFxfzNmzMDUqVONj7OzsxESEoKwsDB4eXlV6rFVdxqNBpGRkRg4cCBkMpmjq0NEdsY2T+Q8akt7n31+H3I0agDA4MGDHVuZWk6nF4BjD36c+bXqhkerec7eXJUWOLHH+NjHxweDB3fFptN3kJCRjyn9m1ZJPS7czQaOHgMA+Nerh8GDO1Xq9j2upmL5pdPGxz71m+LJgU2hF4DLSTnYFpOEAA8X+GVerPFtnqg20+kFvHf/Otv50W7oGlq+a2xt+YwnIts4c5svzB5SmlofRBcEAZMmTcLmzZuxb98+hIaGmj0fGhqKwMBAREZGokOHDgAAtVqN/fv348svvwQAdOrUCTKZDJGRkRg5ciQAIDExETExMZg/f77F/crlcsjl8mLLZTKZ070ZCznzsRM5I7Z5IudR49u7yZ2FNfo4agC91jw1ys30AvRsVr3PubTonLMiEWQyGT7cfAEAMLB1EB4J8bF7PZbtu2H8WywWV/p7VSwxz7P+w8E4iMRiSMTAt3uvG5d/3b0WtHmi2kynN/4piCp+rWB7J3IuztjmbT3eWj+x6Ntvv41169Zhw4YN8PT0RFJSEpKSkpCfnw/AkMZlypQpmDt3LjZv3oyYmBiMGTMGCoUCo0aNAgB4e3vj9ddfx7Rp07B7926cOXMGo0ePRtu2bTFgwABHHh4RERERVRCnFa06uiKzV+6LTUFSVgFSc6vv5HfF5tssMtNoVn7V5A4tLdVkRRU9LgBYvv+6WQDd3jQ6PdYcvYlryblVtk+i2sa0KafmqrD++C1kKtXGZXcy8/H2+tOIupXhgNoREdVctX4k+vfffw8A6Nu3r9nylStXYsyYMQCA6dOnIz8/H2+99RYyMjLQtWtXREREwNPzQfKwxYsXQyqVYuTIkcjPz0f//v2xatUqSIqM2CAiIiKimqV46JDsRVskiB558R4iL94DAPRpXg9TBjRDh4Z1LK3qMIK+yGMHvWHEJjF0e4TTHXVcplYfuYnZ/14CANz8YoiDa0NUM+lNGvN7v50FAGw7n4j147oZlm2Mxomb6fj3fCLbGRFRGdT6ILqlERVFiUQihIeHIzw83GoZV1dXLF26FEuXLq3E2hEREREROQ+tzvp38/1XUrD/SopZUGfKxjP4O/ouDk7vhxBfRVVUsRihSDdLscdVFH2WiO07El1fDYLoHBlLZB+Hr6UZ/76ZlufAmhAR1Vy1Pp0LEREREVFJmM6l6mj1+tILmfg7+i4AoPf8vfaojk2qwwhtwDydiz0yu9jaGVBdzgcRWaZnIyUisgsG0YmIiIiIqEoUzYlekiv3cuxYE9sVDUgJgnnA2d65yguJ7bwfW18ae4bnGPsjqrjS2lEVXbKIiGodBtGJiIiIyKkxoFB1SkrnUlRhrnRHK1rjC3ezHZL6xM7ZXGzu4LBrEJ0zFBBVWGkj0UW8/4qIqFwYRCciIiIioipRlpHo1aVzw1I8SqnWmjxfRTnRTdO52GH7tqbasefhciQ61QZpuSqcvJnusP1ba0ZqrR5/nEpAUnZBldaHahd9dZhAg8hBGEQnIiIiIqfGUXlVR1uGH9/2Tl9iK0tB8mV7rlV5PeydNsbWuwQYPiEqWZ8F+/D88qPYfyXFIfsXrPSH/XTwBj7485zV9b7YfhmPzd+LTKXaTjWjmu5uZj46zo7EF9svO7oqRA7BIDoREREREVWJE3G2j840DRnX93Gr/MrYyFLQ+NztrCqvx4mbaca/7RFQrxYj0c32w3A91Uy5KsOdKnsvJztk/9bSIh2wEtS/lJiN7vN2Y/n+64hPV2LN0Vv2rB7VYEv3XEWmUoPl+687uipEDsEgOhERERE5tWoy4Nkp/N/m8zaXNX1dGvsp7FAb21iK5R69Yd+AtqlZf8fgpZ+PISE93677sfUuAdtC7eVjeq7ncaQjFZGQrkRiln3bQWUqemmoqjQY1nZj7VI17fezSMx6kOKlLHcMOZPErHyotDpHV8Oh2LdJzo5BdCIiIiIiIitKm6TP3iOm1x67hcPX0syW2SNsb/PEolUURPnxwI2q2RHVCHkqLXrP34vu8/bUmLsUTFOFXb2Xg/afReDbvfZPBWXt/Ki1lrvACjRFAsM15PxWJcNo/T14atlhR1fFofjWIGfHIDoREREREVU7OnsOeS6D6hgzsMfgdw1zolM1VhNHSotN2un7f55DToEWC3bG2n2/1k7P6fhMi8t1RSKjNePsVq2/o+8AAC4n5Ti4Jo5lLVUQkbNgEJ2IiIiInBqzuVQvQ5cexL3sArMR4I4c/VbaqFd7VU0QBNzNtJa6ovR37c8Hb+B/9wM/ttBVg5zoDN+RLWy9a8LRRCIgObsASrUWqTmqKttvWQOdRe+2KU8bz1SqcexGWo25S6CsTCdezshz3olXa+nLS2QzBtGJiIiIiKjaiLmTjYU7YyGXPvip4qgf7udvZ+HAldQSy9graLTiUBx6fLGnXOtevZeD2f9ewuSN0TavY+vo3r9viZGvtk9eYAZoyBrTuy9KS7FUXaTkqPDo3N3oPm9PlQb+y3p6ivaflWe08ZBvDuHFH4/h3/OJZV63JtCa3BrV4fNIp82NXjNaHpH9MIhORERERE7N3hNDUtkpNTrUUbgYH0vEjnmNhi07VOpkqPZKOzP730slPr/9fCL+PlN8pLlOL2D98XjjY1uD/Fob07mcSBHjm73XbSpbVs4QoBEEAXO3XcIGk9eIShdx4Z7x75oyEj0qPgMAkJWvqdI0GGUOotswEr2068id+3fNbI9JKtvOa4iinYwZeRoH1cSxakj/FZHdMIhORERERETVyom4dLMJ+DQOSJCutzFQl2KnNA0uEus/1XZduoc315/GlN+ikZprvv9fT8Rj1ZGbxse2BhzLkmf67O0sLIqIxau/nKjU1+bc7axK21ZZaHV6ZCqrJkXDmYRM/HjgRqmdM2Tuyx2XjX/bmHnI4WTiB224LHH/hTtj8fhX+5CVX75AbVlH6hcLohd5/vD1NHSZsxuRF++hNDIHdXjaQ2JWPl5fdRKHr6Xa3MlYSBAERCdkIqegdgXb7d0ZlK/WYcPxeNzLLii9MJEDMIhORERERER2k1OgwcrDccgu0ODpR4IBAK2DvUpcJyVHhRupecbHjhh5WmDj7fpHrpec7qW8TNPZlKRooG1fbLLZY1snDLU1JzoAqLQ6fLPnGvZfSUHUrQyb1ytN0Q6BswmZlbZta3JVWjSduR2PfBZpHE1rT9nlDIzSA0UnwqyuTK9hBWVIgbRs7zXcSMnD2qM3y7Xfsp6dov1gRYPqr62OQmquCuPXnCp1W9ISOv9qmmm/n8Xuy8l46efjxToLC9+D1kboR168h6e/PYzhyw7bvZ5Vyd5Nb972S/i/zefx/PKj9t1RLZGQrsT1lFxHV8Op1J4rHBERERERVTuPztmNT7dcRLvwCPwdfRcA0CLAs0zbKMso6cpyKTHHpnK5Km2l7/tacg5ybNxu0RHz4iLpidQ2jhQvy0jLhPQHwWY3mcTm9UpiaUT77Qz7B7VNU+LsrIJUFEwfVXHVOZ2Ltbrlqct+nbC1A6woW++iAYD/Rd8p1nlVNApfltMtreEj0VNzVcag5MXEbOPyop2VGq0eN1Pz0GXObny/r3h6q63nDLnh40w6Uqh0Oy8YrsHx6UoH16T6EwQBvefvRf+v9iO7lt3xUJ0xiE5ERERETs1eE0OSQb6m+AjMv87cQa+mfjZvQ1uGUdI5BRr8L/oO8ioY3P71hG05q+0xyeYHf56zuWzRIHnRILqt6VbK0lGRoXzwg72yRgUrLZzHqkjjYxr0lEnsHwA03QOvPSWLuZOFm6l5OBNvfrfDsRtpDqpR6ay9Z02b17ztl2xKA1UV7w5Lkw+b7resb1FHzV9RSFvBa0bn2bvQ/6v9uJ2hNLsmFe1o0Oj0mLf9ElJzVWaphgrV9M4Ea+x9zarOHWSOklOgwYs/HsX8Iu8z08/+5Gz7pJWj4hhEJyIiIiKnppBLjX+XZQQflV+Hhj64nGTbSG/A+ijpAo0O/55LRFxqnjF49d5v0Zi8MRr/3WR7INoSW0fLJ6QrMXfbJaw+chM95u3G4WsVT+9yJj7T5rJFg/hFg1hqra0j0csXfLqUmF0pgQ9LwUdbR9FXhGmfQ3oVTBZouj8GjCzLVKqxKCIWQ5ceQt+F+/DMd0fMnp/06xkH1ax0tnRG/bD/Bv7z07HSN1bOgGVZc6IXlWAyCjgqtWzBYEcGjxfsvIymM7fj54M3KrytQ1dTza6dZ4vM16DW6UucVFpaBR1yVa1Ao8P5O/adt6K8d1/UZh//7wKO3UjHd/uu41qy4XtTep4a+2NTjGUc3XnlTBhEJyIiqsZ+P5mAHVVwezmRM/N1dzH+nV5Fkws6uxlPtiyeQqAEl5NyLN4W/1VELN7ecBr9Fu7DM98Zcs/uumTICV54O3152Zp+4W5WAX48cAOf/HMBd7MK8NLPxyu037L68YB5wKhotpDKGInevoG31edmbo5Bp9mRSMqq2ERwKgvB/rJO5lcepoHsxbuu2H1/IpOx6I5IU1QTvP/HWXyz51qJZarrKH5bO6OuJdsvj3FF31bbTb537ks0DxkdsdBJaHqNkYgdE2KKupWOb/ca0qrM/vdShbf34V8lT/xbWrC3aG7487ez0POLPTh5M73CdXOUt9efxvWUB5/DRe8QqQymaXM4qMFge8yD7zKZ9+8Ce275EUxYG2VcLiklTdifUbfRY95uxNzvBNHo9Ha5i84ZMIhORERUTSWkKzF90zm8sS6qxDKHrtpnUjsiZ2H606No3lNHqGhw6FpyLtYdu1UtR7l6u8kAAL7uMozu1rBM6/ZbuM/sca5Ki58Oxhkfx9wp/4hojU5f7LxbSkNjq6oM8EVcvGf8OyNPXazzwNYgeknnrrGfu1lnU1GZSg02nb5t036ssTRivixpfMpLLq2cnO62Mk1FklNguaNm/o7LeH75EahsnNy2tinsCCtJWl717PAs690TSrUWyTmWO6DKexWx5/Vn1M/HMWWj+Z0AptfKtcduYlGk5c4oQRCg1wt2mUci4sI9s8dz/r2ItcduVfp+Cml0+mIdlqZkRUYGD1t2CHcy82vUhJlanR47LyQhLVeFUzfTsfuyebsseodIZauKO5FqAqlJx1The+5GivmgAqGUq8X7f5zF3awCfPR3DAAgbPEBtPx4B5JzCpCUVcCAehkwiE5ERFRNmf5AtDYao/f8vRi94jiiblX+aBAiZ2F667u1oJbd66AX8H+bz6PLnF3oMmcX7mZan1AxLVeFRRGxZrfcmxqwaD8++jsG64/bL4BQXoWdFC4SCYa2Cy7z+gX3gzXrjt1Cm092Fnv+4NWUYstKk5CuRMfPIhE6YxuGLj1oDEAVVOBHZfr967dWp8eon47hwwqmlinNM98dxlcRsZi7rfgIzI//dwG3M0qepO1aci42nkyw+ny+WofuD9UtcRtlSUFjiaWAsa2paCri693FA34/HbiBEd8dRo4dJmtbtvfBCOvl+4tPSAgA3+27jpM3M3gnWgmq4i6F8ihrvR6dsxuPztltMUd6eWPhFe0/re/jBsBwvU3IKx4p/jv6rrHTTavT447JBMAanYBvdl8tdufQ6iM30f7TCHSdtxttPtmJyIvmQe+K+qHIHTk/HYzDrPsBQ2O9z9zBrL9jrHYYlqXz4b+bzpV4DJV9fI7ww4EbmLg2Ck9/dxjPWQn+bz9fsTu+SmLp7iRnZNpZc/JmBn638Flt6wACrd4wYKCwfT46Zze6zduN3vP3VEpdnQGD6ERERJVs67m7eOa7w6UGLUpj+rNFU8povLMJmRXaF5EzM/3xke2gkeh7Lidjw/F4pOSokJqrxtL7qQz0egEn4tKRZpL6ZNr9VAeF6UusOXrdsZPvzfn3IuZZCOoCgItUDJnJ7e5D2gbZtM3kbBXUWr1xNFVR5UmR0Hv+XuTcHxkZcycby/cbgjEVGYleONIy6lYGjlxPw8aTCXYdHXomPhNL91xD7L3ieeaPXE/D66tOQRAEXE7Kxuifj+N0kdvwX1t1ssTtF2j1GNDSv8Qyuy5VLGhkKWCeU6BFaq4KNy2k8jGVqVTjwt3y5eq9V2RCtlyVFnO2XcLp+EysOVr+jqiMPDXmbruEy0nZOHI91WInwa20kr8nqDT2DyLti03GrbSSz2919MvhuNILVaGEdCW+2H4Zg5YcsHmd+DSl8VrRZc4u/C/6jtnzpqNLD15NMfteWaDR4etdV7EvNtnCyO6KXWsKU1lN+d1659+ha6mY+ls0ms7cjie/Pljs+cwiqdE++ecCsgu0xs6C8WtOlatuBRodTsSlm6XNySjhrgTT6+6U36Kx9tgts/QYpsqSj7voSOCiI3nvmqS3qolpSY5cT8WCnbEAgIR06536b64/bezcrqiigeCafifOoohYjFl5osITZJtOFv7F9suYbqFTPimrwKbvGBKRyOL7PDVXjTyVFndKGMBBBgyiExERVbJ3NpzBmfhMq0Ge8rA0QsnUjVT75dYkqu1Mf0/k2eE2c1MZeWpcvJtdbHlCkU63X0/EI1Opxl9n7mDkD0fRafYuhP9zAQCw7/5kUoU/ekyZ/gi19sN27bFb6Ltgr9WR7JXhZmoefjoYV2x0YCG5VAyZycRrA1qVHKAtlJiVj3ElBF/Kmgv3UmLx1+LLHZdx6GpqqdfdkhTe0WAa3FKqdbiTmY9v915DltJ6Z01FfnCLreQXiL2Xg0c+i8QTSw7i0LVUjPjuCOJS85CcU4B+C/ch3uS9UEdhSLnj5fpgwt0CjQ4uEvulPVm6+yre+y262PLjcWnoPHsX+i7ch5upeVaDBI9/tR9DvjmEMStPmC3PKdDg95MJxQJ6gOE8X7HQ6WA6MWxF7kzp8HkkfjxwA08sOYhRPx1Hi492FMuHXFqQ6EyCfe8yi7qVjjErT6LPgn123Y89FJ0LAAB2xCRi5ubzVXIHQyFBMKQneeGHo1i+/3qZ3jOPLdhr9njyxmiz98SKQ3EY8s1BrD9+Cy+vOIHnvn8wGvjhWTuweNcVjFl5Es98a96hWtGYbaZSg4R0JXZftn5nz6u/nMBfZ+5YfT5PZZ8A6Hu/RWPkD0fNcubvv2K9npbmHUi1cm2vSPqoX0/EW31OWeSzODGr8gOVh66m4rnvjyC2DBN2l+TNdadtLrvy8M1K2WfRuxeqohPRnr7Zcw37YlPM7ihKz1MjKaugTB0EtkwaOurn4widsQ3T/zxbYjm1TsCey5Y7vFt/shN9vzqIPXc5SWlJGEQnIiKyE9PbWytq4f3RIKZMgwnrjln/8k5EJTNtS6ZBz6v3cvDplgvIUmogCILxh29hftBCx2+kYebm88bUD/eyC/DljsvGUYNJWQXGgHXPL/dg8DcHEXMnCwt2XsbI5Uex5/I9zNt2uVi9XvzxGH47+aBtrzpys9ho22FLD+HYjTR88MdZ/HjgOt41yVVrKZCi1uox6+8Y3ExT4sO/Kj/FyNV7OXh7w2mcKGXytKIj0d1ktgVoX/jxGA6UEDCxRhAE5Km0xYKw3++znE5j9Irj2Btb9v0UGvXTMRy5nor3/3jwgzZXpcVLPx3Dgp2xmLHZ+rlfbqVOtogu4a6kovn++y3ch5WHbxYLXMwa2gpfPtsW26c8Zlym0uhgw+94nLv9YP+xSTnGyWMPXk3B0t1XrQbBv4q8YjZhXaFjNx68j/ou3IeP/3fBYidUYfqcfbEpWLDzQVv66O8Y49wiF+5mmd3RMfX3swhbXHzU8ESTydr0Reqr0ws23TZvrQOraD7kRnUVxr8z8tT4+eANswl3fz2RUOooz4qMcj2b8OB6UvS1qejoyYrwlEtLL1TEhbtZeGPdaaw/Ho8f9l+vshy/n2+9hDaf7DQbeVwR528/eE0KNHpcuJuNmZsNgzKSsi2PNr1a5A4cW1PKvNYz1Opz41aXb6R4odErjuNetuGclPVOB71ewCu/nMAHfxQPCBZOevrzwQedKCXlzrbUfm6mKTF760XsvJCEE3EPrjFlGYle1G4rgUkAWHnI/K4J084QW5yJz8B/fjxmnBQSAG6k5GLb+UQIgoB8tQ6jVxzHqVsZeP+PsxZz7H+795rZOStNWeaH+XKH+feXOf9exLztpXdoF2h02BebjAKNDhfuZpkdX+HzNZVp3Sf9egaZSjUEQUDHzyPR7X5KI2WRycsFQcDMzeexbM9VnE3IxAf3X8uyzPXy+6mS5ya5lJiNN0rpIPnfraqdJ6SmKfunExERUS2g0ws4eDUFXUPrws3FPl8WrE2cpNXpcT0lD80DPCAqYVYi069MRW83ByqWK/D87SysP34L08JaoJ6nvNzbqSw6vYDzd7LQKsgLLlL28VPVMv2BcvZ2JrqG1kXDugoMvB9gW3n4JqYObI5FkVew8Pn2iLyYhJ0X7uHLZ9vihS4N8cKPxwAAXm4y/PeJhzF54xkcu5GO7/ddx9EZj6P7PEOuyb3v94XyfmBn2/lEfHc/WHpileWA82ULI8qGfHPI7PGN1Dy8eH//Re2/koLt5xMxsFUAcgq0OHEz3SxYffJm+Ue5ZuSpcTwuDXUULth54R4+GNQCUokIQ5cegkqrx7/nSs6TKi8SRBeLRJCKRRZHDVbExhPx+PCv88bHz3dqgAXPtwcA3M5Q4p+zd8u0vYcDPSGXinH2dsmpQ7ILtBj103GzZcfj0nHzfvqObecNgaDohEx89Pd5fDGiHdrU9wZgCChXFUudCEPbBRe7Dvdo6mf2elmTna/FhbtZcJGIMWjJAbjJJLj0+RN4eYVhhHizAA880cY8dU9Z0tysPXYLa4/dwu8TuyPUzx31POU4fsM8bdG3ew35xL8d1RH/iza8vsdupBvbzhOtA/H+oObYYsNrn1OgRWJWPoK83aDXC3jq20PQ6YF/J/WCuIRehXQbJ71cdyweYa0CsfnMHaTkqHDoWmqxuylSc1VoUEdhtmztsVvYdfEeFjzXDs98dwRdm/hi0chHoNbq8c3uqxjaPggPB3pBpxcwdtVJhNZVYGSXENTzlMPf0xUAMG/7Jfyw/0FQ7XpKLpr6e+JuZj42nkzA8v3X8VynBpj7TFuzMtvPJ+LVHo3h6SqzeEz7YpMxZuVJhA9rhTElBGmtSc4pMKZXKk3jD//F5c+fwE8Hbpi1m68ir+CXw3FY+3pXvLX+NKaFNUerIC88VM+jxNetPCo7rYy13NOFpv1xFotGPlJseZ5Ki+0xSRjQ0t+mkc6N6irQoaEPYCUrmKXUUGU19fdozBzcCm+uj7L4/NqjN/FoaF20CPQ0W34pKdvYWernKcf7YS2sjsa9k5mP6X9a75TM1+iKvVdXHbkJAPj5fnB744RueHNdlLFtlMfha2n45VAcRndrVCzoWfSabillxrXkHBy+lobR3RoVO9aRPxyFRifg5RXHcebjMACGu28AYN6Itphh8hl3/k4WHp2zG/s/6ItGdd2h0wtYceiGMTXLy90blTqZcnlSj+WptBCJDHcgFE74PenxZvCw0iGm1wuYu+0S1hy9hQEt/S1OJpyQoUSzAE8LazuOVqeH1IbPwmlFOoC6z9uDt/s9ZHys0QkY+s0h7Hm/r3HZ1eRcrD9uGDixMMLwnknIUJZ5wvslu64YBmo81x513F2qdKJzZ8AgOtldVr4GiUr7zhKepdQgKbug2AcwkT3Z+iFK1Y8gCHjo/7YZHw9pF4T2Dbwx4bGHSljLNqYjnxKzCnDxbjbiUvPwZJtA4w+3/246j02nb+Ozp1rjle6NrW7LNN/jXQs/iCqSdmL4t4cgCIbJS396pXO5tpGv1uGJrw8gyNsV68d1g0QsQoFGh1VHbqL/w/5l+uL7w4HrmL8jFi91bYg5Jj/YiewtK19jlspi3bF4rDsWj/YNvM3KLbr/Izj8nwvGDrL/bjqPF7o0NJb5ft91vNn3IbPRs4UBdAB4ecWDoOp3FRhtXBZvrrc+4sg05YFGp0darhr1POVQqrXwdJVhyS7DMfdu5oeTNzPgLpfihc4hcJGK8fIvxxFz58GIYG83GRbvsj34K5WIzTow3eVSuLlILKZCGNouCFtLCcpbYxpAB4A/om6jXQNvKFykxX7k2mLbu73xn58sd1qU5t1fz5g9NoxWNwSAhy41BHh/LuF67O4iwZiejeEqldg10G4aQN/8Vg/svpSMSf2bokBdvOP2jze646/Td4ypDEavMO84KJpX/vC1NHRsVMcsWFWeDuGRP5QcaDwRl44uc3ZZfG7HhSTsuGDbhJ2/nojHryfiMeeZNohPVxrf8xcTs9E62MusI3xRRCz2xCZjw/huNgfRAeCVX06U+PzU387i42Gt4KOQ4dcT8fh274Nrx3PLj+JOZj7+On0Hox5tiNVHb2HL2btYtvcamtRzN+ZtPgBg9f387tfmPIlRPx83G4ELAAMWHUA9T7lZGqMNx+ONQfTNZ27jvd8MbeZetgqfP93GYn3HrDTk1w/fctHmIHpWvgYfbjqH0/EZaN/Ax7j84UBPi52Jph6etcPi8gylBu9sOI34dCUmb4w2Lr8250nj9/fC/NqPhvrCVSaBRqfHyZvp6NiwDlxLuTvmu33XsLYCOfPL66/Td/BC55Biy8P/uYA/okoehQoAWyf1wpn4DAxvXx8HyjERc1kcvpaGwd8Uz5deaNb/Lhj//r/BD2PXpWT8MLoTdl18EFD9ft917IxJwnejO2L1kQfnWxAMd2maTtRryRNLDmLjhG5ItjAYpVBhR3RGCWm2bPHZ1ov45XAcsvI1aFxXYew0tUQQBOP14+q9HGOnvVKtw5t9H/we2XrurnGEfIZSgwKNDuuOPTgPM4p8xhXqs2Af9r3fF2+sizJrQ2m5auSqtGhu5Tt6vlqHtuHFJ+0uTWsLE333mb8Xh/77uNln/dHrafjPT8fgo5Ah8/75thRAB4DXVp3C32/3xCMhPmWujz38989ziLiYhIj3+hQbgPTZlovIVKoxd0RbuMokxQYS5Gt0xsB4oRupedDrBePvQ0vzeph+n7TVkl1XAQAf/HkWvZvVwyf/XChlDSoLkcBuCZt99913WLBgARITE9G6dWssWbIEvXv3tmnd7OxseHt7IysrC15eXnauafWh0z8IVI16tAE+Htam1C8khf4XfQcdQuqgYV1FqWX7LdyHuNQ8bJ3UyziKh8ieDlxJwfg1p/Dp8NZ48dGGpZa/k5kPbzeZ1d742kSj0WDbtm0YPHgwZDLLo5QqbV86PZRqHbzdDPu5naFEplJT6nXg2I00iyM3z4eHWR1ZVZTpl988lRZxqXnYcCIeabkq7Lxg+ZbOj4a0xLMdG6DD55HGZXHzBgOA2Q9xrU6PPJUOv56MxxfbH9wiefOLIWbbOxOfgWe+O2J8fPbjMHgrbKt/4w//Nf59ZfaTiE9X4nR8Bga2DMCSXVew6fQdrB/XFe1L+OI6d9slY07SP97oji6NfRH+zwXjCJ+i9S1J84+2GwN6N78YAr1egEiEEkfqk+MVtvewQU9AKpPZNFLVEbILNLiTkY+WQebfwQRBwGML9pY4aVZt9/WLj2BgqwC89PNxnInPRKCXK1JyVXCTSSzeTeOjkGHjhG54Yol5YKRP83ol5qUtqrCdN7n/PfHYjP7Yeu4uZv97CXKp2Cywej48DNtjkkocbWhPPR6qawx23/xiCF5ecRwHr6aWslblM72mml7D7bmfolQqNUYs2YkLGYa2fvaTMHi7yUqsz9iejc1y5rpIxLjw2SC8vf40gn3ckJRVYHNQuzpxkYix9d1eyFRqoHCRGDtCqjtbAtOmBrUOwLejOqLpzO1my4u+T1JzVfj7zB2zkfThw1phQKsAzPjrPEZ0rI9nOjQotn1BEBA6Y1ux5QCw9vVHjXcxAMDnT7VGSq4a3+y+anP9i5r/bDuM6Fgfm07fRuTFZOy6dA/NAzyw7vWuWHP0FpbtvYZnOzbAVyMNd6zo9AImrj0FD7kUS17sAMCQy77FR5aD99Wd6XfdI9dSMepnQ8fXtTlP4uiNNLPzXdMEebsisZLS6pga0i6o1LuryuPbUR0xuG2g2fu/rrsLomYNBGC448v0NwNguJOmMq6XA1r6I6x1IEYW6ZD57WQ8/rvJcmC+PJ7r1ADvh7XA8bg0dGnsix5f7Cl9pSIKrzWCICBPrcOfpxLQLsQHaq0eHRr6wEUirvTfC1qdHh//cwG9m/rhyfsTn5t+zq157VG891s0ujbxhUQsNruz6cT/9cejc3fbvK/Cuwbs+bleVlc/D7P77/jqxtaYLYPoNvrtt9/w8ssv47vvvkPPnj3xww8/4Oeff8bFixfRsGHpATRnDaLfycxHzyIXShepGN+O6ohm/h44HZ9hvGX0yPVUjPrpODzkUvRq6mf8cPh4aCuM6FgfaXlqbD2biIl9mhgD8dH3c0UV5oF7s+9D+O8TD1ftQVphGmCj2qfj55HGUUY3vxgCQRCgVOuw+cwdfPR3DLa92xvXUnKLjToDgEUj2+PXE/EY3j4Ynq4yDG0XhF2XktGpUZ1qkVajoqoqiC4IAt759Qx2xiTh33d7o66HCzrPNow6+/rFR9C3hT+u3suBwkWKMStP4JXujTCudxOcic/EH6cSLE6G9FynBvhkWCu0DY8AAPw2oRtaBHpCpdXjTmY+OoT4QCQSYdzqU7iclI2tk3rB201m9cefrbo18UVKjgrXU/KwfHTHEnPVnfpoAPw85Nh5Icksb2sha8EPtVaPedsvQSYR4/lODYwjXkpzdc6TxQKjer2AHw7cMMuB+PnTbfByt0ZmXwA3vdkdnRr5FtvmrbQ84yRm2yf3Rqifu9lIsg3juhp/1F2fOxgSsQgxd7KQla+BSGQYfdSzqZ+xfGxSDo7HpWF010aVfpu2Ka1Oj9RcNW6l5aF9iI/NncK1mUajweYt2zD9hKGDcM+0PmhSzwMAEJ+mRIC3vNTbhgvlq3UQiQBXmQTnb2fB200GvWB4r73Rpwka1XWHRqeHWCQqdZKlC3ez8NmWiwj1c4dKq8fmIu39u5c64q0SRmhT5aujkKF9iI9xUtTCa1VsUg6y8jV4NNQXer2Ai4nZuJ6SazZytLDs76cSrAbSpw1sbrfR2Xum9cE/Z++ibX1v9G8ZgNdWncSey4aRc7OGtsLrvUIx46/zxtHYrYO9cMFC3u6KkEvFiJ39pPFxaT+26/u4GVMGmHYClMbPwwWnPhpo9fnCz/ie/QZCK4gR6G0YUX46PgMjTDp1S/NGn4ewfH/V3I1hq6X/6YBJFr63kWXTBjbHpP7NABh+kz39rZW8ICa6hvpi/biukIhFEIlEVgc1FDo9ayA6mgQRC0eR56q0aGNh5GtlauLnjhupxXN5927mV6FOtJVju2Ds/dH6VWX2023w/b7raB3shR9N7nYRBENKjeYBnnj+fjB1ceQVfF2OTgrT726O8v1LHUu8+6q8dk19DNvPJ1VZqq3C9HFVoZm/B75+sQNaBXthy9m71fIaOLRdEMJaB+K/f54rdndToeP/1x8BXq7Q6wVk5WugkBu+exZ+Bz11Mx3HbqRBoxPwbv9mVr9HCoKAozfS8MqKE8b0ctfnDsbWc3fNvpdUJoWLBFMGNMNcC3PjFNWhoQ/OxGdWeJ/NAzxw5V6u1eevfDYQLi4uFd5PTcIgeiXr2rUrOnbsiO+//964rGXLlnj66acxb968Utd31iA6AAxavB+xJTRQe6jv4waRCGhc1x2v9mgMnV4PvQCcu52Foe2CIJWIcCIuHa2DveCjcMG525kIuZ9r8E5mPuq6y1G/jhskIhEuJmbhk38uoF8LQ2oCt/u3+vl5yNGnRT2cvpUBnSDg6PU05Kq02BmThLQit3AObReEAo0Ofh5yJGYV4FpyrlkutFe6N0Lb+t5oVNcd72w4jeQcFYK9XfHiow3RPMADlxJz0LWJL5rW88BHf8cg4qJhlGuonzs6NPSBl6sMN1LzoFRpceqWIb/pi11C0P2huriXXYALd7Pxv+i78HV3QXqeGo8/7I8xPRqjjsIFAV5y1HF3gVqrh8JFgux8LdzlEtzLUSHtfg7G7HwN/oy6jZZBXmgW4IHNZ+4g5k4WTt/KQN791BUR7z0GtVYPH4VhtLVeMIzS+OCPczh0LRUvdgnBptO3MaJDA7QL8YarVII8tRaPhPjgdkY+mgd44kZKLuJS89AswANikQhZ+Rq0a+CDhHQl3OVS1FHIEOTthjuZSvx+6jbe6PMQ8lRaSMQiCDBMsFJH4YIQX0Od5TIx6nnIcS9bhVyVFjdScuHpKsOb66OQqdSgb4t6GNerCfbFJqN383q4naHEmfhMvNglBM38PREVn44CjR7HbqQZb4c9dM3+I89GdKiPW+lKjO8dCk9Xw/lsEeiJPJUWOkGAUqWDVq+Hr7scWr0eer3hzo07mflISFfiyTZB6Ny4DtzlUmQo1fdfZ1dodXrEpeahqb8hwGWpk8da509h8NBNJoGHqxR3MvJRoNUh1M8dUrHhtVK4SOEiFSM7rwBjv4/EMz3boFczf/h6uEAmFkMsNuTJ093/cnPkeipCfBWo5yGHj0KG9Dw1Ar1cUaDR4+iNVOSrdRjSLhgqrQ7JOSr878wdxKcrKzTRW1H+nnIk51i/vbO26NSoDqJulT/3cb8W9fBspwY4dTMDUbcy4CIVW9ye6a2Zpt7p1xQNfRUI8VWUKw1C0VGpgCFI1biuO6JuZSDp/sRVDwd6Yu6ItlC4SHAzNQ9erjJsi0nEumPx6N3MD5Meb4aEdCUEAG3qe+FuZj62nktEaq4aR6+nQqMTMLFPEzzSwAddQn3x3d7rxlynj4b6Frv13VTLIC9kKtX44tl2CPJ2RUNfBX4/lYBjN9Lwbv9m8HaTIU+lxa8nEtA11BfucqlxVHR6nhpavR7bziWiY6M6CPByRaO6Cuy5nIzGdd2Rnqc23u6/Z1of1PWQA4KhU1ouFSMlVwV/Tzm0egE3UvKQmqtCuwbecJVJIBWLcCczH64yCVJyVAj1c4dYJDIErMWAQiaBRidAgIDzt7PgLpeieYDheuMul0IqFuFYXBq83WRQafVoHuAJvSAgLVeNswmZmPJbdKmv38zBLaHW6RFxIQmtgr0xrH0QAr1cce52Fqb8Fo0ODX0wpkfjMv84qe/jht7N/KDRCRCLgL/O3MGjjX1x9IZtwUKyv/4P+6NBHTe4uUgxLaw5lGodus/bjfYNfPDrhG5W1yvQ6Iwda6tfexR9mtcDYLijoN39Tk5TdRQyHJ3R36wz7rlODfCnDakNCk0Z0AxerjJ8tvViseeKdk5euJuFId8cQtdQX/w6vhvEYhEuJ2UbR+eve71rsbQm5XHgg34AALlMDHe51OxutpKC6F6uUpwLH4QspQZnb2eiW5O6kIpFxlH/ADCycwOLE5CdmNm/xLzAJXWUV9Youhc6h+BKck6lBApstXVSL7QO9qpwpzhVngEt/fHzq12wbM9VHLqWilVjHzXrvO4yZ5dZ6pnqZubglng01Bdt63uj3acRyFVp8VrPUIzq2hADFhnyWQ9o6Q8/Dzk2nkwwW7dRXQUCvFxL/N5hq8cf9sdPr3SG2Ma7+xLSlRi27JDZ97mFz7VFPS83vGol9dD2yb3RMsgLT317GGcTMvHUI8HG+Qiq0qH/9kOvL/dW6jYvf/6E8X1X9BrXr0U99GleD+Fbin9uWHLziyHVarRxeRW9u6gmat/AG039PbHptO3fExxt5uCWGP9YExRodMhQqs3SBQKWfy+ZaubvgQXPt8e/5+5iyoDmOHg1BX9G3cGC59oh6lYG3vs9GjkFWjzVSIcvxg6Cm2vNH9xXFgyiVyK1Wg2FQoE//vgDzzzzjHH55MmTER0djf379xdbR6VSQaV68KGenZ2NkJAQpKamOl0Q/dj1FLy8qvr1aBI5k8LRu6akYhH8PFyg0uqRU2DoPFGqdXCTSSARi6DTC9AJAgQBxonwim5LJAJkEjHUWj3EIkAiFlVoZvuqNnVAUyzaVXIuRSKiqvTj6A44E5+J7w+YT1Y3sKU/xCJg5/1csd/+pz06hPjg7V+jcSYhC62DPXHhriFFw+oxnXDgaipWHLZvvl4vVyn2TXsMHec8+CHXpXEd44Slq8d0Qo+H6pqto9LoIJOIS71rxFqn7omb6Ziw7gyeaB2AT4e1glgE6AXDj8e0XBVWHonH853ro5GvAhfuZuPp7w0dd8PbBaFL4zqY9Y95sMNVJkbE5F4I8naFUq1F368OGvPiTn78IYzoEIxgH7di9VBpdJCbBPRuZ+Sj3yJDEP3crP7o89UBZCgNd89sHPcoPvv3kvH1saRL4zroGOKDHw4+eN2vfh5mtXy/RQdxOyMfUwc0xdd7rkMuFWNkp/o4HpeBqQObou/9jgdTPx6Mw4W72VjwbFvoBQEbTiRg3o4Hox1jPu5vdkyWaDQaREZGYuDAgcWC6HGpedgTm4JD19Jw6Fr5O7MiJvdEqJ87fjoUh/k7bR8R+/XIdmgd7AU/DxcM/fYobmcYBqx8NLgF7mYW4JcjtzCiQzB6NPHF+5tiABiCg4PbBBjvuPrt1G189L+L6NPMD/srmLLnwyeao1NDHzz/oyHweOajxzFg8SFkF2iwf9pjuJ2Rj5E/mQclWwV54mKi9ffJu/0eQoZSjbXHE6yWqama+bvjavKDkd+/jX8UHRv6WC2fkKHEoWtp+PifB+ljlr/0CP45m4htMZbT6tlLsLcr7mYVYHyvxvjp0E0EeMmxb2pvY+71lBwVNp66jdFdQ+AqlaDd54ZUD1c+GwiRSITJv5011nnqgKZ4s08TAMD64/EI33oZbz4WiuupeYi4WDx39Os9G1m81rdv4I0/Jjxa7jujM5Ua9P3qAOrItIiY9jhkMhkEQcD5O9lIyVGhdX0v9F5wwOw4CqXlqtDtS0OM5PcJj+LkzQwsiHjQlleP6YTYe7nwkEvwWDM/9Fpg292RJRnSNhCLn2+Li4k5xut+eblIDb9t/n6zG1oHP4jdrDsej+UH4vDVc21RRyFDgJcrclWGz43SPBzoiS1vd0f4lktYf6JmtF9XmRgtAjyx8tVOeGXlKcTczcaKVzrisWZ+UGv1OB6Xjj2xKZj5ZAvoBcNgxLCvS78jxVT/h+tBrdUj1M8da44Z7ub6vydbYO72WHscUo3lIhXjxId94W7Smb58/w0k56pRRyHD6z0bwU0mQfOPI4ut27e5H97s0wQN6rjBv5S73kv6jK/tsrOz4efnxyB6Zbh79y7q16+Pw4cPo0ePHsblc+fOxerVqxEbW7yBh4eH49NPPy22fMOGDVAoSs/xXdusvCJGdFr1zJNKVNlEECDA8EVyZBMdXCVAbKYIx1MetAFfuYB0FdP9VIbm3npcyTKcWx8XAW19BRxMenCu29TRI00lQqLScL7rKwQotUBHPwHDG+lRoAPu5QOLzpecr95VIqBA9+A1a+Wjx8XMB/sJ9RTwclMdtsSLcSZNjP+21yJYARRogRs5hrslDiSKcDnL+rUwWCHgrtL8fdHJT4/BIXpsuCbB9Rzz55p56fFaCz1cxMDuuyJsSyhfepEmngJeaKJDdJoImWoRjiaLMbShDseSxUgtKPl96iUTkK2pnPdyO189zqVX78+Kyjze2uSFJjqo9cDmm+bvQR8XAZnqsp+vZxrrjNtq6C4gPq/s21BIBCjvt9l3W2ux5qoE3i6AQirgUqYYzbz0yNGI4OUiQC4GcjQidK6nRx05sOuOGHE5IrzZUoeHfQRcyRLh6D0R0lQi3Mo1bPOpRjpcyRLhSpYITTwFjHtYj0sZIqy6KkErHz0mPKzHHSVwMUOEngECkguAJTGG68yTDXTYfttwfHM7ayEAOJQkwqP+AnxNft+kFgBxOSJkqIDuAYZ6rogVo2UdAX2Din+F1wmASgcoTC5nKfmAjxxIVwEHE8U4eE+M8S10aF1HwP+dlBjPUSEXsYCmXgI0esM5Scp/8Pz0dlok5Yuw5ZYYgxro0T3AUIcCHTDrlATNvQWMf1iP6DQR3CRACx/H/8zIUAF5WqCB+4NlR++JUM9VQFML02foBaC8WaG2J4jgJgX6BhWeP0B5f99aPTDzlAShngJeaabH9gQx2vgKaOwhQG7SbO4qgd13xBjWUA+fEn7r5mmAhDwRmnsLyNUAEhHgXo7fu8n5wN+3xBhYX49Q2+eCLpFKB+y8Lcaj9fS4mCnCztti4+fn2OY6SETAz7GGg361mQ7J+cDDPgLytSKIRIa/C+kF4FKmCPUVAhLyRFh/TYx3W+vgIQNcJICrxNBOPGSGvwtlq4GkfMP5KdxOkhIIVBhe37t5gEQMBBTpHxEEw2sQ4AZIxYb2KxUbXsfNN8V4PFiPXoECbmSLcOSeCK3qCGjhLeBsugjtfQWo9cDxZDF6B+rhdf9O+I3XxZCIgOeb6KHSGdqL9/3ncjXAgUQxPF0EdPcXUKADZp4yNOCZj2jh7WJo14lKoImnYfACYFiWXmA4Rg+ZgEYehuOKzwUC3QznRq0D8nXAyRQRbuaI0MjTUNfYLBEe8TXcwXNHKULbOoZzJBIBu++IsPuuGM830cNVAnjLBHx5zlCf0U11eMhLgJsEOJ8hwvpr5tf7YIWAkU10yFaL0NZXwK47IlzMNFxLS9O1nh7PN9Hjbh6wL1GM7gGC8bUrzZZbYpxKFWFaW53xnKcVAFvjxWjkadhGFz8B7jIg8o4IW+MlaOwhoHM9PRKVIvQM0CNXK4IYwKlUEY4lF/8eEqQQ8NJDhs8l0+9iwxvq0DtQML4uMhu/whS2Wbf712pBeHD9LtqOldoH1/QrWSKIRQJ0ehFu5xm+X45tbhjIotUbXvezaSK4VtL1N09jOCYXK18vb+YYnq/vXvw5vQBo9IBcYtjO7GgJmngKGNFYj7pFbna5mCHCD5cNO+kfrMeReyLk60ToWs8wqrZLPQHuUgE774jxRAM9fFwMr1V7XwFaAfCSGdprIZ0A/BsvRksfw3qZakM7buwh4GCSCP/ES9Cxrh7B7gLa1hFwPFmMFj6G95xeMN+WLeJygPhcEfbcFSNTLYKXzLCtDnUFBCoEnEoRoXeg4T2oF4ALGYZrk1xiuC7laYGYdDH2JIohlwhQmXwud/IztMUmngLW3m9zb7UyXDe7+wuQig2f78n5hu8KwQoBDT0Mv22uZInQM1BAvha4nSdCSgEQnSZCnlaEISF61HcX8PlpCfR4sL+RTXS4miVCUy8B3QMEiGG4Nqh1hv0E2hDKKnztlVogXwusuybB48F6XMoU4Wy6CO+21iFNJUJLH8Hsul3YDgrPv1ZvuH7tSxQjKV8Ed6mAAfUNn59qvQhh9fXI1QBHLLRZeyn8HTC6qQ5/xYmh1InQsa4eA+rrUd8dOJ8uwrYEMe4qRWhbx7C8gTvwzy0xWtUxvC82XhejubcAHxcBoV7A5jjDdzPA8JnYus6D7wWC8OC6b4uzaSL8Ey9GiLvhN2V3fz36BTv+u1hNoFQqMWrUKAbRK0NhEP3IkSPo3r27cfmcOXOwdu1aXL5cPHcRR6I/YNqbJZVKi/WGa3R6FGh0xSbz0+j0yFfr4OUmMxuNJAgC1DoBSdkFaODjZsxnpdXpobv/w8c0X2pOgQauMglyCrRQafXwcZMhM18DD7kEWflaw2zR97fp5SqFm0yC2Hu5qHP/G4zb/dvhDR+oIrjKxIb1ZGLcySyATi/AR2GYTM3HZEI/jc7woX8nMx8hdRRm9UzLU6OehxxisQganR5J2QVQaw1N0c/DxThJolKtRVa+FnXdXSDAMIrBVSaGn4ccer0AlVYPrV6Ap6sUgiAgp8AwAZibiwT5ah1cZRKIRUCeWgeJWASpWAT5/U8lkUiEtDw1cgo0kIhFcJGIcSM1D34ecgiCALFIhCZ+7rh3/zZJscgwGtnfUw6Fi2HEcq5KC193F+gFw3n2cZMhXamBp1yKrAINRADqKAzfZhMy8uHrLkN2vhYyiQguUjEylRqodXo08XNHnloHpVoLudRQ92AfV9zLVqFAo4OLVIzkHBUCvVyhcJEgPU8NT1cpUnPV8PeUQyYRw83FkGYnK19zf4S1HEq1FtkFWuSrdcZZwfWCgGBvN6i1esgkImQVnjOZ2JDSQAC0ej1cZRKIAKh1esilYugFQ9oDe+ZbzlVp4e4iQb5GBxFESM5RQa3Vo7GfAjdS8uDpKoVcKoZSo4NcahgtnqvSQiGTwMtVCp0gQKc33AYvlYiQp9IhX62Dt0KGrHwNBEGAp6sM97ILjG1EEACpRARJYfuCoa2JYGhHYrHhf5lEDL0gwE1mqF/h+yRDqYFOL6Cuuwsy8zXILdBCpdEg9vRRDB7UH3kaQwoXiVgEtVaPhr5uUOv0kIrFkIhF0N//CJJJxNDq9EjOUUF+v80pXCRIzVVDpdVB4SIt1nOu0wsm7VwLuVQMlyLfessyN4FWpzeOGDKl0enNcoKrtIavmoX7Kvq8LfspzAVannqWpbwgCMhV6SAVi6DV622eNLWoAo0Ocqlh0h69XkDW/fZuWofC81D0+HR6ASqtDncyC1BHIUNddxez9XR6ARqd3nirbNHrfWJWARQuUri5SAxt0WQWe0EobLMCZBLDPlVaPZRqQ7twkYqN75PsAi30ggBXqQQyieGaLpOI7q8rNm5LLBYhQ6nGvWwVQusqIJdJIAgCCjR643XE0nlWqnVwl0uRla8xXFvytfB2M3ym5BRoodELUMgkxm2otXpk3m+XPgoX6PR6KFyk0Oj0EO6nw3KVSaAXDD+0dcKD481RaSEIAu5kFiDQSw4PuRR3Mgvgo5DBRWp4DeRSw6SQLlIxpGIRbqYpEeTtCp1egMJFAq1egF4QoNcLxutKXXcXFGj0UGn1SM8zjGxJyzNcZ+soXFCgud+WdXp4ucqQoVTDy0WEXbt2lThipegksXkqLa6n5EHhIkFDXwVcpIbzrxdQYq7z7HwN3FwkkIhExa7FOQUaaPUCXCRiSCVi42ddhlJd7L1KZVc4mZczTI5NJXPmUWpUPta+s+QUaKFwkZQ6x0VF9lHRsoDh+420yPc2Z1GZ7V2l1cNFYvt5NP2eX9lMv0tWR4VxBEu/LzjvWvkIgoCsfK0xXqPS6KDWGX4bFZ7Tou+L6v4+sQdn/oy3dSQ6vwnbwM/PDxKJBElJ5rMgJycnIyAgwOI6crkccnnx4SMymczp3oyFrB27TAYoLKRetLYcAFwANHWTFytvie/9JxQmOZ283A0b9rUy4qZdw+IT4Zmqd3+ShRbWKmhSn2aBxevZwKQuMhnQxEq+KW+ZDN4mPfseRY656FusrsnkD6ZVc7NSzUAfGQJNHjeoW/yENJRbnlDCxQXw8Shet/r3j6XwHBd6+P7z/iajvoLqPPjb00KvdqjJeXnIpKkF+Ljfr2/xdep4PBhS5Cp3sfoaF266OuX6qnP/TVP4MpqewzYhFatnfZO/G/pV0lAzAJ4mb7TC+mo0GsSfA9zkcnh5FG+YxW+KN5DJgEZFXo+GJbw+plv2rYTrqrVNFF1e2uPy7sdefCthTpii125/C9eFwiLFzg8M7c3b3fIrLwNg/UoKNKpX+gGYvktksuLXSgDwszI5jqWl/t4y+HubD6sqbW6dwuf97p8A09XrWlhZJgPcLdSz8PxZGNRl5HX/SdNrdl2v4hdR02QOhdfN0hReohven7e1kclGir6EQXIXaDSGtBdl+X7jI5Ohk4e1K4F1dUvYvrVrgL+3c37nsgcnm1+KSuHMv2moclTGd7eqUEOqaVeV0d7L/H25Qnur2fies496Jl9k+PlVMmf8jLf1eKv3PdPVhIuLCzp16oTISPP8QpGRkWbpXYiIiIiIiIiIiIioduFIdBtNnToVL7/8Mjp37ozu3bvjxx9/RHx8PN544w1HV42IiIiIiIiIiIiI7IRBdBu98MILSEtLw2effYbExES0adMG27ZtQ6NGjRxdNSIiIiIiIiIiIiKyEwbRy+Ctt97CW2+95ehqEBEREREREREREVEVYU50IiIiIiIiIiIiIiIrOBK9igiCAADIzs52cE2qnkajgVKpRHZ2ttPN8EvkjNjmiZwH2zuRc2GbJ3IebO9EzsWZ23xhrLYwdmsNg+hVJCcnBwAQEhLi4JoQERERERERERERUaGcnBx4e3tbfV4klBZmp0qh1+tx9+5deHp6QiQSObo6VSo7OxshISFISEiAl5eXo6tDRHbGNk/kPNjeiZwL2zyR82B7J3IuztzmBUFATk4OgoODIRZbz3zOkehVRCwWo0GDBo6uhkN5eXk5XUMkcmZs80TOg+2dyLmwzRM5D7Z3IufirG2+pBHohTixKBERERERERERERGRFQyiExERERERERERERFZwSA62Z1cLscnn3wCuVzu6KoQURVgmydyHmzvRM6FbZ7IebC9EzkXtvnScWJRIiIiIiIiIiIiIiIrOBKdiIiIiIiIiIiIiMgKBtGJiIiIiIiIiIiIiKxgEJ2IiIiIiIiIiIiIyAoG0YmIiIiIiIiIiIiIrGAQnYiIiIiIiIiIiIjICgbRiYiIiIiIiIiIiIisYBCdiIiIiIiIiIiIiMgKBtGJiIiIiIiIiIiIiKxgEJ2IiIiIiIiIiIiIyAoG0YmIiIiIiIiIiIiIrGAQnYiIiIiIiIiIiIjICgbRiYiIiIiIiIiIiIiskDq6As5Cr9fj7t278PT0hEgkcnR1iIiIiIiIiIiIiJyaIAjIyclBcHAwxGLr480ZRK8id+/eRUhIiKOrQUREREREREREREQmEhIS0KBBA6vPM4heRTw9PQEYXhAvLy8H16ZqaTQaREREICwsDDKZzNHVISI7Y5snch5s70TOhW2eyHmwvRM5F2du89nZ2QgJCTHGbq1hEL2KFKZw8fLycsogukKhgJeXl9M1RCJnxDZP5DzY3omcC9s8kfNgeydyLmzzKDX9NicWJSIiIiIiIiIiIiKygkF0IiIiIiIiIiIiIiIranQQ/cCBAxg2bBiCg4MhEonw999/mz0vCALCw8MRHBwMNzc39O3bFxcuXDAro1KpMGnSJPj5+cHd3R3Dhw/H7du3zcpkZGTg5Zdfhre3N7y9vfHyyy8jMzPTzkdHRERERERERERERI5Wo3Oi5+XloX379hg7diyeffbZYs/Pnz8fixYtwqpVq9C8eXPMnj0bAwcORGxsrDFZ/JQpU7BlyxZs3LgRdevWxbRp0zB06FBERUVBIpEAAEaNGoXbt29jx44dAIAJEybg5ZdfxpYtW6ruYImIiIiIiIiIyCnodDpoNBpHV4OchEajgVQqRUFBAXQ6naOrU6lkMpkxxlsRNTqI/uSTT+LJJ5+0+JwgCFiyZAlmzpyJESNGAABWr16NgIAAbNiwARMnTkRWVhZWrFiBtWvXYsCAAQCAdevWISQkBLt27cKgQYNw6dIl7NixA8eOHUPXrl0BAD/99BO6d++O2NhYtGjRomoOloiIiIiIqpRWp4dWL8BVVvEfXkRERLYQBAFJSUnMgEBVShAEBAYGIiEhodQJNmsiHx8fBAYGVujYanQQvSRxcXFISkpCWFiYcZlcLkefPn1w5MgRTJw4EVFRUdBoNGZlgoOD0aZNGxw5cgSDBg3C0aNH4e3tbQygA0C3bt3g7e2NI0eOWA2iq1QqqFQq4+Ps7GwAhp4dZ+tJLDxeZztuImfFNk/kPNjeqbYbsPgQ4jOUiP7ocShcau1PJ5uxzRM5D7Z3x7l37x6ys7NRr149KBSKWhnQpOpHEATk5eXB3d29Vr3nBEGAUqlESkoKdDodAgICipWx9TpXa78JJiUlAUCxkxMQEIBbt24Zy7i4uKBOnTrFyhSun5SUBH9//2Lb9/f3N5axZN68efj000+LLY+IiIBCoSjbwdQSkZGRjq4CEVUhtnki58H2TrXVrXTDz6WfN0WgqbeDK1ONsM0TOQ+296olEokQFBSEwMBAyGQydmJQlXJxcamV7zmZTAZPT08kJibi9OnTEATB7HmlUmnTdmptEL1Q0d4TQRBK7VEpWsZS+dK2M2PGDEydOtX4ODs7GyEhIQgLC4OXl5et1a8VNBoNIiMjMXDgQMhkMkdXh4jsjG2eyHmwvVNtN/loBACga7du6Brq6+DaOB7bPJHzYHt3DJVKhfj4ePj6+sLNzc3R1SEnIggCcnJy4OnpWatGoheSyWTIycnB448/DrlcbvZcYfaQ0tTaIHpgYCAAw0jyoKAg4/Lk5GTj6PTAwECo1WpkZGSYjUZPTk5Gjx49jGXu3btXbPspKSkWbwEoJJfLi70ogOFFc9YPIGc+diJnxDZP5DzY3qm2k0qlfI+bYJsnch5s71VLp9NBJBJBIpFALBY7ujrkRPR6PQDDQOLa+N6TSCQQiUQWv9PZeo2rfWflvtDQUAQGBprdeqRWq7F//35jgLxTp06QyWRmZRITExETE2Ms0717d2RlZeHEiRPGMsePH0dWVpaxDBEREREREREREVWdFStWmM1zSM5p2bJlGD58uN33U6OD6Lm5uYiOjkZ0dDQAw2Si0dHRiI+Ph0gkwpQpUzB37lxs3rwZMTExGDNmDBQKBUaNGgUA8Pb2xuuvv45p06Zh9+7dOHPmDEaPHo22bdtiwIABAICWLVviiSeewPjx43Hs2DEcO3YM48ePx9ChQ61OKkpERERERLVHkdSZREREVMSYMWPw9NNPGx+rVCq0bt0aEyZMKFZ2+vTpaNSokTGNxqZNm9C3b194e3vDw8MD7dq1w2effYb09HSr+1OpVPj4448xa9Ys47Lw8HA88sgj5T6Gffv2QSQSITMzs9SygiBg4cKFaN68OeRyOUJCQjB37lyLZQ8fPgypVGpT3UQiUbF/y5cvL9NxVPQ8lEdiYiJGjRqFFi1aQCwWY8qUKRbLLVmyBC1atICbmxtCQkLw3nvvoaCgwOp2w8PDLZ4Td3d3Y5nx48fj5MmTOHToUGUflpkanc7l1KlT6Nevn/FxYQ7yV199FatWrcL06dORn5+Pt956CxkZGejatSsiIiLg6elpXGfx4sWQSqUYOXIk8vPz0b9/f6xatQoSicRYZv369Xj33XeNvVvDhw/HsmXLqugoiYiIiIiIiIiIag65XI41a9age/fuGDFiBJ544gkAwLFjx7B48WJERETAy8sLM2fOxJdffon33nsPc+fORXBwMK5evYrly5dj7dq1mDx5ssXtb9q0CR4eHujdu3dVHpbR5MmTERERgYULF6Jt27bIyspCampqsXJZWVl45ZVX0L9/f4vpoi1ZuXKl8XwBhkHA1Z1KpUK9evUwc+ZMLF682GKZ9evX48MPP8Qvv/yCHj164MqVKxgzZgwAWF3n/fffxxtvvGG2rH///ujSpYvxsVwux6hRo7B06VL06tWrcg7IghodRO/bt2+xGVVNiUQihIeHIzw83GoZV1dXLF26FEuXLrVaxtfXF+vWratIVYmIiIiIiIiIiJxGp06dMHPmTIwbNw4xMTFwdXXF2LFj8fbbb6Nfv344ceIE5s6diyVLlpgFyxs3boyBAweWOCJ848aNZU7hsW7dOixZsgSxsbFwd3fH448/jiVLlsDf3x83b940DtQtnDexcJBuUZcuXcL333+PmJiYUrNUTJw4EaNGjYJEIsHff/9tUz19fHyMcz3aw/nz5zF58mQcPXoUCoUCzz77LBYuXGh8fsyYMcjMzESvXr3w1VdfQa1W48UXX8SSJUus5g9v3Lgxvv76awDAL7/8YrHM0aNH0bNnT2OGkMaNG+M///mPWQrtojw8PODh4WF8fPbsWVy8eLHY6Pzhw4cjLCwM+fn5dpuUt0ancyEiIiIiIiIiIqLqaebMmQgKCsK7776Ljz76CAAwb948AIaRyR4eHnjrrbcsruvj42N1uwcPHkTnzp3LVBe1Wo3PP/8cZ8+exd9//424uDjjSOiQkBBs2rQJABAbG4vExERjULioLVu2oEmTJti6dStCQ0PRuHFjjBs3rlj6mZUrV+L69ev45JNPylTPd955B35+fujSpQuWL19unPSzMiiVSjzxxBOoU6cOTp48iT/++AO7du3CpEmTzMrt3bsX169fx969e7F69WqsWrXKYodCWfTq1QtRUVHGoPmNGzewbds2DBkyxOZt/Pzzz2jevHmxOxA6d+4MjUZTYkC+omr0SHQiIiIiIiIiIqLaShAE5Gt0Dtm3m0wCkUhUoW1IpVKsWbMGHTt2hF6vx6FDh4wjha9evYomTZpYHd1sTWZmJjIzMxEcHFym9V577TXj302aNME333yDRx99FLm5ufDw8ICvry8AwN/fv8QA/o0bN3Dr1i388ccfWLNmDXQ6Hd577z0899xz2LNnj/HYPvzwQxw8eBBSqe3h188//xz9+/eHm5sbdu/ejWnTpiE1NdXYAVFR69evR35+PtasWWPMK75s2TIMGzYMM2fOhJeXFwDDaPxly5ZBIpHg4YcfxpAhQ7B7926MHz++3Pt+8cUXkZKSgl69ekEQBGi1Wrz55pv48MMPbVpfpVIZU8IU5e7uDh8fH9y8eRN9+vQpdx1LwiA6ERERERERERFRNZSv0aHVxzsdsu+Lnw2CwqXiocOWLVvi2WefRWZmplkua0EQyhWkz8/PB2BI0VwWZ86cQXh4OKKjo5Genm4c4R0fH49WrVrZvB29Xg+VSoU1a9agefPmAIAVK1agU6dOiI2NRdOmTTFq1Ch8+umnxudtZRosL5wc9LPPPqu0IPqlS5fQvn17s4k5e/bsCb1ej6tXr6Jp06YAgNatW5vNFxkUFITz589XaN/79u3DnDlz8N1336Fr1664du0aJk+ejKCgILMJYq3566+/kJOTg1deecXi825ublAqlRWqY0kYRCciIiIiIiIiIiK7kUqlxUZkN2/eHIcOHYJGoynTaPS6detCJBIhIyPD5nXy8vIQFhaGsLAwrFu3DvXq1UN8fDwGDRoEtVpt83YAQ0BZKpWaBchbtmwJwBCQDwgIwKlTp3DmzBm88847AAyBd0EQIJVKERERgccff9ymfXXr1g3Z2dm4d+8eAgICylRPS0rquDBdXvT1EIlEFU4rM2vWLLz88ssYN24cAKBt27bIy8vDhAkTMHPmTIjFJWcd//nnnzF06FCr+eLT09NRr169CtWxJAyiExERERERERERVUNuMgkufjbIYfu2p1GjRuGbb77Bd999ZzaxaKHMzEyLaVVcXFzQqlUrXLx4EWFhYTbt6/Lly0hNTcUXX3yBkJAQAMCpU6eKbRcAdLqS0+f07NkTWq0W169fx0MPPQQAuHLlCgCgUaNG8PLyKjZq+7vvvsOePXvw559/IjQ01KY6A4bR866uriWmlymLVq1aYfXq1cjLyzOORj98+DDEYrFxFLq9KJXKYoFyiUQCQRAgCEKJ68bFxWHv3r34559/LD5//fp1FBQUoEOHDpVW36IYRCciIiIiIiIiIqqGRCJRpaRUqQpZWVmIjo42W+br64uGDRtaLN+1a1dMnz4d06ZNw507d/DMM88gODgY165dw/Lly9GrVy+LwXUAGDRoEA4dOoQpU6aYLc/Pzy9WBw8PDzRs2BAuLi5YunQp3njjDcTExODzzz83K9eoUSOIRCJs3boVgwcPhpubGzw8PIrte8CAAejYsSNee+01LFmyBHq9Hm+//TYGDhxoHJ3epk0bs3X8/f3h6upqtnzz5s2YMWMGLl++DMAwYWlSUhK6d+8ONzc37N27FzNnzsSECRMgl8stngdrrJ2Hl156CZ988gleffVVhIeHIyUlBZMmTcLo0aPh7+9fpn0UVbi/3NxcpKSkIDo62tjhAQDDhg3DokWL0KFDB2M6l1mzZmH48OHG1DHLli3D5s2bsXv3brNt//LLLwgKCsKTTz5pcd8HDx5EkyZNjJ0a9lAzWiERERERERERERFVW/v27Ss2EvjVV1/FqlWrrK7z5ZdfolOnTvj222+xfPly6PV6PPTQQ3juuefw6quvWl1v/Pjx6NixI7KysuDt7W1cfuXKlWJ16NOnD/bt24dVq1bh//7v//DNN9+gY8eOWLhwIYYPH24sV79+fXz66af48MMPMXbsWLzyyisW6y4Wi7FlyxZMmjQJjz32GNzd3fHkk0/iq6++KuUMmcvKykJsbKzxsUwmw3fffYepU6dCr9ejSZMm+Oyzz/D222+brScSibBy5UqMGTPG6rZLOg87d+7E5MmT0aVLFygUCjz77LNYuHBhhdO1mO4vKioKGzZsQKNGjXDz5k0AhnzvIpEIH330Ee7cuYN69eph2LBhmDNnjnG91NRUXL9+3Wy7er0eq1atwpgxY8zytJv69ddfKzTpqS1EQmnj5alSZGdnw9vbG1lZWcaZbp2FRqPBtm3bMHjw4DLPuExENQ/bPJHzYHun2q7xh/8CAH4d3w3dH6rr4No4Hts8kfNge3eMgoICxMXFITQ0tMyTZjqjkSNHokOHDpgxY4ajq1Jlbt68iWbNmuHixYto1qxZpW1Xr9cjOzsbXl5epeYmr25iYmLQv39/XLlyxaxDxVRJbcvWmG3NOitERERERERERETk9BYsWGAx3UpttmPHDkyYMKFSA+g13d27d7FmzRqrAfTKwnQuREREREREREREVKM0atQIkyZNcnQ1qtQbb7zh6CpUO7ZOLltRHIlORERERERUAgHMgElERETkzBhEJyIiIiIiIiIiIiKygkF0IiIiIiIiIiIiIiIrGEQnIiIiIiIiIiKqJgSBacSIKlNltCkG0YmIiIiIiIiIiBxMJpMBAJRKpYNrQlS7FLapwjZWHtLKqgwRERERERERERGVj0QigY+PD5KTkwEACoUCIpHIwbUiZ6DX66FWq1FQUACxuPaMuRYEAUqlEsnJyfDx8YFEIin3thhEJyIiIiIiIiIiqgYCAwMB4P/Zu/PwqMqzj+O/mclkJQkQyIZhFVQEBUFRsIACQQGp2ldscUXbYrFUBKSluESroKCIYt0VLIjQqijuBGURkcUAsojsOwlhCdkz63n/CBkyJEMWkglkvp/rynVlznnOOc+ZzDOZuc997scTSAf8wTAMFRYWKiwsrF5euGnYsKFnbFUXQXQAAAAAAADgHGAymZSQkKDY2Fg5HI667g4ChMPh0LJly9SzZ8+zKnlyLrJarWeVgV6CIDoAAAAAAABwDrFYLDUS+AMqw2KxyOl0KjQ0tN4F0WtK/SlyAwAAAAAAAABADSOIDgAAAACnMQyjrrsAAACAcwRBdAAAAAA4E+LpAAAAAY0gOgAAAACchkR0AAAAlCCIDgAAAABnYqrrDgAAAKAu1fsgutPp1KOPPqpWrVopLCxMrVu31lNPPSW32+1pYxiGUlJSlJiYqLCwMPXu3VubN2/22o/NZtPIkSPVpEkTRUREaPDgwTpw4IC/TwcAAAAAAAAA4Ef1Poj+3HPP6fXXX9crr7yiLVu2aPLkyZoyZYqmT5/uaTN58mRNnTpVr7zyitasWaP4+Hj169dPubm5njajRo3S/PnzNXfuXC1fvlx5eXkaNGiQXC5XXZwWAAAAgFpENRcAAACUCKrrDtS2H3/8Ub/97W81cOBASVLLli31wQcf6KeffpJUnIU+bdo0TZgwQbfeeqsk6b333lNcXJzmzJmj4cOHKzs7W++8845mzZqlvn37SpJmz56tpKQkLVq0SP3796+bkwMAAABQ+4ioAwAABLR6n4l+7bXX6ttvv9W2bdskST///LOWL1+uAQMGSJJ2796tjIwMJScne7YJCQlRr169tGLFCklSWlqaHA6HV5vExER16NDB0wYAAAAAAAAAUP/U+0z0v//978rOztbFF18si8Uil8ulZ555Rn/4wx8kSRkZGZKkuLg4r+3i4uK0d+9eT5vg4GA1atSoTJuS7U9ns9lks9k8j3NyciRJDodDDoejZk7uPFFyvoF23kCgYswDgYPxjvrM6XKX+t3J61yMeSCQMN6BwBLIY76y51zvg+jz5s3T7NmzNWfOHF166aVav369Ro0apcTERN1zzz2ediaTyWs7wzDKLDvdmdpMmjRJTz75ZJnlCxcuVHh4eDXO5PyXmppa110A4EeMeSBwMN5RH7kMqeTr0qpVq5X1KzVdSjDmgcDBeAcCSyCO+YKCgkq1q/dB9EceeUT/+Mc/9Pvf/16S1LFjR+3du1eTJk3SPffco/j4eEnF2eYJCQme7TIzMz3Z6fHx8bLb7crKyvLKRs/MzFT37t3LPe748eM1evRoz+OcnBwlJSUpOTlZUVFRNX6e5zKHw6HU1FT169dPVqu1rrsDoJYx5oHAwXhHfeZwuTV65SJJUrduV+ma1jF13KO6x5gHAgfjHQgsgTzmS6qHVKTeB9ELCgpkNnuXfrdYLHK7i2/PbNWqleLj45WamqrOnTtLkux2u5YuXarnnntOktSlSxdZrValpqZqyJAhkqT09HRt2rRJkydPLve4ISEhCgkJKbPcarUG3IuxRCCfOxCIGPNA4GC8o14ynyrnEmQJ4jVeCmMeCByMdyCwBOKYr+z51vsg+k033aRnnnlGzZs316WXXqp169Zp6tSpuu+++yQVl3EZNWqUJk6cqLZt26pt27aaOHGiwsPDNXToUElSdHS07r//fo0ZM0YxMTFq3Lixxo4dq44dO6pv3751eXoAAAAAAAAAgFpU74Po06dP12OPPaYRI0YoMzNTiYmJGj58uB5//HFPm3HjxqmwsFAjRoxQVlaWunXrpoULFyoyMtLT5sUXX1RQUJCGDBmiwsJC9enTRzNnzpTFYqmL0wIAAABQiwxKoAMAAOCkeh9Ej4yM1LRp0zRt2jSfbUwmk1JSUpSSkuKzTWhoqKZPn67p06fXfCcBAAAAAAAAAOckc8VNAAAAAAAAAAAITATRAQAAAOA0hqjnAgAAgGIE0QEAAADgDAinAwAABDaC6AAAAAAAAAAA+EAQHQAAAABOY5B+DgAAgJMIogMAAAAAAAAA4ANBdAAAAAA4A1NddwAAAAB1iiA6AAAAAJwBlV0AAAACG0F0AAAAAAAAAAB8IIgOAAAAAKdhYlEAAACUIIgOAAAAAGdQYHfVdRcAAABQhwiiAwAAAMAZ/Ok/P+l4vr2uuwEAAIA6QhAdAAAAAE5jnDad6Pfbj9RRTwAAAFDXCKIDAAAAAAAAAOADQXQAAAAAOA0TiwIAAKBEkD8Ocuutt1Z5m9dff12xsbG10BsAAAAAAAAAACrHL0H0Tz75REOGDFFYWFil2s+ZM0d5eXkE0QEAAAAAAAAAdcovQXRJevnllysdFP/www9ruTcAAAAA4BvVXAAAAFDCLzXRFy9erMaNG1e6/VdffaVmzZrVYo8AAAAAoPKokQ4AABC4/JKJ3qtXryq1v/baa2upJwAAAAAAAAAAVJ7fyrmU5na7tWPHDmVmZsrtdnut69mzZ110CQAAAAA8DFLPAQAAcJLfg+grV67U0KFDtXfv3jIfTE0mk1wul7+7BAAAAAAAAABAufweRH/ggQfUtWtXffHFF0pISJDJZPJ3FwAAAAAAAAAAqBS/B9G3b9+uDz/8UBdeeKG/Dw0AAAAAlUIxFwAAAJQw+/uA3bp1044dO/x9WAAAAACoNoOwOgAAQMDyexB95MiRGjNmjGbOnKm0tDRt2LDB66c2HDx4UHfeeadiYmIUHh6uTp06KS0tzbPeMAylpKQoMTFRYWFh6t27tzZv3uy1D5vNppEjR6pJkyaKiIjQ4MGDdeDAgVrpLwAAAIC6xbyiAAAAKOH3ci6/+93vJEn33XefZ5nJZJJhGLUysWhWVpZ69Oih6667Tl999ZViY2O1c+dONWzY0NNm8uTJmjp1qmbOnKl27drp6aefVr9+/bR161ZFRkZKkkaNGqXPPvtMc+fOVUxMjMaMGaNBgwYpLS1NFoulRvsMAAAAAAAAADg3+D2Ivnv3br8e77nnnlNSUpJmzJjhWdayZUvP74ZhaNq0aZowYYJuvfVWSdJ7772nuLg4zZkzR8OHD1d2drbeeecdzZo1S3379pUkzZ49W0lJSVq0aJH69+/v13MCAAAAAAAAAPiH38u5tGjR4ow/NW3BggXq2rWrbrvtNsXGxqpz58566623POt3796tjIwMJScne5aFhISoV69eWrFihSQpLS1NDofDq01iYqI6dOjgaQMAAACgHqGcCwAAAE7ySyb6ggULdOONN8pqtWrBggVnbDt48OAaPfauXbv02muvafTo0frnP/+p1atX629/+5tCQkJ09913KyMjQ5IUFxfntV1cXJz27t0rScrIyFBwcLAaNWpUpk3J9qez2Wyy2Wyexzk5OZIkh8Mhh8NRY+d3Pig530A7byBQMeaBwMF4R33mcHq/rp1OV8C/1hnzQOBgvAOBJZDHfGXPuVpB9H379ikpKUkmk8lruWEY2r9/v5o3b+61/Oabb1ZGRoZiY2N18803+9xvbdREd7vd6tq1qyZOnChJ6ty5szZv3qzXXntNd999t9exSyup0X4mZ2ozadIkPfnkk2WWL1y4UOHh4VU9jXohNTW1rrsAwI8Y80DgYLyjPipwSqW/Lv38888KPrS+rrpzTmHMA4GD8Q4ElkAc8wUFBZVqV60geqtWrZSenq7Y2Fiv5cePH1erVq3KBMLdbne5v/tDQkKC2rdv77Xskksu0UcffSRJio+Pl1ScbZ6QkOBpk5mZ6clOj4+Pl91uV1ZWllc2emZmprp3717uccePH6/Ro0d7Hufk5CgpKUnJycmKioqqmZM7TzgcDqWmpqpfv36yWq113R0AtYwxDwQOxjvqsxMFDo1fs9jz+PLLL9eATol12KO6x5gHAgfjHQgsgTzmS6qHVKRaQXRfGdh5eXkKDQ2tzi5rTY8ePbR161avZdu2bfPUX2/VqpXi4+OVmpqqzp07S5LsdruWLl2q5557TpLUpUsXWa1WpaamasiQIZKk9PR0bdq0SZMnTy73uCEhIQoJCSmz3Gq1BtyLsUQgnzsQiBjzQOBgvKM+slq9i6JbLBZe5ycx5oHAwXgHAksgjvnKnm+VguglmdUmk0mPPfaYV1kSl8ulVatWqVOnThXuZ/Xq1VqyZIkyMzPLZKZPnTq1Kl2q0MMPP6zu3btr4sSJGjJkiFavXq0333xTb775pudcRo0apYkTJ6pt27Zq27atJk6cqPDwcA0dOlSSFB0drfvvv19jxoxRTEyMGjdurLFjx6pjx47q27dvjfYXAAAAQN0zTptYtNBRs2UnAQAAcP6oUhB93bp1kooz0Tdu3Kjg4GDPuuDgYF1++eUaO3bsGfcxceJEPfroo7rooosUFxfnldFeUQ3y6rjyyis1f/58jR8/Xk899ZRatWqladOm6Y477vC0GTdunAoLCzVixAhlZWWpW7duWrhwoSIjIz1tXnzxRQUFBWnIkCEqLCxUnz59NHPmTFkslhrvMwAAAIBzy4T5mzSka5KsFnNddwUAAAB+VqUg+uLFxTUBhw0bppdeeqlatb1feuklvfvuu7r33nurvG11DRo0SIMGDfK53mQyKSUlRSkpKT7bhIaGavr06Zo+fXot9BAAAADAue5onk0J0WF13Q0AAAD4WbVqos+YMaPaBzSbzerRo0e1twcAAACA2mZU3AQAAAABotJB9FtvvbXSO/344499rnv44Yf173//W9OmTav0/gAAAACgrplU8+UnAQAAcO6rdBA9Ojra87thGJo/f76io6PVtWtXSVJaWppOnDhRYbB97NixGjhwoNq0aaP27duXmQH1TAF4AAAAAAAAAAD8qdJB9NIlXP7+979ryJAhev311z0Ta7pcLo0YMaLCOukjR47U4sWLdd111ykmJqZWJhMFAAAAgLNhGBR0AQAAQLFq1UR/9913tXz5ck8AXZIsFotGjx6t7t27a8qUKT63/c9//qOPPvpIAwcOrM6hAQAAAAAAAADwG3N1NnI6ndqyZUuZ5Vu2bJHb7T7jto0bN1abNm2qc1gAAAAAqDMG040CAAAEpGplog8bNkz33XefduzYoauvvlqStHLlSj377LMaNmzYGbdNSUnRE088oRkzZig8PLw6hwcAAACAWkW4HAAAACWqFUR//vnnFR8frxdffFHp6emSpISEBI0bN05jxow547Yvv/yydu7cqbi4OLVs2bLMxKJr166tTpcAAAAAAAAAAKhxVQqi5+XlqUGDBjKbzRo3bpzGjRunnJwcSapwQtESN998c5U7CQAAAAD+xLyiAAAAKFGlIHqTJk103XXXafDgwRo8eLCaNWtW6eB5iSeeeKJK7QEAAAAAAAAAqCtVmlh069atGjBggD766CO1bt1aV155pf71r39pw4YNtdU/AAAAAAAAAADqTJWC6C1atNDIkSO1aNEiZWZmavTo0dq8ebN69uypVq1a6aGHHtJ3330nl8tVW/0FAAAAgFpnlDO1KCVeAAAAAlOVguilRUdH6w9/+IPmzp2ro0eP6o033pDb7dawYcPUtGlTvf/++zXZTwAAAAAAAAAA/K5KNdF97iQoSMnJyUpOTtb06dO1bt06OZ3Omtg1AAAAAJwTTKa67gEAAADqwlkH0fPz8zVv3jwVFhYqOTlZbdu2VefOncu0u+aaa3TzzTdr8ODBuuSSS872sAAAAABQeyjdAgAAgJOqVM5l37596tWrlyIjI9WvXz/t27dPV1xxhf74xz9q5MiR6tSpk5YtW1butg888IBWr16tq666Su3atdMjjzyi77//XgaFBQEAAACcB/jqAgAAEJiqFEQfO3as7Ha7XnvtNYWHh6t///5q27at0tPTdfjwYQ0YMEApKSnlbnvPPffoo48+0tGjRzVt2jTl5OTo9ttvV2xsrO69917Nnz9fBQUFNXFOAAAAAFDjiKEDAAAEpioF0ZctW6aXXnpJd955p2bMmKGtW7dqwoQJiouLU9OmTfXoo49qw4YNZ9xHSEiIBgwYoDfeeEOHDh3S559/rmbNmunxxx9XkyZNNGjQIP3www9ndVIAAAAAcDbKC5hzFy0AAEBgqlIQ/ciRI2rRooUkqXHjxgoPD1dcXJxnfXx8vLKysqrUgW7duumZZ57Rxo0btXHjRvXp00fp6elV2gcAAAAA1DZi6AAAAIGpShOLGoYhU6kp6U01PD19mzZt9PDDD9foPgEAAACgqgiYAwAAoESVguiS9Pjjjys8PFySZLfb9cwzzyg6OlqSqGkOAAAAoN4isA4AABCYqhRE79mzp7Zu3ep53L17d+3atatMGwAAAACobwymFgUAAAhIVQqiL1mypJa6AQAAAADnjvIC5mSiAwAABKZKB9FHjx5d6Z1OnTq1zLLWrVtrzZo1iomJqfR+AAAAAAAAAACoS5UOoq9bt87rcVpamlwuly666CJJ0rZt22SxWNSlS5dyt9+zZ49cLtdZdBUAAAAA6g6J6AAAAIHJXNmGixcv9vzcdNNN6t27tw4cOKC1a9dq7dq12r9/v6677joNHDiwNvt7ViZNmiSTyaRRo0Z5lhmGoZSUFCUmJiosLEy9e/fW5s2bvbaz2WwaOXKkmjRpooiICA0ePFgHDhzwc+8BAAAA+Et5pVsM6rkAAAAEpCrVRC/xwgsvaOHChWrUqJFnWaNGjfT0008rOTlZY8aMKXe7X375RRkZGWfc92WXXVadLlVozZo1evPNN8vsf/LkyZo6dapmzpypdu3a6emnn1a/fv20detWRUZGSpJGjRqlzz77THPnzlVMTIzGjBmjQYMGKS0tTRaLpVb6CwAAAODcQggdAAAgMFUriJ6Tk6PDhw/r0ksv9VqemZmp3Nxcn9v16dOn3OwNk8kkwzBkMplqpeRLXl6e7rjjDr311lt6+umnPcsNw9C0adM0YcIE3XrrrZKk9957T3FxcZozZ46GDx+u7OxsvfPOO5o1a5b69u0rSZo9e7aSkpK0aNEi9e/fv8b7CwAAAKBulRcwD4RE9KN5NsVEBMtkMtV1VwAAAM4Z1Qqi33LLLRo2bJheeOEFXX311ZKklStX6pFHHvEEo8uzatUqNW3atHo9PQsPPvigBg4cqL59+3oF0Xfv3q2MjAwlJyd7loWEhKhXr15asWKFhg8frrS0NDkcDq82iYmJ6tChg1asWOEziG6z2WSz2TyPc3JyJEkOh0MOh6OmT/GcVnK+gXbeQKBizAOBg/GO+sxZzuu6vn+W/2pThv42b4Pu7JakJwZdUmY9Yx4IHIx3ILAE8piv7DlXK4j++uuva+zYsbrzzjs9BwoKCtL999+vKVOm+NyuefPmio2Nrc4hq23u3Llau3at1qxZU2ZdSWmZuLg4r+VxcXHau3evp01wcLBX6ZqSNmcqTTNp0iQ9+eSTZZYvXLhQ4eHhVT6P+iA1NbWuuwDAjxjzQOBgvKM+Om6TTv+6tGzZMm2rxx/ln1prkWTS7FX7daV5t892jHkgcDDegcASiGO+oKCgUu2qFUQPDw/Xq6++qilTpmjnzp0yDEMXXnihIiIiqrO7WrN//3499NBDWrhwoUJDQ322O/1WxZLSMmdSUZvx48dr9OjRnsc5OTlKSkpScnKyoqKiKnkG9YPD4VBqaqr69esnq9Va190BUMsY80DgYLyjPjt4olBPrv3ea9lFnbupR5uYOupR7Xtp+3IdsxV/kRwwYECZ9Yx5IHAw3oHAEshjvqR6SEWqFUQvERERUemJQHv16qXg4OCzOVyVpaWlKTMzU126dPEsc7lcWrZsmV555RVt3bpVUnG2eUJCgqdNZmamJzs9Pj5edrtdWVlZXtnomZmZ6t69u89jh4SEKCQkpMxyq9UacC/GEoF87kAgYswDgYPxjvooKKjsrb2PL9iiZeOuq4Pe+IfVYjn1+xnGNGMeCByMdyCwBOKYr+z5mmu5Hx6LFy9Ww4YNPY/tdrsOHDigffv2ef3UpD59+mjjxo1av36956dr16664447tH79erVu3Vrx8fFetyrY7XYtXbrUEyDv0qWLrFarV5v09HRt2rTpjEF0AAAAAPXLoROFdd2FWhVkYTJRAACA8pxVJnp1bN++Xffdd59WrFjhtbykPIrL5aqxY0VGRqpDhw5eyyIiIhQTE+NZPmrUKE2cOFFt27ZV27ZtNXHiRIWHh2vo0KGSpOjoaN1///0aM2aMYmJi1LhxY40dO1YdO3ZU3759a6yvAAAAAM4dhlHXPfC/IIvfcqwAAADOK34Pot97770KCgrS559/roSEhAprj9e2cePGqbCwUCNGjFBWVpa6deumhQsXKjIy0tPmxRdfVFBQkIYMGaLCwkL16dNHM2fOlKXU7Y4AAAAA6rf6Hle3mslEBwAAKI/fg+jr169XWlqaLr74Yn8fWpK0ZMkSr8cmk0kpKSlKSUnxuU1oaKimT5+u6dOn127nAAAAAKCOUM4FAACgfH6/X699+/Y6evSovw8LAAAAAGelvoeYg8yUcwEAACiP3z8lPffccxo3bpyWLFmiY8eOKScnx+sHAAAAAOB/dVxpEwAA4Jzl93IuJZNx9unTx2t5bUwsCgAAAADVEYgTiwIAAKB8fg+iL1682N+HBAAAAABUwEQqOgAAQLn8HkTv1auXvw8JAAAAAAAAAEC1+KUm+oYNG+R2uyvdfvPmzXI6nbXYIwAAAADnuozsImXmFtXJsQ2VredChRcAAIDA5JcgeufOnXXs2LFKt7/mmmu0b9++WuwRAAAAgHNZod2lqyd9q6ue+VYut//D19REBwAAQAm/lHMxDEOPPfaYwsPDK9XebrfXco8AAAAAnMuO5tk8vztcblnMFr8e3x2AUXQqogMAAJTPL0H0nj17auvWrZVuf8011ygsLKwWewQAAADgfFEX8ezykt+Neh5YZ15RAACA8vkliL5kyRJ/HAYAAABAPVRefXJ/HBUAAACQ/FQTHQAAAACqq8Du8vsx66AMOwAAAM5RBNEBAAAAnHNKlxZ5+dvtfj9+Pa/cUi6quQAAAJSPIDoAAACAc46pVBT9pz1Zfj9+eROL/rZTM7/3w59MFEUHAAAoF0F0AAAAAOe0ukgKLy+I3jQypA56AgAAgLpGEB0AAADAOccoFcQ26qC2SnmHrIt+AAAAoO4RRAcAAABwzqnreHV5x2eyUQAAgMBEEB0AAADAOcftlYnu/+Mb5RSRKa/ES31CRXQAAIDyEUQHAAAAcM4pnfVdF8Hr8rLO63kMXcwrCgAAUD6C6AAAAADOOV6Z6HVw/PLqn9f3THQAAACUjyA6AAAAgHNOXU8sWl4mOkF0AACAwEQQHQAAAMA5p3QQu05qopebie7/fvjToi2Zdd0FAACAcxJBdAAAAADnnDov51Lesnqcie4+7QpBenZhHfUEAADg3EMQHQAAAMA5x/DKRK+Dci7lpJ273X7vht/kFDm8Hq/Zk1VHPQEAADj3EEQHAAAA4Fd2p1vvr9qrfccKfLY5FzPR63NN9OxC7yC6qY76AQAAcC6q90H0SZMm6corr1RkZKRiY2N18803a+vWrV5tDMNQSkqKEhMTFRYWpt69e2vz5s1ebWw2m0aOHKkmTZooIiJCgwcP1oEDB/x5KgAAAEC98Nb3uzRh/ib1fn6xzzZGHddELy9gXp9rortOOzmziTA6AABAiXofRF+6dKkefPBBrVy5UqmpqXI6nUpOTlZ+fr6nzeTJkzV16lS98sorWrNmjeLj49WvXz/l5uZ62owaNUrz58/X3LlztXz5cuXl5WnQoEFyuVx1cVoAAADAeeuHHUclnTkoXTqIHWa11HaXyigvcF+fa6KffmbE0AEAAE4JqusO1Lavv/7a6/GMGTMUGxurtLQ09ezZU4ZhaNq0aZowYYJuvfVWSdJ7772nuLg4zZkzR8OHD1d2drbeeecdzZo1S3379pUkzZ49W0lJSVq0aJH69+/v9/MCAAAAzlels55fWrRdkaFBuu/aVl5tSgfY+18a56+ueZQbRPd7L/zn9AsEZoLoAAAAHvU+E/102dnZkqTGjRtLknbv3q2MjAwlJyd72oSEhKhXr15asWKFJCktLU0Oh8OrTWJiojp06OBpAwAAAKBySmeZv7hom576/JcyE3mWbmOqg7To8su51N8wetm7AoiiAwAAlKj3meilGYah0aNH69prr1WHDh0kSRkZGZKkuDjv7Ja4uDjt3bvX0yY4OFiNGjUq06Zk+9PZbDbZbDbP45ycHEmSw+GQw+Eod5v6quR8A+28gUDFmAcCB+Md1eVwucssK7DZFRJ0KsfH4XB6fne6XH5/nTmdzrLLXO56+3q3273Py3CXfc4Z80DgYLwDgSWQx3xlzzmgguh//etftWHDBi1fvrzMutOzWwzDqDDj5UxtJk2apCeffLLM8oULFyo8PLwKva4/UlNT67oLAPyIMQ8EDsY7qur4cYtOz3T+4quvFVqq9PnOHKnk68r27Tv0pW2b3/onSb9kmSR512L/YmOG+kYcqJelTg7mS6W/Hqalpcm+u/zMe8Y8EDgY70BgCcQxX1BQUKl2ARNEHzlypBYsWKBly5bpggsu8CyPj4+XVJxtnpCQ4FmemZnpyU6Pj4+X3W5XVlaWVzZ6ZmamunfvXu7xxo8fr9GjR3se5+TkKCkpScnJyYqKiqrRczvXORwOpaamql+/frJarXXdHQC1jDEPBA7GO6or5efFkryzfq7v008Nw0+9jlbvOS5t/kmS1LpNGw3o19afXVTY1iPSr+vKLHckdtItnRP92hd/+CU9R9qw0vP4yiu76vqLmnq1KT3mjxe6ZLWY1Tgi2N9dBeAH/I8HAksgj/mS6iEVqfdBdMMwNHLkSM2fP19LlixRq1beExa1atVK8fHxSk1NVefOnSVJdrtdS5cu1XPPPSdJ6tKli6xWq1JTUzVkyBBJUnp6ujZt2qTJkyeXe9yQkBCFhISUWW61WgPuxVgikM8dCESMeSBwMN5RFYV2l7IKyrlt1mzxeh1ZLKW+qpjMfn+NWSyWcpfvzSqsl693r+db0uKtR3Wi0Knbr2xepq3dbdK1U5ZJknZPGlAnNesBVI7D5VaQ2VTtccr/eCCwBOKYr+z51vsg+oMPPqg5c+bo008/VWRkpKeGeXR0tMLCwmQymTRq1ChNnDhRbdu2Vdu2bTVx4kSFh4dr6NChnrb333+/xowZo5iYGDVu3Fhjx45Vx44d1bdv37o8PQAAAOC8cjTPVu5yp9u7TnrpSTyNOpjQs+xEm8VCgsoPrp/vTp80de6a/Zq7Zr+uad1EzWO8y1Eezjn1N7S73PX2OQHOd9mFDl3//BJ1a91Yr97Rpa67AwDntXofRH/ttdckSb179/ZaPmPGDN17772SpHHjxqmwsFAjRoxQVlaWunXrpoULFyoyMtLT/sUXX1RQUJCGDBmiwsJC9enTRzNnzvSZoQIAAACg8hxO7yBu6Zju6QHe0v7z4x41aRCiAR0TfLapDl/HdPmKrp/nfJ3WiUK7mitchmFo/rpDOpov/bLukGd9od1FEB04Ry1Yf1DH8u36cmNGXXcFAM579T6IXpmsFZPJpJSUFKWkpPhsExoaqunTp2v69Ok12DsAAAAAkuQ4Qya6rwDvjsw8Pf7pZknSnmcH1mh/3D4OemFsgxo9TlXMX3dAL3+7Q/8eeoXaJ9bsPEu+LhqYT5aAWLw1U+M+3qTir5C7PesL7C41DC93UwB1rNzSWQCAajHXdQcAAAAAwOFy6/MNh7T7aL4k78C5rwCvr9IwNcF5DmacPzzvZ+0+mq+3l++q8X1XlHv0y6HyJ93KszlrvC8AakaB3VXXXQCAeoMgOgAAAIA69/nP6frrnHW67vklkk6viV7+NrVZKt1X2ZYzlZbxl7yimg9c+7qDtyQT3Wwuf1LC5BeXKSvfXuP9AVB9hmHIMAy9v2pvXXcFAOoNgugAAAAA6tzq3cc9vy/4+ZCGzVjjeTxn1b5yg7zlLXv+m6264+2VcrjcZdZVha9M9HOhJnqQpfyA9tnwdVqGildYTL6P+b+0/TXeHwDVd/97P+na5xYrtxYuuAFAoCKIDgAAAMBvfAWhS9dE/9sH67zW2V1ufbz2oJynBcZL76kkoP7K4h36Yccxfbvl8Fn2s/wg/LkQRDefIaBdHYV2l4a88WO560qeBouPTHSpdu8IAFA1breh737N1METhXXdFQCoVwiiAwAAAPCbE4XlT3RXUXB6zP9+Vt+pSz3BcsMwZHOeqvd7+uYO19lFds/lTHSHy63DOUU1tr9Nh7J9rnOejKKfKXBf988IgBIurmoBQK0giA4AAICAtyMzV0UOJmDzh5v//UO5yytT53vPsQJP1vMf3/tJ9838ybPu9FrlZ8qcrgxfwfLaDlAV2l169JON+n77EZ9tvtl8WN0mfltjmaZWi++vhSUXE872+QTgH+fChT4AqI8IogMAACCg/XfNfvWdukz/nL+xrrtS79mdvuuU7zqaX6l9lATLv/01s9zlJc625InTRya7u5YDVO+v2qvZK/fprndWey3PLiibwb/8DIH2qjhT0M3pMlRgd/qcWFSq2XIuhXYuZgFngyA6ANQOgugAAAAIaP9eskOS9PHag3Xck/rvWL7trPfhcwJMw3ui0bNNnPaZiV7LAapsH+Vupn+3vcyymgpen34BorT//rRf7R//RhO/2FKt7avi0/UHdcnjX+s/P+6pkf0BgchXKSoAwNkhiA4AAICARvlY/3E4z/7J9hWwdbkNrwD32ZYf8RWIWrvvxFnttyK+MugPZZct3VJTL90zXRiYv6744lKhH8odPTR3vSTp8U831/qxgPqKTHQAqB1Bdd0BAAAAoC4ZTIvoNw6373Iuld6Hy61Qq6XMcrdheAW+z1R+pDKcruK+XtWqsQ5mFXrqjy/4+ZBaxISrX/s4XXZBw7M6RnlKgtaSdOhEoT5YvU+ZOTaZygmu11gmOkE3oN5w1sD7LACgLDLRAQAAAPhFTWRIdkxZqJQFZTOV3YZkd50KHp11TfSTfW0X10A//ON6JUSHetZN/26HBr9S/gSpZ2vf8QLP792f/U7Tv9uheT/tV4PgsvlPNVVG5WwnS62NIHxmTlGN7xMIBGSiA0DtIIgOAACAgEY5F/8pqKFJI2eu2FNmmWEYXpOBWs4yiF4SiAoyF39lmjqk01nt72zN+2l/mWWrdh/X3mP5+mTdQW06mF3tfZ9t0O2F1G2ezP2zUfpP9vs3V571/lA/fLM5Q4Omf68dmXl13ZXzgq9JkQ3+2QHAWSGIDgAAgIBGXMF/bv537WRvS9Luo/legdzHPt10VvtzeoLoxZHdxIahZdrYnb4Dx44aCCpX5LOfD6nXlCUaNW+9Bk1f7rUuI7tIOzJzK7Wfmsho/zWjcsc6k9J3D+w6mn/W+0P9MHxWmjYdzNGoeevquivnBV8XxUhQB4CzQxAdAAAAQK2r7brbt7y6Qh+sPpWtvdtHELayGdOuk3WFLZbiwG5UqLVMm6snfavCcrLrJ3/9qy5LWajth88+sFwVs1fu9fx+9aRv1XfqMh3JtVW43U97ss762Gc7kat09ncPoP75KO2A5/fjefY67Mn5w9ekyDVV/gkAAhVBdAAAAAC1riYmFa3Ii4u2nXH9K99t1+VPLtSW9JwK93V6Jnp5k5kez7crbW/ZAPSrS3aq0OHSM19uqUy3PcrbV1U8+skmud2G8m1Oz7LSNdZ9eXXJzrM6bk0hho7Tjfnfz57ffQWH4c3XXTAHswr1u9dW6PMNh/zcIwCoHwiiAwAAIKBRJ9Y/Ti8xMH9Ed7/34fmF25Rvd+lfn/9SYduS/lpO1kQPCSr/q5PV4jvym5VftczZ3722okrty9P7+SU6dKLQ8zioBjLEK+O5r3/V0byKs97P5Gwng0X9RhC9cooc5c898dC89Urbm6W/zikui7PzSJ6yCx3+7BoAnNcIogMAACCg1bewzN5j+br11R+0cHNGXXfFi+O0ye46N2+kTx7sUevH/X77Ef2w4+hpfak4K/70THSz2aRQa9mvT8E+guul91GRIodL4z/eUKm2Fdl3vEBfbEz32ndpX2xIV8/Ji7XhwIkaOV6JJVuPaOScs6tZ7ad4P85TuUUOTU3dVqk7SerSriN5+mTdwTq7QGvzMVfDz/tPeH7fdjhXfV5Yqh7Pflfl/Z9pLggAqM8IogMAACCg1bdE9HEfbtDafSf051lpdd0VL+XVIu+U1FDRYWVrjdeU7EKH7npnte54e5VXMNnXxHuluVwlmeinIrsRwUHltnW7DdmcZbM/K/vaemf5bq967mfrWKna0UWnBbwenLNW+44X6IFaeH38uOvYWW0fKJnoX21MV9re43XdjXOaYRh6cM5ar2UOl6GXv92uG1/6vo56VTnXv7BUo+at1+cb0ituXAsKfWSil5b84jJJUl6p0k+V8dnPh9Tu0a+04GdKwgB1Kc/m1CfrDiqniLtJ/IkgOgAAAFCPHKtiCRF/MAxDt7+5stx1s+6/qtaOeyDrVD3w0l80KxNEPz0TXZIuaBRWpt2eY/m69bUVuujRr7Vka6bXul/SczRn1b4q9bMmOEvVn7/n3dVa9MvhMm0OZRfV6DFrQl3F0NP2ZumnPf4Jau/IzNVf3l+r3732o1+Od77afChHX9RRELqm+Os1VVp2oUPDZqyptf2P/KD4bpO/fXB2d50AODvjPvxZo+at18Nz19d1VwIKQXQAAAAENKOeFXTZkZlX4/t0uNxas+d4tW/jzyl0+uzXZRc01Bd/u/ZsuufTwJeXe/WhRGXKrLhOBqJLZ6I3iggu0+7heT9r/ckyCffOWFMm4/6f8zfqvz/t99Qp/3jtAU38cotXqYeavhvi9Kz2P/7nJ59tdx2p+ddLdVlOq+fij7IRhXaXfvfaCv3f6z+q0F5xBu/Z2nUkv9aPUR+468EtQmd7oarQ7tIr323XtsO5ld7mk3UHq3WsEwV2n+VnbA6Xpi3apk0Hs6u1bwA178uNxSX7vv01s4KWqEkE0QEAABDQgsyB9ZHY5nRVeTK5f33+i257/Uc99flmn20Mw9D+4wVlAjGGYei/P525VElcVGiV+lMdLy7a5vm9vEx0wzC8stWd7rLlXHYfrTgAOv7jjWWWjftwg7o/+51cbkOj//uz3ly2S/PW7NeJArse/3ST5q6puVIuvny75bDeWrarzPLrX1jq9bh104ha70t58mxOZRV4vy5fWbyj1o+bVXDqzo3ySvLUtNKvPSY19u30Cyrno9RfDmvZtiPV3n7aom16fuE2T+mV06VnFyr/tHIs1Xnevvv1sDo9laqnfEy4/Mb3uzVt0XYNmr683PWBJD27UAdLTdwM+Mv8dQf0f6+tUGZu2Ytz6dm8Jv0lsL4xAADgB0fzbFq4OaPc+r81bfGvmXr+m61yV3LyOgBlNQg5Vee6MhNOlqc6wbAdmbnakXnmDMPcIod++8pyTfnm12r1qzx/mb1W1z77XZVKiPznx72SpNkr9/nM1n3lux36zeTFeveHPV7Lv9mcoWe+3OK17LedEr0eNw4vm+FdYtHonnr33q6V7qsvpUtD/JqRqzeX7dTP+0+owO7Ueyv2aNjMNbosZaF+3Flc17skC7r0xKGVyY79X9oBn+uO5ds8v//j44361+dbPM9tabde0aziE5IUGVJ+jfby3P/eT2X+DqdPZprUOMyrfE11nD6RaWXsOZqvP5eTLf/yt9sr3Da3yFEmkFhZbrfhVfrC6Tb0ybqD+qwG6z0X2l3adDDb8x5R+i4Iux8+J5yv/jl/U5Xan6sXJO5+d7XW7cuS3elWVhVLba3dl+Vz3YGsAl0z6Tv1m+p9ESzkDBMd+5KyoDh4PuO09+4S0xeXvfgWaF5atF0t//GFrpn0nXo8+1213udq2n/X7Nfkr389Z1/7qFkPz/tZP+3N0sQvtpRZd82k73Qsz1bOVqhpBNEBAKhht766Qn+elaYPzjKz0Oly63evrdCI931P/jZs5hq9sniHvt6ccVbHAgJZeIjF83tVM7Ql6bUlO3XFv1IrDIiXVuRwqe/UZeo7dZmKHC4ZhuGZ4G3xr5m66plFWrbtiN5ftU8/H8jWvxfv9Np+S3qOJ9hbWkUTTDldbn33a6ZybU69sbR6gZH3V+2VYRjKzC3y+vL+Qmpxpve/SmUzFtidemD22jL7eP62y70em80mvXrHFRrQMd4rCHR168a6MDZS118cV62+nsnEL3/Vb//9g9o//o2eWLBZS7YWZ4yWBJZtJ4PoIUGnXh/Ws7xrIa/IO9j7a0ZOue3u7d6yUvvLrWbwuMTpZV/+9dsOMunsgugdnvhGs37cU+n2mblF6v38Eq0o5/VcEYfLrW4Tv1XXpxdV+cJ1TpFDrf/5pbaWKpWRlW/XqHnrNfKDdTVW2uWud1Zp0PTlem1p8RguHXyz+aFczfnoaJ5NP58skeTLH95cqZ0nSxFNW7RNXZ5epH3HanZugTNZs+e4586U0q+98v4PPLFgs26avlyd/5Va6fJJ2YUOrdlzKoj+3Ne/6u3vT71nLz5ZwuFQdpFXIkWI9dT7VWXtO37qeft0ffXKwdRXhmFow4ETXncySdKJgoo/KxzIKpDN6ZLLbWjMf3/Wu8t312i/xn20Qa8u2anNh8r/P1LbDMPQpC+36P1VZS8Eo2aVvoNp7/Hy3+c2VFBuqcB+dp8XUIwgOgAANazky8jis6xRtyU9V2l7s/TlxowKM17Sz8EJ4oDzRekkrsp8MT7dc1//qqwCh578rPxb4d9ftVevfLfdK+CcWyqYunTbEU3+ZqsuS/lGK3Yc1bCZa5SZa9Pd765WTqmgfsn2y7cf1Y0vfa8/vLWyTObR1IXeX/R/3HnM67ilA4azVu4tEyj87tfD+npTRpnSJqVlFdjVavyXuuqZb9Vq/JfacOBEmTYzf9it91ft9VmGwGop+zVkQMcEvXpHF68A+5t3nzkD/ZH+F+mVoZ3P2Kaq9hwrUL7N6clELx3UP9sSE6eXTvEV/Lg0MbrCfS19pPdZ9aU8wUFmNQitXHb7j+Ov16Yn+6tZQ+/JVp1uQ4996rvsj2f7ncf0y6EcffbzmSePPFOW5dE8mwrsLhU6XBo2c02VskOvf35pmWWlX/Oj/7tes37co1FzqxdQNwxDKQs266e9xYHQyV9vleR9oW79vhOe311uQ5+uP6gDWQUa+tZK3fH2ymrfGVMVGdlFOpJbuQzGvcfytb2C+txHcm36etPZ3Y03rxJJCD/uOqY+J8fTtEXbdTzfrhdSt1b7mFWx+2i+bnv9R133/BKN/3ijLpzwlf730349/fkv6ju17Htens3pee+9/oWlMgxDaXuzlFvk0OJfM/XKd9v19w83aPn2o55tuj6d6rWP15bs1NNfbNFHaQeUsmCzDpQqKfLW92e+IDqgY3ylz+2hueu191i+Hnx/rf7+8SbtPsOfu7zMV5vTpa82plfrgnRpmw9l64FZabUyx0dlGYah15bu1OBXfiizLr+CgOSmg9m69rnF+svstVq27Yg+WnvAZ7mc6sgp9Rli3b6sWn2vKHK49PcPN+ib0xJ21u0/oTeW7dKEKt41gqob8sapiah3HC5/TJzpIs2/F+9Q+8e/0ffbq19eCsUqf/8fAACoUOkv+00a+C5PUBmFpYIBx/LtZQIVpY9ltVQtsONwubXrSL7axTWQyVS9oJDN6dK3WzLVs11Tr3IY1ZFnc+rLjelKbh+nhmco6wDUhtIZPidK1Uc2DENFDrfCgn1n9m1JPxUELR2I+mpjuhIahunSxCjPF8wmDUL0+6uaS/IuGzN81qm7TYa+vcpr/6UvkA2avlxNI0M8GdNScamAAR0TZDaZdP3FsZq5Yo/X9n94a6Uujo/Up3/tIZNM+vN/vO9s2XkkT5cmRmn/8UK9+8PuMtv3vzROb9zlHchevsM7Y3jwKz9o18QBXstSfFxQqIybLk/UpYlRslrMigq1nrHtg9ddKIfLrR4XxuiHHVXPZPbl0ie+8dQGL13OJaic4H9NaxoZUmGw/prWMWoRU/O1y21Ot8889DCrRWazlG9z6Z83XqSE6OL/Sa/ecYV++++yQabyrNp1TOHBQWoSGaw/vLWyUtu0Gv+llj7S2+t8nS63lm0/ot1HT2Xkfb/9qF5dslONw61qFxep7hc20cdrD2j0f3/W/BHd1bl5I0/bIodLR8sJAG46eGo8f7UpQ19tKg4aWS1mTTnt7onTOV1uOVyGwoItKrS7dMnjX5dpk2dzakGpUjGrdh9Tz3ZNlW9zasgbP5a5qPLLoRxdntSwzH62H87V5kM5+m2nRDndhuei1NE8m0bNXa/fdWmmWzpfoEJ78fwH8dHecw643YZmrNijMKtF/5y/UQnRoVr+9+tlMZtUaHcpM7dIby7bpR4XNtGAjgmSit/fek1ZIkna/GR/Rfj4v3/Lqz/oQFahHh14if74m9ZnfM5O79OI99fKZJLnea+M0mWaPl1/SKP7tauVsVFa6Yk+P1i9T5L0yIcbfDUvM5nsba//6Lm4Utq8n/Zrz7MDdSCrQA5X+RePxvzv5zLLJn31q3Zk5umhvm3LnYz32d9d5pmEsDJK/s7FfH++e+v73WoZE66P1x7UxQmRatIgROnZRfpg9T4NuixBrwy9otLHPN09767W0Ty7507Lb8f0UpumDZRnc+rheesVExGsi+Ij9fmGdL17z5XKLnRo7Ic/K7vAof8+cI1SfzmsuKgQ/aZtU88+DcPwGi8V+ef8jWXu1inx3zX79eeerTXmfz/r9q5JuvHkOClR8r/0u18z9V2ppBqX26iRev9HStXFfuzTzXrs0836S+82Gt6zdY1+js4ucGjKwl8176f9mvfTfs0YdqVCLGZdGNfA6/OS223IXAPn9cuhHE3/brvG33iJmseEn/X+6gOny620Uu8XuTanvi7nPfL77Ue1JT1HJwocCg+2eP3vmPJN8QXGu95ZrdH92ulvfdpqa0au/r14h0b1bavWTRvU+nnUFwTRq+DVV1/VlClTlJ6erksvvVTTpk3Tb37zm7ruFgCgGvYczdcXG9N102WJemf5Lv3+qua6JCHqrPebU3gqM+SjtQd159UtlBAdpqaRIafaFDmUmWPThbHlf2DZfTRfOzPzvG7zXrXrmG694gKvdgWlMuNSfzmsu69pWel+Pv7pZn2wep+m/N9luq1rkte63CKHnC5DjSLO/CH87e93ez6U7Zw4oEpfCkoy2drGRUqSHvtkk+avO6jP2jbRrPu7VXo/QE0oXaP4/17/Uf8dfo26tGikv81dpy82pOvvN1ysv/RuowK7UycKHEpsGKbj+XaFB1t040vfe7b9NSNXvxzK0eHcIv3l/eISJkmNT138+sfHG5W2N0srdx/TiN4XVqpv89edurW+vKzlzYdyPMuf+7r8uum/ZuTqokfLBvQkVThR3DebD+ulRd51qcsrs/DhWt91wKujoi90vdo11SP9L5JUHOB8/c4u6piysEb7UBL4Kp2Jfl+Plj6DZR2bRWtjBbdTV8bCUT0lSY0jgnU8366kxmHaf9x70rC37jn7GvHlsTlc8pX3vfaxfjqWW6C3P12su7qd+r9xeVJDdWgW5RWAloprCH+zOUNXt45R+8QojS0V/HvipvZV6levKUuU+nBPrdx1TC+kbvN5x0jpGupz/3y1Rv+3+Ji3vLpCk27tqNW7j2vvsXz1ahdb7vZPLCg/g/5/aQc0uFOi5q7er7Bgi0KCzPr5wAndfXVL9b6oqWIahGjUvPVauvWI3v9TN+3xUVakwxPfeD1uFB6sgycK1ePZ78ptfyTXJrvTLavFJJPJpBMFdh3Pt6vfyTs8ftx5TPN+2q/IkCB9O7aXXluyU8t3HNXyHUf18LxTz/dLv++kd3/YoyYRwfpTz9aa/t12r4tO6dlFemPZTiVGh2nUvPWe5e+v2lduv1bvOa7rLvJ+Dg+eKFSBzakDWcWv1ae/2KL7erSqVGDtiU836b1y5gaojAfneJeL6jVlie66uoX+dXOHau1PKv4ctCMzTxfHR5V7ETW4GnXHSysvgF7CMIxKTWB8uv+lHSgzH8PY5HYadFmiGgTXTtjn9aWnyoyt3nPca93nG9L1ytDi3+1OtwrtLk38covio0N1UXykrr84VqFWi/YczdcFjcK09XCu3lm+W2OSL1JsZIiO5nnXj//bB+v0xd9+oyc+3azUXw57rfv3kh16s9SkyZc/eep/we5JAzzJIiM/WKdvNmfohg4JahASpL/fcFGZgPNnPx/S9sw83dblAp8BdEl6Y9kuvXHymEu2HtGeZwd6rf/Qx9wYc9fs0x3dWvjc7+lcbkN7juXr7e936y+92ngmlSw9l0OJ15bs1GtLduqtu7vqT//5Sf8ccLHu6NZCC34+JKvFrK4tGqllk+ILTNkFDmXmFnk+h5fILnBo59E8NYkI0c4jeRo20/s45R1Xkp775lf9tCdL7913VaUSa3KLHPoo7YB+3HVMP+/PVkZOkS5JiPIkJny1KUOPDrxEt3VJUnT4mS+m+5thGFqzJ0utmkSoaWSIsgsdeuLTTfpzzzZqn3jqu2R2oUNhVovn/bs6sgsdXq/nEg/MLr/U56i56z13vSwZ29vz9y5tauo2fb7hkDJzbTpR4NDKXce06p99tHLXcT36yUbd0NSkAWW2QgmTwSwElTJv3jzdddddevXVV9WjRw+98cYbevvtt/XLL7+oefPmFW6fk5Oj6OhoZWdnKyrq7IM055O8giK998k3+tP/3ajgYLILgfrO4XDoyy+/1IABA2S11u6Hnp/2HNeh7CLddFmCTCaTjuXZ9Et6jnq0aeLzS1uB3aljeXb9ZvLiMuvG33ix4qND9dqSnbr7mpYa2q25/vvTfrnchm7u1MzzRcrtNuQyTmWy7D9eoOAgszJzbMq3O/X7N8vPrpv8u8s04LIEz5foR/pfpFs6N1PiaRnmXf6VqmP5dl3RvKHWlrrV+5en+iv85Bchl9vQf37c41U+4ufHkyv9QbPlP77w/P5I/4s8wfDhvVp76iQPvCxB//aRRfTlxnSNeP/UF9eXft9Jv+3UTCt2HNXQt1fpkf4X6cHryg8Spu09rt+9Vnxb4op/XK+E6FC1Gv+lZ/2eZwdq//ECxUWFVuqLapGjuN6kr6y4s1FgdyokyCKL2aR9xwq0dl+WYhoEe2U2BTKHw6FPPvtSxxq3V8smkbqhQ+VvGffFMAwVOlye13p1fbB6n6JCrbqyZSP9L+2AQoLM2nkkT7+74gJ1bt5IX21KV6smEZq/9qDeLucW2OT2cVp42hd11Iz/Dr9GV7VqXOXtdh7J0/7jBerYLFoxDUK81hmGoTveXqUVO4/pgkZheuvurho0fbnXXQaS9/tdZc3989W6unWM5zibD+XowtgG+nn/Cd1e6v1+zYS+uvKZRVU+rxKPDWqve65p4cl2L7A7lVfklCEpZcFmr+zckoBN6ffymvDi7Zfr85/T9W055cj2PDvQ5/94h8utthO+qpE+rP5nH03+ZqvPIBTODVe3bqx7u7dU/0vjVWB36dLTLhCUGN2vnb7cmK5fM3J1RfOGmnV/N63cdUy5RU41aRCiO99ZVe52ktSvfVyZgGlldUpqqE0Hs70ukv71ugv1QO82niBfkcOlPJtTMRHBniBXuwlfeSZ8TYwO1Q//uF6/ZuSqVZMIhZ6sNz575V49+kntlbAoHUysrraxDZQ6upfn8envFfd2b1nmzqOa9stT/ZVnc6r3lCVeiR8lHu7bTi8u2qarWjXW6t2ngvAP9GrjFaA/G+NuuEi928VqwMvfl1mXEB2qf99xha44eZdKns1Z5kJXZV2e1FBtmkTokRuK79I503vz9RfHqn1ClLIK7Hrmlo7KLnTox53HtOdYvu7o1lyRoVa53YaW7ziqu99d7dmuRUy49lax7v/VrRtr5a7jPtd/Peo3uji+OD71nx/36PFKlOKqyNt3d1WezSmb06UWMRG6qmVjz/cywzD0xcZ0/XXOukrt65rWMfrgz1dLKv4/U+hwKSrUqpwih95atkvhwUEa3rN1me99hmGUCVznFjl0JNdW4UX6IodLGw9ma8o3WzXxlo5eSU9vf79Lq3Yf97wvvfT7Tnpo7nrP+i1P3aCl2zK1+NcjmvfTqYswV7Zs5DXHwdBuzXVfj5ZqFB6sY/l2jT+ZZCEVf/7s0CxaSY3DvC6G+kuDIEPrnuhf69/jzzWVjdkSRK+kbt266YorrtBrr73mWXbJJZfo5ptv1qRJkyrcPlCD6Dany5P5lNw+VhazWWHBFt3cqZmO59t1cUKkGkcEy2Iy6Zf0HC3fflRXt4lRh8Ro3fn2KiU1Dtfofu10cXykChwuHcgqUERwkGav2qvrL4rVxfFR2nMsX08s2KycQoeuuzhWBXanfn9lczlcbkWFWZXYMEwuV3FdzyYNQmR3uRUVGiSb0+35ICQVZ4b+vP+EYiNDFR8dqgYhQbI5XQq2mGVIOphVqEbhwVq2/YjaJ0apwObSRfGRslpM2ne8QLlFTiU1CleI1awXU7dp55F8dWwWrdwih1o3baCjeTZ1adFINqdLB7MKlZlrU6HdJZdh6L4erZTUOFzr9mXp5/0nNH/9IUUEW3TrFRcot8ihH3Yc1bgbLvZkq/zr81+UtjdLD/dtp4ToUL37w245XG61btpAOYUONYkM0W8vT1T3C5voWJ5N+48Xav66g+rQLEpPfvaL2sY20PUXxyqpcbj6tY9TaJBFhgyFWi0KtVrkchvKK3Jq97F8dUiMktlk0q8ZuYoMDVJmrk3BFrPCQ4ozB77cmKGkxmEa0DFBFrNJkaFBxVlTjcLldBn6enO69hwr0C2dm+mjtAO6qlVjpWcXFWfdtGmidnENdCTPpvDgIOUWObT3WIGuaNFINodLQWazmkaGyJCh7EKHGoUHy2wyKchs0s4jeWrdtIHMpuJsXIvZpGCLWblFToUGm1Vgc6lhqWCizenWun0n1DaugT5Zd1CHc4rUpEGI4qJCZXe6dVF8pH7NyNG6fSfU48Im6n1RUxXaXVq7L0tb0otvmW0aGaJfDmXrypaNvQIut3dN0vWXxHrdjl8Zd3RrrvaJUfrdFRdozZ7jahoZouN5dplMJjWPCVfTBsW3c5tN8voQUORwKejkB4Ugi1kut6H1+7O07XCeXG5D118cq8jQoJOvYbcng65kH+V9qKiI0+VWvt2lyJAg2V1u2V3F+y092VqJ3IIi/e2tVI26pbvaxEWrQUiQDMOQw2Uo3+aUNcisfccKtOtonuxOt65uHaOgk6VIQq0WBVvMOpxTpMhQqxpHBKvA7lRokEVr9hzXvuMF+mbzYf2097jaxUZ6sl6Cg8zqf2m8Pit1i/TAyxK0/3iBNhw4lRVY0QfJyogItii/1BeBWzo388oUrW03d0rU4q1HfNaa/HrUb/T051u0fMdRxUWFaHjPNmoYbtWOzDy9uqR6X0j+98A1io8KVWauTVaLSWv2ZHlNHOhLp6SGyily6MYO8br8goa6MLaBxn+8Uat2e/8NGoQEeSZUPN38Ed21bt8JPfX5L2rSIFhH8+wKs1r02p1XaEt6rg6eKNDslcWZcvP+fLUuio9UqNWirRm5OnSiUPuOF2jSV7/q+otj9dtOiWobW/y+HR8dql1H8vXlxnSlZxdp3/EC9WzXVAM7JiipcZgcTqM4y/Dkl5de7Zpq6baydQTDgy36c8/WOpxTpJxCpx7o1UZx0SE6nG1TdJhVDrdbmTk25RQVZ6NEhgbJajGrWcMwhQVbZDaZFBxk1tE8m/7z4151bBatC2MbKD4qVCt3HZNM0r+/26Gf9mZp8OWJevC6C9W6aYSO5dm9bs83DEMHTxQq1GpRkcOlZg3DvMa8pHLHfcn7gdttqOjk/7zS5SpOFNj1054sdbwg2tP3wzlFSs8uUmLDMH380z69sGiHp33zxuG6+5oWCgu2KDPHpqgwq37TtolOFDgUHGRWy5jw4i+HJ+vBjpq7Xndd00JDr2quzv9KLdO/0rq0aKS0vVmKDrOq7yVxGtL1AgVZip87s8mk77cf0cCOCdqfVeiV8Ypzx2OD2uu6i5rW2m3DhmHIMCS3YXhex7lFDv1l9lot31Fca3j3pAFeF+0qY/szN/q8/f9Ynk13vrNagy9P1F96t5HD5daE+Rv135+qHgD+8m+/8cpiO91fZqfpq00ZuunyRE3/Q3Ed+NKBmr/0bqPXfLzPXxwfqWE9WuqJBZt17YVN9K+bO2jemv16a9kuOVyGJ2i44h/Xy20Y+tsH63T/ta21+2ienl+4Tc/c0kF3dGtxxgvlNRXQ3zVxgMxmkzo9tbBacxSg/tg9aYDchvTVpsoH3WrbxfGR+jWj8pNI15WH+7bTQ33beh7bnW51eTrVMx/Hd2N6lZmjAThfXdG8oUKtFuXZnJ7vfsEWs9rFNyhzl5QkdW7eUIUn59NIjA7Tj7uO6a6rWyjP5izzvS46zKorWzbWoi2Bk1ixdsJ1ahwZWOV0CKLXILvdrvDwcP3vf//TLbfc4ln+0EMPaf369Vq6tOw/H5vNJpvtVJ29nJwcJSUl6ejRowEVRJekto/V7K21NSkkyKzgILOKHC6fdeesFpOcbkOMlHObySSffyOzSXKf538/s6k4YF4SjK6MUKtZRY5T5UCCzCZPNk6jcKuCzCa5DENBZrNMKp4szVBx8KEkCFHye1Y5X2JNpuJb6IPMJk99v5Agc5m2Voup0n32pXTfgfrm9LFaFeHBFtmc7jLZtlLxuHGffGN0G8UXK0reK23OU//3Tr+IEWQ2yWI2KchiUr6t6pPpoXZcfkG0fi51UbAi7959hYa/v65K779Xt2qkqbddpu6TfQdW7r2muWb+WH6Jh9MN7BivDolReu6bbRrRq7Ue7lu5EjY1ze5064+z1qpjsyg9ktxOe47lq9807xrezRuHac79V2rtvhP627xT5VqubNlIc+6/ssrH3HgwW7e+firDtvSdReNvaKel249qxc7iC4q3d71AN3dKUNcWjcrblYfN4dKqPVm6qmUjTyJIyefssf3aanjPViqwO9Vv2g/KzLXpgz9eqQ9WH9CqPcf11cgeivQxYajLbcjudCunyKG4qNAy64/l2xVzsryXw+FQamqq+vXrVyaIPn7+Zn249qBiIooz66oiItiigR3jddNlCbq6dfFdCgV2py7/V/llTny54dI4fb353A90tIttoG11OGHi+eCubkl6fNAlnse7juRr0a+ZOpBVqK4tGunyC6LVd9qZy1HVpVs6J6pzUrQ6JkbrkY82akep8lA2p1tBZpN+fqyP7pn5k37ae6JK+1759166+rni9+kxfS9Uu/hIPff1Nu06WQamV9smeuG2jooO8x6jBXanjubZlVvk1KWJUdp9NF/JLxW/F864p4uuvTBGa/Zk6dWlu/TogIu1YscRPfXlqcmqL2gYqusvjtV/Vlbuf0B98fZdnRUWbNEd7/xU111BAFs06lrd+16ap2RWbdrwaC+FhYRU3LAeycnJUZMmTQii14RDhw6pWbNm+uGHH9S9e3fP8okTJ+q9997T1q1lbwlNSUnRk08+WWb5nDlzFB4eWFd0Fuw169tDvm/HN8mQ4XMKo/rFbDLkNgLjXIHzwagOTv2QYVaEVVqSXrOTxf3lEpcaWA0lhkvLM0z6aI/viQkr8shlTk3Z4Lu0xW/i3Pr+cPX6bzUZcpx8X+oR59YPJ/dzS0uX5leyzxdHu/Vrdu1PtncuiLYaynbwPn66pAhDbkM6WHD+PjdtIos/EptNhpqESj9mmmWSoesTDX17yKxuTd1qEWnoi31m5TtNur21S/P3mGV3m5QUYeim5m69uuXUmIkLM3TjBW79mm3ScZvUNsrQ4kNmNbBKrSINOdzFbTo0NvT1frM2ZpmV3Mytgc2LL6h8sc+shQeLx9Wg5i71iCvu3+JDZqUXSL+JN7Q43aSjRSY1CTU0rJ1bCw+YdXFDQxdGGSq58WBvrjR1U5DiwgyN6ejS0+ssCguSHrrUpe05Js3YVtznLk3cur21WyEW6WiRtD/fpE6NDR3Il/79i0XBZulPF7uU1EAqdBb3r2tTtxoGS8syzOqd4Na+PJNiwwz9d5dZXZoY6hZrqAbmGasVhwqkfIdJR4qkbrGGSs/NfLhQmrbRou5xhgY1d6uapUz19X6Tvjpg0ZNXONXwtO+iLre0K9eklpGGrGfx9nnCJh0qMOmShoZXPw1DnsduQ3X2d8i2Sw2CpI/2mPXDYbNuaenSVU0NvbO15LXtVmyoFOHjrnG3IeU5pIggac1RkxLCDTndUlKE9OzPFh2zmdQz3q2uTdxqfvIGh+M2aUeOSS5Dmrer+PV9QYSh1pGGgszSFTFuHcg3aW+eSTc1d6vQJYUHSZ/tM2vFYbMub+xWt9jisX5tvFvzdlnUpYlbVrN0VVO31h8za1nGqT/a4OYupReYFBYkBZulRSe/99x1oUtRwdKbv5p1fYKhb06OZ4vJ0JSrXNqTJy06aFawRUoMN7TxuFnRwYauT3SrRQPpo91mrcg0yyxDIRap0FX8R2wYbOiE/dQfdGCSS1az9Mne4nONCDKU7zTp0kZu9Ul0Kz5MemurRYYhdW3qVpNQ6ePdZnVsbOhIkbTheHG/EsINRQQZ2pFT/F4UHWyoR1zx6yrtqEn/2V68/8lXOVXkkmZss2h37ql+NA4xdNxm8pzjb1u4tfCgWXmV+J8ZZjE0vpNLyzLMig011Cmm+JwrYhjFf+/VR8xq3sBQvlPakmVSzwS31h0zq0MjQyfs0v92Fb9X17SRlzrVJlIqcErLD5u08bhZsWHF/w8alRrz+Q4ps0hqHFL8mm4YfGp8ZhYWvw6uinUr9YBZ6QUmz+eMm1u41DnGUJFL2nDcpK3ZJl2XUPx/I6NA+uWESdfGGQq2FL+nHLVJcWHldPQM8h2S05CifVRdLf1eUprbkHIdxf8P4sOlnTnSZ/uKXxNJEYb255fd6IYLXAo7+XG25DPmLS1dyigw6cfMsm+Eyc3cKnLJM94irYZyHcX7T4owtKLUNr9v7dLcXdX/rF3aTc1d2plj0sDmbl1QqqR0tr34fLfnmPThbouCzUalX1dXxLjVtamhw4XSV/vP/vWY3MytXglupR01acVhs65LdKtdtKFnf7bI5jLpyiZurTl66vnp2Kj4f3TJa6t5hKGDBZLrDLGJwc1durSRoUk/B6lFA0MPdXDpQJ6UWWTStmyTVh8xq0UDQ42Ci1+DjYKlbIe0spy/5elCzIYGNncr2Cy5jOLPRe9sLX5PH9rGpTk7LWrRwNDevHP0Q8RpOscUv+dU9Jq4JtZd7mv9gghDwy92aW+eSW9vLfs6nnyV0/OeuO6oSWuPFY+Dq5oaahgi7csr/kyTZS8ey2/+6r2PFg2KP2skN3PLaUgrDptkNRd/1jta5N3fv7Z3qW104IWJCwoKNHToUILoNaEkiL5ixQpdc801nuXPPPOMZs2apV9/LTuJE5nopzgcDn39Taqu7X2dGjUIU57NKbfbUGRokGd2bLfbkCHJJMllGDqeb1dwkFmhQcUZdoUOlyKCLbJazHIZhsKtFh3OtSnYYlJESJBCrcXtCuxOWS1m2RwuNQoP1p5jBWocEaw8m1MJ0aHakZmnqDCrcgodCrKY5XC5FWwxK9RqltuQmjUMlduQNhzIlssw1Cg8WMbJuscNQoPkdLmLS1OcPLd8m1M2p1sNw6wym01yuoo/aEaezPbbe7yguKyJ25DVbJLd5VaRw61j+XYFWUyKCg1SmNWiArtLDpf75MQTZk/d5exCh4ocLk9Zjny7U00bhHhKruzPKlBcZKjCgi2eSYckye4ylFfkkNsoniwtMjRINodLNqdbsZEhchlSsMWkjBybLGaTwoMtOphVKIvZJGuQWZEhQQoPLq4BvOFAtuKiQhUZWpypaLWYFR0aJIe7+NKHy20oyGLSvuOFiosKUW6RUyFBZp0ocCjEalZMRIjCgy3adTRfFzQMk9lsUr7NqQK7S/k2p9rFNVChwyWrxaxD2UUym6TGJ8u25J6spXY0167GEcHKKih+XThdhqLDrTKbJJvDrYiQIDndboUEWVRgd57sf5AOnCiU6+T5O1xuxUSEaPfRfIUFW9S6SYSyCuxqEBKkYItZRU6X7E5DLndx2ZLcIqdaxIQrzGqR0+WWyWSSYRgKDjKrwO7yqr28IzNPjSOCFRUaJIu58hOHuNyGDMNQdpFThmEoJMgsq8WsYItZ+XaXMrKLFBFikdsoHhcls57bHW7ZnG41irCq0O5SZGiQ3IbUONyqQodbRU6XDKP4FnazyaQiR3EAoMjh8tzmFhFc3FeLWZ4sRZfbkNlkkslU/GHZbDpVSsYkKezkayLcalFwkFk5RU7l25yejHS70y2ny5Db7dTGNSt0bc9esliCVOhw6UBWcZmJppHBCraY1TiiuCxHkNlUfC7hVlnMJhXYi1+n0WFByrcV/x3ybE5Fh1nVrGGoV5kJm8OlkJOZeMfybHK6DcVGhpR5/t1u4+Q5Vfx3KV32wjAM2V2GdPLvXnp7wzBkc7rlNgw5XYaiSmX62J3uk89t+cdLzy5SkwbBXqUBSu4wKCnfU9IHm9Mtq9nkVefP5Tbkchue8V66X263ofyT74OhVounZFRokFlmk0mOk6V47Cf/5jEVTBwqFdcfzC4sfi2FWS06kmeTIemCk3XcLWbTyVIiRWrWMNTn83ws3y632ygu4WX2fi59bWNzunU4p0gRIUGKOllKRJIyc22euylKShblFjmVU1T8Wil0uNQwzCrDMJSRa1PzRmGyn5yk1XXyuS65gyIqzOqZ+Mdkko7m2eU4+V4fHmyRSVKI1aIjuTY1aRBcbl/Ts4sUEWxRVFjxmMy1OeU2DEUEWxRmtSjP5lJwUHFfG4QEad/xQgWZTYoKC1J2oUNBZrNCgsyKiQhWTpFTFrOUXehUo3CrihwuFThcatogRIZR/DxmFzoU0yBYuUVOz+shzGpRRIhFOUXO4ve1ILNySpX8cZ+8u8R28v2gJPs8MjRILreho3nFmaYl7zklr223UTyucoqccrrdSs8u0sVxkSffdw2Z3E6lpi5ScvKprFTDMOR0Fz/HJpNJh04UKjw4SCFBZhU4XCo8+f7fOCK4uIxVvv3k/8swNTmtzrXT5faM+yKHy1OeyjCkw7k2NQyzej4nRIYGnbxzxi6X21Crk+/z4VaLQqwlGftuWUwm5dmLXyNVmQy3PCWfX852P5K8ym8B56ozZaL7W8nnIpzbCuzOk/9jK65Z7A8ld0+WKMkKt5hNnv85pUMkbqP4Pd7tNnSi0KGGYVZlFTrU6OT3v/qspsa7v//Wbnfx55DKzKtT8pnFV8muqjIMw3PhsuScfb1XFdpdCrV6f8c4/fV5tpwud/F3ulL7dLjcZb6HnKkEYHX/fiXflyxmk+czYVU5XMXfL8ub4Lf0cfJsLjUIscjuKv5O7XIXz68TZDYp1Grx/F1Of24No/hOLEPFd4mU91pwn7zb0+Z0KyzY4vXdstDuUpDFVOHrx9dz6DgZH/J1p1htj53T/97n0v94fyMTvQZVp5zL6QK1Jrrk30kGAdQ9xjwQOBjvQGBhzAOBg/EOBJZAHvOVjdmS7lIJwcHB6tKli1JTvSe8Sk1N9SrvAgAAAAAAAACoX3wXWIWX0aNH66677lLXrl11zTXX6M0339S+ffv0wAMP1HXXAAAAAAAAAAC1hCB6Jd1+++06duyYnnrqKaWnp6tDhw768ssv1aJFi7ruGgAAAAAAAACglhBEr4IRI0ZoxIgRdd0NAAAAAAAAAICfUBMdAAAAAAAAAAAfyET3E8MwJBXP+BpoHA6HCgoKlJOTE3Az/AKBiDEPBA7GOxBYGPNA4GC8A4ElkMd8Say2JHbrC0F0P8nNzZUkJSUl1XFPAAAAAAAAAAAlcnNzFR0d7XO9yagozI4a4Xa7dejQIUVGRspkMtV1d/wqJydHSUlJ2r9/v6Kiouq6OwBqGWMeCByMdyCwMOaBwMF4BwJLII95wzCUm5urxMREmc2+K5+Tie4nZrNZF1xwQV13o05FRUUF3EAEAhljHggcjHcgsDDmgcDBeAcCS6CO+TNloJdgYlEAAAAAAAAAAHwgiA4AAAAAAAAAgA8E0VHrQkJC9MQTTygkJKSuuwLADxjzQOBgvAOBhTEPBA7GOxBYGPMVY2JRAAAAAAAAAAB8IBMdAAAAAAAAAAAfCKIDAAAAAAAAAOADQXQAAAAAAAAAAHwgiA4AAAAAAAAAgA8E0QEAAAAAAAAA8IEgOgAAAAAAAAAAPhBEBwAAAAAAAADAB4LoAAAAAAAAAAD4QBAdAAAAAAAAAAAfCKIDAAAAAAAAAOADQXQAAAAAAAAAAHwgiA4AAAAAAAAAgA9Bdd2BQOF2u3Xo0CFFRkbKZDLVdXcAAAAAAAAAIKAZhqHc3FwlJibKbPadb04Q3U8OHTqkpKSkuu4GAAAAAAAAAKCU/fv364ILLvC5niC6n0RGRkoq/oNERUXVcW/8y+FwaOHChUpOTpbVaq3r7gCoZYx5IHAw3oHAwpgHAgfjHQgsgTzmc3JylJSU5Ind+kIQ3U9KSrhERUUFZBA9PDxcUVFRATcQgUDEmAcCB+MdCCyMeSBwMN6BwMKYV4Xlt5lYFAAAAAAAAAAAHwiiAwAAAAAAAADgw3kdRF+2bJluuukmJSYmymQy6ZNPPvFabxiGUlJSlJiYqLCwMPXu3VubN2/2amOz2TRy5Eg1adJEERERGjx4sA4cOODVJisrS3fddZeio6MVHR2tu+66SydOnKjlswMAAAAAAAAA1LXzuiZ6fn6+Lr/8cg0bNky/+93vyqyfPHmypk6dqpkzZ6pdu3Z6+umn1a9fP23dutVTLH7UqFH67LPPNHfuXMXExGjMmDEaNGiQ0tLSZLFYJElDhw7VgQMH9PXXX0uS/vznP+uuu+7SZ5995r+TBQAAAAAAQL3kcrnkcDjquhsIUA6HQ0FBQSoqKpLL5arr7tQoq9XqifGejfM6iH7jjTfqxhtvLHedYRiaNm2aJkyYoFtvvVWS9N577ykuLk5z5szR8OHDlZ2drXfeeUezZs1S3759JUmzZ89WUlKSFi1apP79+2vLli36+uuvtXLlSnXr1k2S9NZbb+maa67R1q1bddFFF/nnZAEAAAAAAFCvGIahjIwMKh6gThmGofj4eO3fv7/CCTbPRw0bNlR8fPxZndt5HUQ/k927dysjI0PJycmeZSEhIerVq5dWrFih4cOHKy0tTQ6Hw6tNYmKiOnTooBUrVqh///768ccfFR0d7QmgS9LVV1+t6OhorVixwmcQ3WazyWazeR7n5ORIKr6yE2hXFkvON9DOGwhUjHkgcDDegcDCmAcCB+Pdfw4fPqycnBw1bdpU4eHh9TKAiXOfYRjKz89XREREvXoNGoahgoICHTlyRC6XS3FxcWXaVPZ9rt4G0TMyMiSpzJMTFxenvXv3etoEBwerUaNGZdqUbJ+RkaHY2Ngy+4+NjfW0Kc+kSZP05JNPllm+cOFChYeHV+1k6onU1NS67gIAP2LMA4GD8Q4EFsY8EDgY77XLZDIpISFB8fHxslqtXLRAnQoODq6Xr0Gr1arIyEilp6dr7dq1MgzDa31BQUGl9lNvg+glTr96YhhGhVdUTm9TXvuK9jN+/HiNHj3a8zgnJ0dJSUlKTk5WVFRUZbtfLzgcDqWmpqpfv36yWq113R0AtYwxDwQOxjsQWBjzQOBgvPuHzWbTvn371LhxY4WFhdV1dxDADMNQbm6uIiMj61Umegmr1arc3Fxdf/31CgkJ8VpXUj2kIvU2iB4fHy+pOJM8ISHBszwzM9OTnR4fHy+73a6srCyvbPTMzEx1797d0+bw4cNl9n/kyJFybwEoERISUuaPIhX/0QL1H1AgnzsQiBjzQOBgvAOBhTEPBA7Ge+1yuVwymUyyWCwym8113R0EMLfbLak4kbg+vhYtFotMJpOCgoLKvKdV9j2u/j0rJ7Vq1Urx8fFetx7Z7XYtXbrUEyDv0qWLrFarV5v09HRt2rTJ0+aaa65Rdna2Vq9e7WmzatUqZWdne9oAAAAAAAAA8J+tW7cqPj5eubm5dd0V1KGNGzfqggsuUH5+fq0e57wOoufl5Wn9+vVav369pOLJRNevX699+/bJZDJp1KhRmjhxoubPn69Nmzbp3nvvVXh4uIYOHSpJio6O1v33368xY8bo22+/1bp163TnnXeqY8eO6tu3ryTpkksu0Q033KA//elPWrlypVauXKk//elPGjRokM9JRQEAAAAAAID6qnfv3ho1alSZ5Z988olXOZCZM2fKZDJ5fhISEjRkyBDt3r3b02bdunUaNGiQYmNjFRoaqpYtW+r222/X0aNHz9iHCRMm6MEHH1RkZKQkacmSJTKZTDpx4kS1z8tkMumTTz6psF3Lli29zstkMukf//iHV5tvv/1W3bt3V2RkpBISEvT3v/9dTqfT5z737NlTZp8lP//73/8qfQ418TxUx0MPPaQuXbooJCREnTp1KrM+JSWl3HOLiIio1P5tNps6deokk8nkiQVLUseOHXXVVVfpxRdfrKEzKd95HUT/6aef1LlzZ3Xu3FmSNHr0aHXu3FmPP/64JGncuHEaNWqURowYoa5du+rgwYNauHChZ3BJ0osvvqibb75ZQ4YMUY8ePRQeHq7PPvtMFovF0+b9999Xx44dlZycrOTkZF122WWaNWuWf08WAAAAAAAAOM9ERUUpPT1dhw4d0pw5c7R+/XoNHjxYLpdLmZmZ6tu3r5o0aaJvvvlGW7Zs0bvvvquEhIQzTvh44MABLViwQMOGDfPjmXh76qmnlJ6e7vl59NFHPes2bNigAQMG6IYbbtC6des0d+5cLViwoEygvbSkpCSv/aWnp+vJJ59URESEbrzxRn+c0lkxDEP33Xefbr/99nLXjx07tsz5tW/fXrfddlul9j9u3DglJiaWu27YsGF67bXX5HK5qt3/ipzXQfTevXvLMIwyPzNnzpRUfPUoJSVF6enpKioq0tKlS9WhQwevfYSGhmr69Ok6duyYCgoK9NlnnykpKcmrTePGjTV79mzl5OQoJydHs2fPVsOGDf10lgAAAAAAAMD5yWQyKT4+XgkJCbruuuv0xBNPaNOmTdqxY4dWrFihnJwcvf322+rcubNatWql66+/XtOmTVPz5s197vO///2vLr/8cl1wwQWV7seaNWvUr18/NWnSRNHR0erVq5fWrl3rWd+yZUtJ0i233CKTyeR57EtkZKTi4+M9Pw0aNPCsmzt3ri677DI9/vjjuvDCC9WrVy9NmjRJ//73v32Wn7FYLF77i4+P1/z583X77bd77ftsZWVl6e6771ajRo0UHh6uG2+8Udu3b/esnzlzpho2bKhvvvlGl1xyiRo0aKAbbrhB6enpZ9zvyy+/rAcffFCtW7cud32DBg28zu3w4cP65ZdfdP/991fY56+++koLFy7U888/X+76/v3769ixY1q6dGmF+6qu8zqIDgAAAAAAAOD8ERYWJklyOByKj4+X0+nU/PnzZRhGpfexbNkyde3atUrHzc3N1T333KPvv/9eK1euVNu2bTVgwABPUHvNmjWSpBkzZig9Pd3z2JfnnntOMTEx6tSpk5555hnZ7XbPOpvNptDQUK/2YWFhKioqUlpaWqX6m5aWpvXr11cqyFwV9957r3766SctWLBAP/74owzD0KBBg+RwODxtCgoK9Pzzz2vWrFlatmyZ9u3bp7Fjx9ZoP95++221a9dOv/nNb87Y7vDhw/rTn/6kWbNmKTw8vNw2wcHBuvzyy/X999/XaB9LC6q1PQMAAAAAAACoNMMwVOiovZIUZxJmtXjVM68NBw4c0JQpU3TBBReoXbt2Cg4O1j//+U8NHTpUDzzwgK666ipdf/31uvvuuxUXF+dzP3v27FGXLl2qdOzrr7/e6/Ebb7yhRo0aaenSpRo0aJCaNm0qSWrYsKHi4+PPuK+HHnpIV1xxhRo1aqTVq1dr/Pjx2r17t95++21JxZnR06ZN0wcffKAhQ4YoIyNDTz/9tCRVmNFd4p133tEll1yi7t27V+k8z2T79u1asGCBfvjhB89+33//fSUlJemLL77Q3XffLan4Asfrr7+uNm3aSJL++te/6qmnnqqxfthsNr3//vtnLG8jFY+He++9Vw888IC6du2qPXv2+GzbrFmzM64/WwTRAQAAAAAAgHNAocOl9o9/UyfH/uWp/goPrvlQYXZ2tho0aCDDMFRQUKArrrhCH3/8sYKDgyVJzzzzjEaPHq3vvvtOK1eu1Ouvv66JEydq2bJl6tixY7n7LCwsLJPpXZHMzEw9/vjj+u6773T48GG5XC4VFBRo3759VT6nhx9+2PP7ZZddpkaNGun//u//PNnpycnJmjJlih544AHdddddCgkJ0WOPPably5d7zcPoS2FhoebMmaPHHnusyn07ky1btigoKEjdunXzLIuJidFFF12kbdu2eZaFh4d7AuiSlJCQoMzMzBrrx8cff6zc3FxP0N6X6dOnKycnR+PHj69wn2FhYWeso3+2KOcCAAAAAAAAoNKioqKUnZ1dZvmJEycUFRXltSwyMlLr16/Xxo0blZeXp7S0NF155ZVebWJiYnTbbbfphRde0JYtW5SYmOiz/rUkNWnSRFlZWVXq87333qu0tDRNmzZNK1as0Pr16xUTE+NVhqW6rr76aknSjh07PMtGjx6tEydOaN++fTp69Kh++9vfSpJatWpV4f4+/PBDFRQUVBhkripfJXMMw/C6C8FqtXqtN5lMVSq3U5G3335bgwYNqjDjv+TCSkhIiIKCgnThhRdKkrp27ap77rnHq+3x48c9dxPUBjLRAQAAAAAAgHNAmNWiX57qX2fHrqyLL75YX331VZnla9as0UUXXeS1zGw2e4KflREcHKw2bdooPz/fZ5vOnTvrl19+qfQ+Jen777/Xq6++qgEDBkiS9u/fr6NHj3q1sVqtcrmqXk5n3bp1kooztkszmUxKTEyUJH3wwQdKSkrSFVdcUeH+3nnnHQ0ePLjGg8Lt27eX0+nUqlWrPOVcjh07pm3btnll19em3bt3a/HixVqwYEGFbV9++WVPGRxJOnTokPr376958+Z5ZdNL0qZNm/R///d/Nd7fEgTRAQAAAAAAgHOAyWSqlZIqNW3EiBF65ZVX9OCDD+rPf/6zwsLClJqaqnfeeUezZs2q9H4+//xzzZ07V7///e/Vrl07GYahzz77TF9++aVmzJjhc7v+/fvrj3/8o1wuV5nyKBs3blRkZKTXsk6dOunCCy/UrFmz1LVrV+Xk5OiRRx7xTHJaomXLlvr222/Vo0cPhYSEqFGjRmWO/eOPP2rlypW67rrrFB0drTVr1ujhhx/W4MGD1bx5c0+7KVOm6IYbbpDZbNbHH3+sZ599Vv/97389/T148KD69Omj//znP7rqqqs82+3YsUPLli3Tl19+WennsTy+noff/va3+tOf/qQ33nhDkZGR+sc//qFmzZp5Li5U144dO5SXl6eMjAwVFhZq/fr1kooD9yWleyTp3XffVUJCgm688cYy+1i9erXuvvtuffvtt2rWrJnX8ylJDRo0kCS1adNGF1xwgWf5nj17dPDgQfXt2/eszuFMzv1RCQAAAAAAAOCc0bJlS33//feaMGGCkpOTVVRUpHbt2mnmzJm67bbbKr2f9u3bKzw8XGPGjNH+/fsVEhKitm3b6u2339Zdd93lc7sBAwbIarVq0aJF6t/fO3O/Z8+eZdobhqF3331Xf/7zn9W5c2c1b95cEydO1NixY73avfDCCxo9erTeeustnxNVhoSEaN68eXryySdls9nUokUL/elPf9K4ceO82n311Vd65plnZLPZdPnll+vTTz/1Chw7HA5t3bq1TB3vd999V82aNVNycnK55967d2+1bNlSM2fO9Pn8nOl5mDFjhh566CENGjRIdrtdPXv21Oeff16mhEtV/fGPf9TSpUs9jzt37iypOPO8ZcuWkiS3262ZM2fq3nvvLbc2fEFBgbZu3SqHw1GlY3/wwQdKTk5WixYtqn8CFTAZNVnQBj7l5OQoOjpa2dnZZWpD1XcOh0Nffvml5w0OQP3GmAcCB+MdCCyMeSBwMN79o6ioSLt371arVq2qPEkmpFdffVWffvqpvvmmbiZirSstW7ZUSkqK7r333hrbp9vtVk5OjqKiomQ2n19TaNpsNrVt21YffPCBevToUW6bM421ysZsyUQHAAAAAAAAcF7585//rKysLOXm5pYpW1Jf/frrr4qMjKzxCUfPZ3v37tWECRN8BtBrCkF0AAAAAAAAAOeVoKAgTZgwoa674VcXX3yxNm7cWNfdOKe0a9dO7dq1q/XjnF/5+QAAAAAAAAAA+BFBdAAAAAAAAAAAfCCIDgAAAAAAAACADwTRAQAAAAAAgDpiGEZddwGo12pijBFEBwAAAAAAAPzMarVKkgoKCuq4J0D9VjLGSsZcdQTVVGcAAAAAAAAAVI7FYlHDhg2VmZkpSQoPD5fJZKrjXiEQud1u2e12FRUVyWyuPznXhmGooKBAmZmZatiwoSwWS7X3RRAdAAAAAAAAqAPx8fGS5AmkA3XBMAwVFhYqLCysXl7IadiwoWesVRdBdAAAAAAAAKAOmEwmJSQkKDY2Vg6Ho667gwDlcDi0bNky9ezZ86xKnpyLrFbrWWWglyCIDgAAAAAAANQhi8VSI4E+oDosFoucTqdCQ0PrXRC9ptSfIjcAAAAAAAAAANQwgugAAAAAAAAAAPhAEB0AAAAAAAAAAB8IogMAAAAAAAAA4ANBdAAAAAAAAAAAfKj3QXSn06lHH31UrVq1UlhYmFq3bq2nnnpKbrfb08YwDKWkpCgxMVFhYWHq3bu3Nm/e7LUfm82mkSNHqkmTJoqIiNDgwYN14MABf58OAAAAAAAAAMCP6n0Q/bnnntPrr7+uV155RVu2bNHkyZM1ZcoUTZ8+3dNm8uTJmjp1ql555RWtWbNG8fHx6tevn3Jzcz1tRo0apfnz52vu3Llavny58vLyNGjQILlcrro4LQAAAAAAAACAHwTVdQdq248//qjf/va3GjhwoCSpZcuW+uCDD/TTTz9JKs5CnzZtmiZMmKBbb71VkvTee+8pLi5Oc+bM0fDhw5Wdna133nlHs2bNUt++fSVJs2fPVlJSkhYtWqT+/fvXzckBAAAAAAAAAGpVvc9Ev/baa/Xtt99q27ZtkqSff/5Zy5cv14ABAyRJu3fvVkZGhpKTkz3bhISEqFevXlqxYoUkKS0tTQ6Hw6tNYmKiOnTo4GkDAAAAAAAAAKh/6n0m+t///ndlZ2fr4osvlsVikcvl0jPPPKM//OEPkqSMjAxJUlxcnNd2cXFx2rt3r6dNcHCwGjVqVKZNyfans9lsstlsnsc5OTmSJIfDIYfDUTMnd54oOd9AO28gUDHmgcDBeAcCC2MeCByMdyCwBPKYr+w51/sg+rx58zR79mzNmTNHl156qdavX69Ro0YpMTFR99xzj6edyWTy2s4wjDLLTnemNpMmTdKTTz5ZZvnChQsVHh5ejTM5/6WmptZ1FwD4EWMeCByMdyCwMOaBwMF4BwJLII75goKCSrWr90H0Rx55RP/4xz/0+9//XpLUsWNH7d27V5MmTdI999yj+Ph4ScXZ5gkJCZ7tMjMzPdnp8fHxstvtysrK8spGz8zMVPfu3cs97vjx4zV69GjP45ycHCUlJSk5OVlRUVE1fp7nMofDodTUVPXr109Wq7WuuwOgljHmgcDBeAcCC2MeCByMdyCwBPKYL6keUpF6H0QvKCiQ2exd+t1iscjtdkuSWrVqpfj4eKWmpqpz586SJLvdrqVLl+q5556TJHXp0kVWq1WpqakaMmSIJCk9PV2bNm3S5MmTyz1uSEiIQkJCyiy3Wq0B92IsEcjnDgQixjwQOBjvQGBhzAOBg/EOBJZAHPOVPd96H0S/6aab9Mwzz6h58+a69NJLtW7dOk2dOlX33XefpOIyLqNGjdLEiRPVtm1btW3bVhMnTlR4eLiGDh0qSYqOjtb999+vMWPGKCYmRo0bN9bYsWPVsWNH9e3bty5PDwAAAAAAAABQi+p9EH369Ol67LHHNGLECGVmZioxMVHDhw/X448/7mkzbtw4FRYWasSIEcrKylK3bt20cOFCRUZGetq8+OKLCgoK0pAhQ1RYWKg+ffpo5syZslgsdXFaAAAAAAAAAAA/qPdB9MjISE2bNk3Tpk3z2cZkMiklJUUpKSk+24SGhmr69OmaPn16zXcSAAAAAAAAAHBOMlfcBAAAAAAAAACAwEQQHQAAAAAAAAAAHwiiAwAAAAAAAADgA0F0AAAAAAAAAAB8IIgOAAAAAAAAAIAPBNEBAAAAAAAAAPCBIDoAAAAAAAAAAD4QRAcAAAAAAAAAwAeC6AAAAAAAAAAA+EAQHQAAAAAAAAAAHwiiAwAAAAAAAADgA0F0AAAAAAAAAAB8IIgOAAAAAAAAAIAPBNEBAAAAAAAAAPCBIDoAAAAAAAAAAD4E+eMgt956a5W3ef311xUbG1sLvQEAAAAAAAAAoHL8EkT/5JNPNGTIEIWFhVWq/Zw5c5SXl0cQHQAAAAAAAABQp/wSRJekl19+udJB8Q8//LCWewMAAAAAAAAAQMX8UhN98eLFaty4caXbf/XVV2rWrFkt9ggAAAAAAAAAgIr5JRO9V69eVWp/7bXX1lJPAAAAAAAAAACoPL+VcynN7XZrx44dyszMlNvt9lrXs2fPuugSAAAAAAAAAABl+D2IvnLlSg0dOlR79+6VYRhe60wmk1wul7+7BAAAAAAAAABAufweRH/ggQfUtWtXffHFF0pISJDJZPJ3FwAAAAAAAAAAqBS/B9G3b9+uDz/8UBdeeKG/Dw0AAAAAAAAAQJWY/X3Abt26aceOHf4+LAAAAAAAAAAAVeb3IPrIkSM1ZswYzZw5U2lpadqwYYPXT204ePCg7rzzTsXExCg8PFydOnVSWlqaZ71hGEpJSVFiYqLCwsLUu3dvbd682WsfNptNI0eOVJMmTRQREaHBgwfrwIEDtdJfAAAAAAAAAMC5we/lXH73u99Jku677z7PMpPJJMMwamVi0aysLPXo0UPXXXedvvrqK8XGxmrnzp1q2LChp83kyZM1depUzZw5U+3atdPTTz+tfv36aevWrYqMjJQkjRo1Sp999pnmzp2rmJgYjRkzRoMGDVJaWposFkuN9hkAAAAAAAAAcG7wexB99+7dfj3ec889p6SkJM2YMcOzrGXLlp7fDcPQtGnTNGHCBN16662SpPfee09xcXGaM2eOhg8fruzsbL3zzjuaNWuW+vbtK0maPXu2kpKStGjRIvXv39+v5wQAAAAAAAAA8A+/l3Np0aLFGX9q2oIFC9S1a1fddtttio2NVefOnfXWW2951u/evVsZGRlKTk72LAsJCVGvXr20YsUKSVJaWpocDodXm8TERHXo0MHTBgAAAAAAAABQ//glE33BggW68cYbZbVatWDBgjO2HTx4cI0ee9euXXrttdc0evRo/fOf/9Tq1av1t7/9TSEhIbr77ruVkZEhSYqLi/PaLi4uTnv37pUkZWRkKDg4WI0aNSrTpmT709lsNtlsNs/jnJwcSZLD4ZDD4aix8zsflJxvoJ03EKgY80DgYLwDgYUxDwQOxjsQWAJ5zFf2nKsVRN+3b5+SkpJkMpm8lhuGof3796t58+Zey2+++WZlZGQoNjZWN998s8/91kZNdLfbra5du2rixImSpM6dO2vz5s167bXXdPfdd3sdu7SSGu1ncqY2kyZN0pNPPllm+cKFCxUeHl7V06gXUlNT67oLAPyIMQ8EDsY7EFgY80DgYLwDgSUQx3xBQUGl2lUriN6qVSulp6crNjbWa/nx48fVqlWrMoFwt9td7u/+kJCQoPbt23stu+SSS/TRRx9JkuLj4yUVZ5snJCR42mRmZnqy0+Pj42W325WVleWVjZ6Zmanu3buXe9zx48dr9OjRnsc5OTlKSkpScnKyoqKiaubkzhMOh0Opqanq16+frFZrXXcHQC1jzAOBg/EOBBbGPBA4GO9AYAnkMV9SPaQi1Qqi+8rAzsvLU2hoaHV2WWt69OihrVu3ei3btm2bp/56q1atFB8fr9TUVHXu3FmSZLfbtXTpUj333HOSpC5dushqtSo1NVVDhgyRJKWnp2vTpk2aPHlyuccNCQlRSEhImeVWqzXgXowlAvncgUDEmAcCB+MdCCyMeSBwMN6BwBKIY76y51ulIHpJZrXJZNJjjz3mVZbE5XJp1apV6tSpU4X7Wb16tZYsWaLMzMwymelTp06tSpcq9PDDD6t79+6aOHGihgwZotWrV+vNN9/Um2++6TmXUaNGaeLEiWrbtq3atm2riRMnKjw8XEOHDpUkRUdH6/7779eYMWMUExOjxo0ba+zYserYsaP69u1bo/0FAAAAAAAAAJw7qhREX7dunaTiTPSNGzcqODjYsy44OFiXX365xo4de8Z9TJw4UY8++qguuugixcXFeWW0V1SDvDquvPJKzZ8/X+PHj9dTTz2lVq1aadq0abrjjjs8bcaNG6fCwkKNGDFCWVlZ6tatmxYuXKjIyEhPmxdffFFBQUEaMmSICgsL1adPH82cOVMWi6XG+wwAAAAAAAAAODdUKYi+ePFiSdKwYcP00ksvVau290svvaR3331X9957b5W3ra5BgwZp0KBBPtebTCalpKQoJSXFZ5vQ0FBNnz5d06dPr4UeAgAAAAAAAADORdWqiT5jxoxqH9BsNqtHjx7V3h4AAAAAAAAAAH+pdBD91ltvrfROP/74Y5/rHn74Yf373//WtGnTKr0/AAAAAAAAAADqQqWD6NHR0Z7fDcPQ/PnzFR0dra5du0qS0tLSdOLEiQqD7WPHjtXAgQPVpk0btW/fvswMqGcKwAMAAAAAAAAA4E+VDqKXLuHy97//XUOGDNHrr7/umVjT5XJpxIgRFdZJHzlypBYvXqzrrrtOMTExtTKZKAAAAAAAAAAANaFaNdHfffddLV++3BNAlySLxaLRo0ere/fumjJlis9t//Of/+ijjz7SwIEDq3NoAAAAAAAAAAD8S4EqEwAARxFJREFUxlydjZxOp7Zs2VJm+ZYtW+R2u8+4bePGjdWmTZvqHBYAAAAAAAAAAL+qVib6sGHDdN9992nHjh26+uqrJUkrV67Us88+q2HDhp1x25SUFD3xxBOaMWOGwsPDq3N4AAAAAAAAAAD8olpB9Oeff17x8fF68cUXlZ6eLklKSEjQuHHjNGbMmDNu+/LLL2vnzp2Ki4tTy5Yty0wsunbt2up0CQAAAAAAAACAGlelIHpeXp4aNGggs9mscePGady4ccrJyZGkCicULXHzzTdXuZMAAAAAAAAAANSFKgXRmzRpouuuu06DBw/W4MGD1axZs0oHz0s88cQTVWoPAAAAAAAAAEBdqdLEolu3btWAAQP00UcfqXXr1rryyiv1r3/9Sxs2bKit/gEAAAAAAAAAUGeqFERv0aKFRo4cqUWLFikzM1OjR4/W5s2b1bNnT7Vq1UoPPfSQvvvuO7lcrtrqLwAAAAAAAAAAflOlIHpp0dHR+sMf/qC5c+fq6NGjeuONN+R2uzVs2DA1bdpU77//fk32EwAAAAAAAAAAv6tSTXSfOwkKUnJyspKTkzV9+nStW7dOTqezJnYNAAAAAAAAAECdOesgen5+vubNm6fCwkIlJyerbdu26ty5c5l211xzjW6++WYNHjxYl1xyydkeFgAAAAAAAACAWlelci779u1Tr169FBkZqX79+mnfvn264oor9Mc//lEjR45Up06dtGzZsnK3feCBB7R69WpdddVVateunR555BF9//33MgyjRk4EAAAAAAAAAICaVqUg+tixY2W32/Xaa68pPDxc/fv3V9u2bZWenq7Dhw9rwIABSklJKXfbe+65Rx999JGOHj2qadOmKScnR7fffrtiY2N17733av78+SooKKiJcwIAAAAAAAAAoEZUKYi+bNkyvfTSS7rzzjs1Y8YMbd26VRMmTFBcXJyaNm2qRx99VBs2bDjjPkJCQjRgwAC98cYbOnTokD7//HM1a9ZMjz/+uJo0aaJBgwbphx9+OKuTAgAAAAAAAACgJlQpiH7kyBG1aNFCktS4cWOFh4crLi7Osz4+Pl5ZWVlV6kC3bt30zDPPaOPGjdq4caP69Omj9PT0Ku0DAAAAAAAAAIDaUKWJRQ3DkMlk8jwu/XtNaNOmjR5++OEa3ScAAAAAAAAAANVVpSC6JD3++OMKDw+XJNntdj3zzDOKjo6WJGqaAwAAAAAAAADqlSoF0Xv27KmtW7d6Hnfv3l27du0q0wYAAAAAAAAAgPqgSkH0JUuW1FI3AAAAAAAAAAA491Q6iD569OhK73Tq1KlllrVu3Vpr1qxRTExMpfcDAAAAAAAAAEBdqnQQfd26dV6P09LS5HK5dNFFF0mStm3bJovFoi5dupS7/Z49e+Ryuc6iqwAAAAAAAAAA+Je5sg0XL17s+bnpppvUu3dvHThwQGvXrtXatWu1f/9+XXfddRo4cGBt9vesTJo0SSaTSaNGjfIsMwxDKSkpSkxMVFhYmHr37q3Nmzd7bWez2TRy5Eg1adJEERERGjx4sA4cOODn3gMAAAAAAAAA/K1KNdFLvPDCC1q4cKEaNWrkWdaoUSM9/fTTSk5O1pgxY8rd7pdfflFGRsYZ933ZZZdVp0sVWrNmjd58880y+588ebKmTp2qmTNnql27dnr66afVr18/bd26VZGRkZKkUaNG6bPPPtPcuXMVExOjMWPGaNCgQUpLS5PFYqmV/gIAAAAAAAAA6l61gug5OTk6fPiwLr30Uq/lmZmZys3N9bldnz59ZBhGmeUmk0mGYchkMtVKyZe8vDzdcccdeuutt/T00097lhuGoWnTpmnChAm69dZbJUnvvfee4uLiNGfOHA0fPlzZ2dl65513NGvWLPXt21eSNHv2bCUlJWnRokXq379/jfcXAAAAAAAAAHBuqFYQ/ZZbbtGwYcP0wgsv6Oqrr5YkrVy5Uo888ognGF2eVatWqWnTptXr6Vl48MEHNXDgQPXt29criL57925lZGQoOTnZsywkJES9evXSihUrNHz4cKWlpcnhcHi1SUxMVIcOHbRixQqfQXSbzSabzeZ5nJOTI0lyOBxyOBw1fYrntJLzDbTzBgIVYx4IHIx3ILAw5oHAwXgHAksgj/nKnnO1guivv/66xo4dqzvvvNNzoKCgIN1///2aMmWKz+2aN2+u2NjY6hyy2ubOnau1a9dqzZo1ZdaVlJaJi4vzWh4XF6e9e/d62gQHB3uVrilpc6bSNJMmTdKTTz5ZZvnChQsVHh5e5fOoD1JTU+u6CwD8iDEPBA7GOxBYGPNA4GC8A4ElEMd8QUFBpdpVK4geHh6uV199VVOmTNHOnTtlGIYuvPBCRUREVGd3tWb//v166KGHtHDhQoWGhvpsZzKZvB6XlJY5k4rajB8/XqNHj/Y8zsnJUVJSkpKTkxUVFVXJM6gfHA6HUlNT1a9fP1mt1rruDoBaxpgHAgfjHQgsjHkgcDDegcASyGO+pHpIRaoVRC8RERFR6YlAe/XqpeDg4LM5XJWlpaUpMzNTXbp08SxzuVxatmyZXnnlFW3dulVScbZ5QkKCp01mZqYnOz0+Pl52u11ZWVle2eiZmZnq3r27z2OHhIQoJCSkzHKr1RpwL8YSgXzuQCBizAOBg/EOBBbGPBA4GO9AYAnEMV/Z8zXXcj88Fi9erIYNG3oe2+12HThwQPv27fP6qUl9+vTRxo0btX79es9P165ddccdd2j9+vVq3bq14uPjvW5VsNvtWrp0qSdA3qVLF1mtVq826enp2rRp0xmD6AAAAAAAAACA899ZZaJXx/bt23XfffdpxYoVXstLyqO4XK4aO1ZkZKQ6dOjgtSwiIkIxMTGe5aNGjdLEiRPVtm1btW3bVhMnTlR4eLiGDh0qSYqOjtb999+vMWPGKCYmRo0bN9bYsWPVsWNH9e3bt8b6CgAAAAAAAAA49/g9iH7vvfcqKChIn3/+uRISEiqsPV7bxo0bp8LCQo0YMUJZWVnq1q2bFi5cqMjISE+bF198UUFBQRoyZIgKCwvVp08fzZw5UxaLpQ57DgAAAAAAAACobX4Poq9fv15paWm6+OKL/X1oSdKSJUu8HptMJqWkpCglJcXnNqGhoZo+fbqmT59eu50DAAAAAAAAAJxT/FYTvUT79u119OhRfx8WAAAAAAAAAIAq83sQ/bnnntO4ceO0ZMkSHTt2TDk5OV4/AAAAAAAAAACcK/xezqVkMs4+ffp4La+NiUUBAAAAAAAAADgbfg+iL1682N+HBAAAAAAAAACgWvweRO/Vq5e/Dwn8f3t3Hh9Fff8P/DWz9yabkPvgCPchIAooYhGwAgK2itrW1tbKr7a1FfgKVK1a/RZrBUVFa61Wv4q1KpWiIqiIxINwiSJyH+EKhCMHCTn3nJ35/P6Y3SGbGwhZzL6ejwcPsrOfzL5nM5/Zmfd+Pu8hIiIiIiIiIiIiOivtUhN9+/bt0DSt1e137dqFYDB4HiMiIiIiIiIiIiIiImpZuyTRL730UpSXl7e6/ciRI1FYWHgeIyIiIiIiImqeEAJ7i6vhD/K+TURERESxrF3KuQgh8PDDD8PpdLaqfSAQOM8RERERERERNe/9rccxa/E2XDswAy/dNjza4RARERFRlLRLEn306NHIz89vdfuRI0fC4XCcx4iIiIiIiIia98aXRwAAn+wqiXIkRERERBRN7ZJEX716dXu8DBERERERUZtJclqjHQIRERERXQDapSY6ERERERHRd40kRTsCIiIiIroQMIlORERERERUjxACW49WRjsMIiIiIroAMIlORERERERUz+d7S1FWG4h2GERERER0AWASnYiIiIiIqJ5PdhVHOwQiIiIiukAwiU5ERERERFSPSealEhERERHpeGZIRERERERUj6nelZKiatEJhIiIiIiijkl0IiIiIiKiekySFPG430Mf49vCiihFQ0RERETRxCQ6ERERERFRPfXLuWgCeGjpzihFQ0RERETRxCQ6ERERERFRPfXLuQAAy6QTERERxSaeBhIREREREdUjy1KDZRIaLiMiIiKijo9JdCIiIiIionrq10QHgEby6kREREQUA5hEJyIiIiIiqsfU2Ej0RhLrRERERNTxMYlORERERERUj7mRAujMoRMRERHFJibRiYiIiIiI6kl0mBssk5lFJyIiIopJHT6JPm/ePFx22WVwuVxIT0/HlClTkJ+fH9FGCIE5c+YgOzsbDocDY8eOxa5duyLa+P1+zJgxA6mpqYiLi8P111+PY8eOteemEBERERFRO4mzNZZEj0IgRERERBR1HT6JnpeXh2nTpmHjxo3Izc1FMBjEhAkT4Ha7jTbz58/HggUL8Pzzz2PTpk3IzMzE+PHjUVNTY7SZOXMmli5dirfffhvr1q1DbW0tfvCDH0BV1WhsFhERERERtTMJzKITERERxaKGwys6mJUrV0Y8fu2115Ceno7Nmzdj9OjREELg2WefxZ/+9CfcdNNNAIDXX38dGRkZWLRoEe68805UVVXh1VdfxRtvvIFx48YBAN5880107doVn376Ka699tp23y4iIiIiIjp/hGi4jNVciIiIiGJThx+JXl9VVRUAIDk5GQBQUFCA4uJiTJgwwWhjs9kwZswYbNiwAQCwefNmKIoS0SY7OxuDBg0y2hARERERUcch0DCLziQ6ERERUWzq8CPR6xJCYPbs2Rg1ahQGDRoEACguLgYAZGRkRLTNyMjAkSNHjDZWqxVJSUkN2oR/vz6/3w+/3288rq6uBgAoigJFUdpmg74jwtsba9tNFKvY54liB/s7dWTBYMOyjRJie39nnyeKHezvRLEllvt8a7c5ppLo06dPx/bt27Fu3boGz0n1hpUIIRosq6+5NvPmzcMjjzzSYPmqVavgdDrPIOqOIzc3N9ohEFE7Yp8nih3s79QRbS+RAJgilpWXl2HFihXRCegCwj5PFDvY34liSyz2eY/H06p2MZNEnzFjBpYvX441a9agS5cuxvLMzEwA+mjzrKwsY3lpaakxOj0zMxOBQAAVFRURo9FLS0tx5ZVXNvp6DzzwAGbPnm08rq6uRteuXTFhwgQkJCS06bZd6BRFQW5uLsaPHw+LxRLtcIjoPGOfJ4od7O/UkVVtOgoc2hOxLC01DZMnD4tSRNHHPk8UO9jfiWJLLPf5cPWQlnT4JLoQAjNmzMDSpUuxevVq9OjRI+L5Hj16IDMzE7m5ubj00ksBAIFAAHl5eXjiiScAAMOGDYPFYkFubi5+8pOfAACKioqwc+dOzJ8/v9HXtdlssNlsDZZbLJaY2xnDYnnbiWIR+zxR7GB/p45Ilk0NlplMMvd1sM8TxRL2d6LYEot9vrXb2+GT6NOmTcOiRYuwbNkyuFwuo4Z5YmIiHA4HJEnCzJkzMXfuXPTp0wd9+vTB3Llz4XQ6ceuttxpt77jjDvzhD39ASkoKkpOTcc8992Dw4MEYN25cNDePiIiIiIjOAyEa3lhU5o1FiYiIiGJSh0+iv/jiiwCAsWPHRix/7bXXMHXqVADAfffdB6/Xi7vuugsVFRUYMWIEVq1aBZfLZbR/5plnYDab8ZOf/ARerxfXXHMN/vWvf8FkajhChYiIiIiIvtsaptD1G4sSERERUezp8En0xkaQ1CdJEubMmYM5c+Y02cZut+Pvf/87/v73v7dhdEREREREdCFq7DJClphGJyIiIopFcrQDICIiIiIiutA0NhiHOXQiIiKi2MQkOhERERERUT1aIyPRJWbRiYiIiGISk+hERERERET1NFYUsqPfWPRAaQ1Kqn3RDoOIiIjogtPha6ITERERERGdqUbLuXTgW4uWVPswbsEaAMDhx6+LcjREREREFxaORCciIiIiIqqnsRuLikbHp3/3fZFfihFzPzMe3/D8OviDahQjIiIiIrqwMIlORERERERUT2MJc1WLQiDt4P+9tini8bZjVXhlbQET6UREREQhTKITEREREdEFKRDUGi2r0h4ae1ktSrFEw5Of5OOWlzZGOwwiIiKiCwKT6EREREREdME5WePHkEdWYdbirVF5fa2RfLm5o99ZtJ6tRyujHQIRERHRBYFJdCIiIiIiuuAs3lQIr6Li/a0novL6jZVzWbW7JAqREBEREVG0MYlOREREREQXHEmK7qjvpiq3HCitbd9AiIiIiCjqmEQnIiIiIqILTpRz6E1y+4PRDoGIiIiI2pk52gEQERERERHVJyG6WXStsaLoAH7/5mb85LKusJhk/G5ML5hirE46ERERUSxiEp2IiIiIiC440R6J3kQ1F5yo8uHZT/cDADIT7Lh5WJf2CyoKymr9SI23RTsMIiIioqhiORciIiIiIrrgvL/leFRfPxgaiX5RVgLGDchotM3n+aUQTRVPPwPLth7HqCc+x64TVee8rjPRmthrfSxfQ0RERMQkOhERERERXXD2Ftec8e8cPFmLv364Gydr/M22ay55XFDmxreFFQiqGgBgRM9k/GhY50bbfrS9CG99VXjGcdZ399tbcazCi//5z5ZzXldrrc4vxaWP5uKTXcXNtlNC7wMRERFRLGMSnYiIiIhiWqUngIXrClpMvFL0tHa0943/WI9X1hXgN//+psk2xyu9uOyxz/BM7j4cLnMbyfKwq59ajZte2IAj5R4AgMUkA83UZ3/o/Z2tiq01/MHmE9aKqsGnqG3yWlNf24RKj4I739jcbDufwiQ6EREREZPoRERERBTT/vDfbfjLh7vx62YSr3T+PLFyL/o99DEq3IEm25ys9Tc6IvqzPSV4/vP9xk1Aq0OlR7YerYQQAj5FxS9e+QqvrD0EANhxrApzlu9CWa0ff/tsP8Y+tRr3vbvdWF/dZP2eomoAOO83Ds3dXWL83FId+LFPrsawR3PhD6r4eEcRHn5/53kfKe4PNp20/5//bMFdb21uk5I2RERERBcyJtGJiIiIKKZ9trcUALDtaGV0A4lBPkXFi6sPwh/UcOmjucbymW9HljW5/LHPcN872yOWvfftMdzx+jd4atU+9HxwRYN1BzWB+Svzse5AGf760R6sP1CGHz6/LiJpra/ndO31QJ2EdHhUuLkVSfRzSSI3N2q+LlUTOF7phTug4ki5B79/61u8sfEI/vN10+VkvAEVO49XRcRXWu3DhgNlrY6vsZHoe4pq8OnuEizfdgIrdhSjpJqzOIiIiKhjM0c7ACIiIiIiii1VXgW7TlQhO9ERsdynqDDLEt7feqLB7yzdchzP3HKJ8Xj2f7c1+xqvrivAsq2nE+RvbjzSZNvu938EAPh09hhjWTiJ3pqR6KU1fmQk2Fts1xpVXgUJdjOkOsPSV+4shs1yevzToZNu4+c9RU3Xjh/211x4AiruvqYPZo3vCwC4ZkEeas7gZqGNjUS//oUvIx6zbjoRERF1dEyiExERERFRu9E0gSGPrGr0uWVbj2NgdmKzvzvj7S3okuRo8NwH2yIT749/vDfi8cGTtS3GNm5BnvGzN6Anms2y1GKZlaIq31kl0QvK3BGPj57yYsgjq/CjYV0w76bBsJhkFFV58bs3I+uW133sb6JGerVPgSegP/e3z/ZjRI9k2CymM0qgA/pI9A0HypCRaEe3TrYm2rRNnXYiIiKiCxWT6ERERERE1G7mf5Lf5HN/fHcHrhuc1eTzs/+7FR9tL2r0uRn/2dLo8rB9JS0n0etyhxLQZlPLFTCn/GM9Ds2dDPkM66df/dTqRpe/s/kYvi2swP/9cjg2HCxvdh3+JkaBF1X6Ih7f+spXZxRb2MtrDmLbsSoAwP5HJ0BtpHLNB9uLMHu866zWT0RERPRdwCQ6EREREcU0WQI03hex3fwz72Czz3+0o/EkOYBGy7ycb62piQ4AxdU+ZHdqOEK+vnc2H4PNLGN037Rm2x066cY1T+c12wYAlKCGhesKMCArASN7pQDQ66ff+n8bWxV3fQl2s3GDVgBGAh0AFq4/jM8ONvxS4bnP9qNLJwd+PLxLRBmasyWEaJP1EBEREbUV3liUiIiIiGJaa2peU+xq7f6xdMvp+ut7i6vx8pqDCAQjR4lXuAO4Z8k2zPjPFuyok5w+F6t2l+AvH+7Gz+okzb8uOIVyd+Cs1me3mPD7sb0afW7eyn34+mTjl5D3vbsdQx/Nxf6Spmu0N2fn8Sr87dP9WH+gDEMfzcWSb46e1XqIiIiIzgeORCciIiKimCZLEgAORW8Pp84ysRtNXkXF5d2TG32uZ2ocDoXqmj/5ST7G9kvDwOxETHx2LQDgg21FmDw4C5d264TuKXF4YfUB43d3nWibJHp9NT4lIqF+pmwWGX+c2B+l1X68++2xM/rdCo+C8c+swd5HJ8JuMZ3R7/7g7+siHt/7znZMubQzLK0op0NERER0vvGMhIiIiIhimhylshE1PgU1PqXdX/enL3+Jq59a3eY3g9Q0gfziGmih2jj+oAqlXr3uYxWeNn3Nc9HUaOv6VFUgKc6KD6aPMpY997NLcd3gLCy45ZKIttc9ty4iOb7jeBWeWLkXP315I66Y9xn+/eUR47l59W582hb+tHQHBs9p/KatrTV5kF6T/ombB5/1Os52FHx9C3L3tcl6iIiIiM4Vk+hn4IUXXkCPHj1gt9sxbNgwrF27NtohERHRBUjVBMpr/W2yntsXfo373tnWZBshBISI3gjaap/S5ok4ovbW2prXTRFCYN3+MlQ0kTj8dHcJlm/Ta3mrmkC1T4Giarhi7mcYOe9zBEOJ5gp3AP6gCk0TUEOJ6LJaP6a99S02HCiLeL384hrj9+oLqhqqPIrxfJVHwStrD+HJT/bi9Q2HsfHQKRSUufHO5jMbZZy37yR6P7jCuLHnGxuPoPv9H+HjUA3zh5btxLXPrsF7W47DH1RxzdN5+OHf16G0xodFXxXC7Q9i5uKtZ/SajZk4MNP4eXhO0lmtIyfFiT9O7N/oc05r5Ahqi1m/ZIqznV4+pk8a/vHzobikayd0SYqsg37dc5EjqtvTW18Vtqpdt2QnnvrxEKS7bBHLn/zRxZg1vi+A1t1QtSlfHSrHP744gAfe297gi5TGvLa+oNHlL64+iKOnPFi5s7jdvnAqqvLinc3HjC+D2poQAku3HMMH29q/vv93kU9RsftENZ76JB+1/mDLv3CBCqpag/JO7eGRD3ah/8MfY87yXU1+ZlDrCKGfl//8lY3n7fhARBc2lnNppcWLF2PmzJl44YUX8L3vfQ8vvfQSJk2ahN27d6Nbt27RDo+IiC4QQVVD7z99DAD4z2+uMG7yVlcgqOHgyVr0z3Q1e+O0XSeqkLfvJADgt6N7oXd6fIM2d7+9FRsPlWPlzNFIjrO2Os4j5W4s23oCv76qB5xWM065Azh0shbDuydDUTX4FBUuu6XZdVR6ApjwzBqkxNuw4n9GtfomcJomsGp3CfpmxKNrshMWk4yCMjeeyd2H34/thQFZCa3eDqK2kJ5gQ81JPTlTXutHSryeWDxQWosVO4pw+5Xdkeg43R98iopvCytwWfdkFFX6MPrJL4zn9j82CaomYLeYsLe4Gve/uwNbj1YCAHafqMba/Sexv6QW07/fG+6A/gVU7z99jPk/uhj3vbM9Iq5xA9Lx6Z5SAPrNNu+Z0Bdr95dhbL90PLFyL/pnuvCHCf3w+d4S/GhYVwzLScKkv63FnqJqAHqpkcduHIzX1hdg1e6SBtu9p6ga3e//CEO6JKKT0wqTLOGVXw5HtU/B/609hOE5yRjbLw2egIqPdxbjniX6F3rTFn2L7cd74qW8QwCA37/1bcR671myDc/k7sPxSi8A4PLHPgMAPLh0R6v/JrddkYOSah+uGZCOP767AzkpTkgArh2UiZnX9EXRy1+itMaPf/x8KEbM/azV6wWAF38+FKP6pAIA5t00GA+8p8eVlWjH78b0QkGZG//acBiAnmz/2eX6uX7nJAeSnBbYzCYkOE5fRr3+q8tbdQPQlvTLcCH/LOuJn6lVs0bDbjFhZK8UfO/xzwEAdouMHw/v2ibrn/3f01/+dkly4voh2fhg+wnMX5kPAHjougG4eWgXvLTmECo9Aby9qen651fN1/vX5d2T8d/fjQSgf4GbUO8zqrzWD5fdAqv5dPJfCIGAqsFmbr60zNOr8lHpUfDnH16En//fVzhU5kalJ4Cbh3bB9uNVGN0n9YxvdFpY7sEH20/gouwEbC2sxF1X94LNbML6A+WYtVh/f/pmuNAv02X8TlmtH6nxNvzxne3YfrwK7/xuJOJsZ3/Jrn/RDsiyhEBQg8UkGdtxvNKLfcU1yO7kQGaiHYkOCwrK3DDLEromO/Hp7hL0zXChW4oTAKCoGn7/5rdIclrw5I+HNPmaa/efRFmtH8NzktE12dmqOCs9AXyw7QSGd09G7/R4HCn3YNPhU1iz7yQ+3llstHv+i9PlkC7rnoS/ThmMfpkuLN5UiD++uwOfzByN7E52WEzyGZcTaktvbjyC/35zFH0zXLjhkmyM6p2K2179GruLqrHi7qvQOXQDYm9AhSoE4s/gb1zpCWD9gXKMvygjYl+vb/ORU1h/oByvrT8MAPjXhsP414bD+PrBa5AUZ8Xq/JMIBDVclJ2AHqlx57S9HdVbXx3BG18eweTBWfh+/3Qoqmacly/6uhC/uCKn2d9XVO07XY7K7Q/CaTUZx4wqr4Jqr2L0a1UTuPvtLeiZFo9Z4/oYx5pzsf5AGSo9Cq4dmHFOX+QSnS+SiObwte+QESNGYOjQoXjxxReNZQMGDMCUKVMwb968Fn+/uroaiYmJqKqqQkJCbCUHDpRUYduG1bj+B5NhsTSdkKn1B7GvpAYXZSXAbjFB0/STXrvFBCEEgpowPoQ0TUCSYBzQa/1BBFUNiQ5Lmxy8z5QQAv6gBlUTiLOZ4VNU+BQVDqsJFlmGAIwTV7NJhqoJFJS54bKb4bKb4bCc/nDyBII4esqLOJsJ2YkOeBQVtb4gMhPtAIDSah9y95TAYpJx7cBMxNvMKKrywiRLiLeZ4VM0nKj0om+GCw6r/j76gxpq/ApS4mz6yTSAGl8QCXZzsx9OQggjLp+iwmaWIy4ghBDYfqwK6Qk2pMXbEFA1OK3miOePVXhhMclIc9lQ6Qkg3m5GlUeB02aG3SzDbJKhaQKyLMETCMJmNp31Dd7Ch7OmLnKCqma8/2poHzJJEmp8QdgsMsyyBI+iIs5qNmLQNAFfUIUnoC//Ir8U3oCKq/qm4kSlD/E2M7I72Y0kZIUnYMRyoNSNkmofav1BXDc4CyZZgqoJ7CmqxsDsRKS5bJAkRJzkB1UNtf4gEh0WSJIEn6JCktDixV9L296WhBAorvahk8MKm1lu0N8URcGKFSswadIkmM2WiOdVTUAO9V1F1eBVVCTYLRBCwKdosFv0fayx7QmPnhEASqp9SHBYsOQbfRTlzy7vCk3ooz01ITBpkP5+CwhIkFDrD6LaqyA53orNhyvgD2r4trACn+wqhiYEKj0K+qTH484xvbDreBW+OVKBUX1SMXlQFmwWGccqvEiwW3C43I2LuyTCLMvwKaox+nD5thOo8ir49kgF+ma6jCRBfZd3T8bY/mkRz1/dLw2/Gd0TFW4FR065cd3gLLz1VSFW55dCghSRUHnzjhG4uGsiDpbW4pcLv0aNL3JE1p8mD8BvRvdEpSeAo6e8yOpkR6fQvlTrD2LVrmIs+roQj1w/ENc/v75Vf+/nfnYpfnixPrU/qAloQqC8NoAVO4rw14/2GO3+ML4vHFYTth+rwvJtJ9ArLQ7XXZyNbw6fwiPXD0RqvA1JcVYcKK3FuAWnk01j+qbBH1Sx8dApY9m1AzNQWuPHdYOz8LPLu8FikvHfb47CZTcjLd6GlHgbsjrZUVTpQyenBat2l8BhMeHmoZ2hqPo+VuVVIADE28zYW1yDJKcF3ZKd8Cmnj8XFVT4cq/DAJEuQJQmJDgs6OS1GstQTUPH8FwfQP9OFAVkJuHfJNuw6UY1fjuyOlHgrzLKEoTlJ6J4Sh21HK9E5yYG+GXoyRJbQ4HipagI1viCSGvmyIxDUUFbrR1aiPeL3wrMaSmv86J0e3+A43Jjwse5sqJqIOAYLIaCoIiLxomn654g/qKLW68fKVZ+iz6UjYbWYke6yIyXeCofFhOJqH1LibE1e5GuaQKVXQSeHfpworfbBq6jwBzWccgfQNdkJWQJO1vgRbzMjM9FujOKLt0V+foXPCxRVj7+oyosv8k8iNc6KeLsZi74qRI/UOBRV+ZDosMAkS8gvrsFF2Qk4XuHFR6GR1NS+bh7aBZd064SH398Zsfx/rumDWeP6RCT74m3miC8y6up+/0ctvtbUK7sbifGDcydH7Od/XrYTRVU+/PMXwyDLEn7/5mYjcXf48esi1uP2B2ExyQ32642HyvHTl8++Dnn4tcLnXjuOVeHed7Zhb/G5JdXn3jgYL685iMPlp8voWE0y9j02yXj8ya5i7DhWhf+5pk+D7Zq1eGvEDVPDLu+ehK8PVwAA7p/UH4+fh9I0jUmOs0bU1R/VOxXr6szSCBuQlYAhXRIbJOdH902DWZaQ5LSecb33X47MwR2jemDhugK47BZUegOwmkzwhs4Hjld69c/nkd2xcH0BNh+paNV6sxLtKKryNdumcyeH8aXUlb1ScLzSiyN1/qaTB2eia7ITJknCRzuKIp6r7/aROXi9TlmhlvTPdDXYD7smO/D2b0ca5///+aoQDqsJD9Xry4A+0ycYGrVrkiXcM6EfSqp9sFtMCKoaXlnX+CyE1uqdHo8DpbXNtvnBxVmo9CgoKHMjM9GOkT1TYDZJcNktqPEp2F9ai16pcUhLsCPDZcOr6wrwVYF+XnL/pP54d/MxTBiYgZ8M74qkOCtOVHqxdMtxfHmwHDW+IArK3Hj0hoFYtbsEa/c33B9bYjPL6J4Sh+xOdkwenIUkp36eMP+TvdhXUotbR3TD6r2lsJhl42/rsJjwuzG98PneEmw7VoUZ3++NiYMyYTPLGLdgzRnHMCArAT3T4lDlUTBpcCaeyd0Hl80MW7AWe6v040Kiw4Iqrz4jZFhOEiwmCb3S4rHzRDV6pDjx08u7Id1lg4CeQO6W7ITbr1/LPPVJPgZmJ6DcHcDeohqM7JWCy3sko6jKi3ibBTazfs2ckWBDcZUP3oCKRV8XYlhOEr7fPx0nKn3ol+nCmn0nMXPxVjitJky7ujcOnqzFbVfkoPCUB3FWM+JsZqS5rFi86ShkWcL4ARno5LRi29FKzPt4D8pqA5AkIDvRgesuzsIdo3rAapLx4fYTqPQoGNsvHR9uPwGbWcZznx9o+g2r58MZo/DZnlJc2q0T0hNs+LrgFP532S6MG5CBO8f0xDeHK1DtU2CWJfROj4fbr6LKq2BsvzSccgeQX1wDWQJuuKQzPIqKFduL8P0B6VjyzTH8M+8gAGBsvzT8eFhXbDp8yvg8S7CbMbZfOlLjbRjZKwUZCTa8u/kYNh46hd+N7YneaS58VVCOLw+W445RPZC3/6TxBXiXJAe+1ysVd1zVA7tPVENA4MmV+ThR53gUZzXhjqt64uU1B+FT9HOwJKcFFZ7GZwb97PKuOOUOoH9mAhRVQ98Ml36uVemFEtRwabckHDxZi5lvb0VxdeRxz2aW4a8zW+OJmwejV1o8UuNtUELntkIIHK3Q17W7qBrXDsxEZqIdCXazfr1uM6PGp0DTALtVNq6hPYEgvj1SiQpPAL3S4tEjNQ77SmrQOz3e+J1wHuObw6dwuNwNkyzjkq6d0Ds9Hoqq4a2NRzDng934YPooFJS7oWkCV/VJxardJdh4qBx9M1y4aWhnZCU6cKC0BofLPOia7ERpjQ8VHgWaJvBFfiluvLQzhuYkocIdQGmNH92SnVi3vwwbDpZjTL80XNY9CTazCf6girR4G9buL8OGg2UodwewpbASvdLiMbZfGlbtLkF5rR/f650Kn6Ji14lqXN4jGbde3g3uQBCegIqsRDuSnFZ8uL0IL64+gCPlHlzRMwX3T+qPnmn6eXGS04q9RdUY2DkRX+4vxYk93+C2m5rP3XVErc3ZMoneCoFAAE6nE0uWLMGNN95oLL/77ruxdetW5OU1HHni9/vh95+eyl9dXY2uXbuirKws5pLoP3h+PfJL3LCaZEA6neyzmGRo4vR0ZUU9vSvaLbJxkLaaZeOCPSXOCkXVUOFR4LSa4AodLOsnkuJsevI4GBoJFr5OMssyBARkSUKlR4EkAS67nniOs5rgC2owyxIcFhMCqgZvQIVJlmA2SdA0QAuNZjHLMiwmCUIAFpOECo9inByeLatZbnaKX4LdDJtZxsna1teYdNnNcPuDaCo0SdL/DrKk14OVoCd9ZAkIqBp8ioZEhxlCANW+ICwmCXaLqcH73di2WGQJkAC3Xx9lJ0toMo76bGZ937CZTTDLEmRZ3z+E0L8wSY23wquocFr0hLtXUaFqMKZ4dnJYUOXTEzPW0H7mCahwB9SIfaul9y6oavC2oi2AVq+3ue2t+94mOswIqsIYpRhnNelfEuF0AgvQE16aEMaJjMuuf/hrmkC83QyLLEET+r4rS5KR0A6PTBLQn0Odn/WHof9DP2uhn/1BFZIkReyrFpPeZywmGZKkt/P4/FCEvl36e6nHGQwl6GRJgie0beEvF8Lvhd7fBFQBJDstMMsS/EENZe4A+InVsrrv54UmzmYyjgnnUzjH3Nz+4rSajH3wfImzmqBoAkFVizj+yXWPvbL+WVI3FotJ/1LUq6iNHlcyQheoQgijfwP6//6gfuxOsJtht5gghZaH2wlx+nG4n4cfh79gjLeZISAQCGrGZ7Mk6Z9DJln/zGupLzosMryKBjn0RaEkARIkWEz68SOgnl63zay/F6093hrvr03/jAh/UXaun8PUvp758WD8IPQFnScQxOr8Mry0tgBDuiTiL9dfdEbr2nCwHLl7SnF59yTk7S/DQ5P74+OdxdAEMOWSbPgVFVazjDvf2oKuSU789Ybm179iRzHu/u929EmPw4oZ32t1HO9tOY4/vrcLANA1yYFAUMMPLs7Eq+tbTlguv2skBmS5IpZVeRU89nE+lm6JLPvx5q+G48H3d+H7/dJgNsl4Zd1hXNI1EVuPnq7FLknAtoeuMQZUPPD+LnyyuwRX9kzBc7dc3Oov2nyKis2Fleif6YKmCVw5Pw9d4wQ+nn01Zi7ZhaQ4Kx674SK4AyqmLdqKDXW+ED0Xf7l+AHadqMHib84s0U1ERBRmMUmwmORmz/nrftFHuu0PjYHDZmu5YQdSXV2N1NRUJtHbwokTJ9C5c2esX78eV155pbF87ty5eP3115Gf33DE4Zw5c/DII480WL5o0SI4na2b1tYRuBXgiW0mVCnRuWEXERERnX/JNoGgBlTH8Oe9DAENTW9/lziBY+6Gz9/eR8Xbh2T4Vf25FJtAv0SBDaWRSc4r07UGy85Uik2g3C/h5u4qNABLD5sQnrNzpjIcAvFmoHOcwOYyCe6ghGuyNYzN0vBNmYR1xTK6uwSSbMDRWuDKDIG3Dsi4qJPA1L4a2mHi1FnTBJBfKaFngoDtDCtCnPQCh2slXJoiEB7U7QkCG0slrC+W4TADV6RrGJgkUOyRUKUAI9JEs++HFvqie2mBjJ4JAkNTRYPnAyrwToGMS1MFBiadv8s7TSA06KLpNvlVEraWSRibraHYI2HZERk1CjCus4bCWgkmCQhowJ7KyP355u4qZAkYmirgDE1sPFwDWE2AW5Hw/O7m/xgZDn1PLvZewDtXK1lkAUX77m/HuRqequG6bho+PyEjyarPNAtowLjOAn4VeGG3CUcbOa5G2+AkDXYTYDMB60r0/TzdLjAiXcMHhfp+fFWmhmSbwNelMhRN71PeIFAblFr8+6fY9MEmlYHm2/ZO0DAlR0PXeKDYAxyqkbD4UOsPanFmgV4JAttPnZ+yGlZZQNGABAsACfqgqGDDbWnp85U6NrtJ7/uqBigaOty+IEEgzgLUtnAOPSpDH5ziV4GDNRLKfOfnfch2Cvx+gIqE1lcJ7RA8Hg9uvfVWJtHbQjiJvmHDBowcOdJY/thjj+GNN97A3r0Npy9yJPpp/kAA//3wU3xv1CiYzPqIVLNJ7/ASYJRokSUgwW5BSY0vNDJOHylY6VHQyWkxSi7IkhQq+aCXJLFbwqOV9dGrZpOEQFDAG1DhDgSRGm+DN6CXItFHkesjc02h0c3hkbOAPi1O1QRq/UE4QjeVUjV9Grss6f/MJun0NCOhj9g2yfoo7qQ4K2p9QahCoFuSAydrA/AGVNitsj6qMKCPKiwoc6NXehxUDaF4BKxmGd6AaoywB4BTHgUBRUOqy4ry2gD8QQ0Oiwk5KU59ir87AFXTR/qqmkCVV4HDaoJPUWEx6esLj0b2KKre1maGogk4LSa4A6oxkvH0aGN9ZKJJluC0mlBeGzBG9AP6aLEkpxVltX4kOa2o9QcjyguYTRIssqSPMgwKdE12oMKjGCNja/1BfQZBaGqfEt4fBKBoGoTQp+lXehVYTfrMAU2DUeZD1TT4g/p77g9qxj5kNeuzA8JTBl12/f0Oj3S0mvVyLYqqwSTr+5zFJEFAn9YcCOqlRbIT7Sh3B6AJwGrW/+aKqiHJqY9+j7Pq071MsoQ4mz4TosqjwGLWv+V2hWoaWkwybKGrZ03oI8q9igqXzWyU/KkJ7SuqJoxvxzs5LLBbZBRX+RFQNWihMifxNrO+r0lSqJQRQv1Gnzng9qtIibdCUQU0TcBillDr0+sshi92hQDU0M4ennkgh9aHOj+Hl0NCxOwEKTRjIagKZCbq/arSGzRG9IZvHBYMBvH1xi/xve9dicQ4O2p9QdT4g3BYTMbMAGtoyqbdLEMTej+wmmW9BEd4f9QAd+D0TIpEhxkumxlyaLbIiUofsjvZYTXJOFnrh6IKJDktMJtkuP1B+IP6bBK9HI5eOuhIuQc90+JgliUkhPpZIKjBatbL/BRX+43ZF5rQy8akxFuhCf0Yley0wh0IGiNsD5W50TXJiWSnRe+fVhOqvArsFlNEfUshBIqqfMhKtBvlRsyhPqr3Aw2ypO/TIrQfBFXNGLkf7n/F1T6j1nJiaFRw3RIbNf4gymsDSHSY4bTq+0y1T0G1N4hOTgs6OfQ4ZUmCzSzDJEsRZTqU0AwUIQQSQmUTyt0B+BUVAvr7eModgFmWkZloM6Y9aqHjUXi2hDU02rjcHYDLbsEpT0A/6VM0xNvNcFpMcFpNMJtk4xhiCU3R1IReE7aTw4JTHgUVngCcVn3WSaJdL8NxrMILWZLgC6ro3MkBl92MYxVeeBVVn4Filo33WVEFEh1muAMqgqqAV1ERCOqlwmxm/dgsSYA/qKHCHYDZpM+GkKAfB102veyWV1GN0lv+oAaLfLrvHC73IM1lM8qQhWdIhY+/4emnCK3THVBhkqTQCPDQKHINSI23orTGr880CZUmC3+upblsKKr0GceMuv3f6Luhx3aLyegDjbXTZ6Wcbh/+fJMkoNqrQJL0/mg1ybCa9M5fXuuHBAmKpiHOZjZmR0FT8UnuZ/jBxPGwWPT9tqjah0BQICPBhgpPwJjVEp6NUnfdcTYzCk95Qn1RICfFCXuovJY/qKGoyofUeL1Wtz6jRf/8dgf0smnhWWLh9zZcAk4VAklOK4qrfMhIsCPepn/muf1BdHJYUO3T+0R4Rll4f9FCjwGgrDaAtNBNF5sqmaWEZhlY6/QjIHQDuXolzsLCJczqO5MyPCI0w6purWRV028y3JY1RIXQ+0xj21Ff/VJ71DEpioLc3FyMHz++zaZ6N9UnGlPuDiDZaQmdE0aWnwoLl8QRQi+hlVCnDJDbH4TZJBvH8Pr7a91Y/IoKW+jz1xtQjesBRROwyJIxg88SKk2oCgGTJKEqVK9dP27pnwkJDgtqfEH9HMgkG9cZgH5uXbe0Y11qaGatzSxHlFkMbydwehvKQudCVrOMBLs5ohaz269fMwVC5yrhEmN1z/HrbrsQ+mwkm6XxhGt4e6t9QQSCGuJtJgAS4m2mBjHW+oPGOZFXUWE3m+APnXuFj7tnW8oxzBtQI97TxoTfv6Cqz25MclqNm0rrnxv6eY6qCbj9wdA5kv44XOaowhPQz5ND5yTno4RouPRhpVcxyrrUVV7rR6JDP98N19wO7wtBTSAY2gfO9j2tu8+21N/r74P+oGbsD4GghtJaPxLsFpRW+5GeYNOvn6ymiDKt9dfnD80ML63xIyPBbuyrqhAIBIUxazUQ1BrcL6DGp0BRBdyBIHyKhswEm7F/h/+u+v4fuqbRBKwm/X+HxYQKrwIJ+nm4VmefACL7RyCowR9UQ+eQEkqqfXBazXBYZJyo8iEzwQ5J0q9vhABOeQJIjbcZ71etXzVmIdf69OsGTejnFEcrvEh32ZBgNxt9J3ztGI4lTJIk44bLNT69rSqEMVtbC+Uqwtel1V599nz4HkrhcwmvokII/fzRapaNsiq2UEWAY5VepMXbYDbppUbtFhN8iv4eJITuQ1H3+FTtDW+TwPFKH+wWPW6HxYQafxBZCXajT4VnWIePBeHr1rrX8PXV3c9KavzGjE6bWUZQ04zjaSCoGdcCSU6LcT6v53tUpMZbUXjKa1yHShKM/uO0mhBU9eubkzV+ZHeyw2bWZ57bLHruwGExwaOoSIu3wmk1G5UOav1BqJpAZoLdOMcETud9ZElCjT+IOKsptO1SRH8trfEb5/pBTYPVJCMjwd7gfajrlDuAJKfeRwOqiMj/qJreJ9Libca5f7UvCFnS/yaKqverLUcr0bWTFVs2rMGECW33Gf9dwZHobehsyrnUF8s10cP1kSdPjr26SkSxiH2eKHawvxPFFvZ5otjB/k4UW2K5z7c2Z8vb3baC1WrFsGHDkJubG7E8Nzc3orwLEREREREREREREXUsLc/NJADA7Nmzcdttt2H48OEYOXIkXn75ZRQWFuJ3v/tdtEMjIiIiIiIiIiIiovOESfRWuuWWW1BeXo6//OUvKCoqwqBBg7BixQrk5OREOzQiIiIiIiIiIiIiOk+YRD8Dd911F+66665oh0FERERERERERERE7YQ10YmIiIiIiIiIiIiImsCR6O1ECAFAv+NrrFEUBR6PB9XV1TF3h1+iWMQ+TxQ72N+JYgv7PFHsYH8nii2x3OfDudpw7rYpTKK3k5qaGgBA165doxwJEREREREREREREYXV1NQgMTGxyecl0VKandqEpmk4ceIEXC4XJEmKdjjtqrq6Gl27dsXRo0eRkJAQ7XCI6DxjnyeKHezvRLGFfZ4odrC/E8WWWO7zQgjU1NQgOzsbstx05XOORG8nsiyjS5cu0Q4jqhISEmKuIxLFMvZ5otjB/k4UW9jniWIH+ztRbInVPt/cCPQw3liUiIiIiIiIiIiIiKgJTKITERERERERERERETWBSXQ672w2G/785z/DZrNFOxQiagfs80Sxg/2dKLawzxPFDvZ3otjCPt8y3liUiIiIiIiIiIiIiKgJHIlORERERERERERERNQEJtGJiIiIiIiIiIiIiJrAJDoRERERERERERERUROYRCciIiIiIiIiIiIiagKT6NRm1qxZgx/+8IfIzs6GJEl4//33I56fOnUqJEmK+HfFFVdEJ1giOict9XcA2LNnD66//nokJibC5XLhiiuuQGFhYfsHS0TnrKU+X//zPfzvySefjE7ARHTWWurvtbW1mD59Orp06QKHw4EBAwbgxRdfjE6wRHTOWurzJSUlmDp1KrKzs+F0OjFx4kTs378/OsES0TmZN28eLrvsMrhcLqSnp2PKlCnIz8+PaCOEwJw5c5CdnQ2Hw4GxY8di165dUYr4wsIkOrUZt9uNIUOG4Pnnn2+yzcSJE1FUVGT8W7FiRTtGSERtpaX+fvDgQYwaNQr9+/fH6tWrsW3bNjz88MOw2+3tHCkRtYWW+nzdz/aioiIsXLgQkiTh5ptvbudIiehctdTfZ82ahZUrV+LNN9/Enj17MGvWLMyYMQPLli1r50iJqC001+eFEJgyZQoOHTqEZcuWYcuWLcjJycG4cePgdrujEC0RnYu8vDxMmzYNGzduRG5uLoLBICZMmBDRn+fPn48FCxbg+eefx6ZNm5CZmYnx48ejpqYmipFfGCQhhIh2ENTxSJKEpUuXYsqUKcayqVOnorKystERq0T03dVYf//pT38Ki8WCN954I3qBEdF50Vifr2/KlCmoqanBZ5991n6BEVGba6y/Dxo0CLfccgsefvhhY9mwYcMwefJkPProo1GIkojaSv0+v2/fPvTr1w87d+7EwIEDAQCqqiI9PR1PPPEEfv3rX0cxWiI6VydPnkR6ejry8vIwevRoCCGQnZ2NmTNn4o9//CMAwO/3IyMjA0888QTuvPPOKEccXRyJTu1q9erVSE9PR9++ffGb3/wGpaWl0Q6JiNqYpmn46KOP0LdvX1x77bVIT0/HiBEj+AUaUYwoKSnBRx99hDvuuCPaoRDReTBq1CgsX74cx48fhxACX3zxBfbt24drr7022qERURvz+/0AEDGb1GQywWq1Yt26ddEKi4jaSFVVFQAgOTkZAFBQUIDi4mJMmDDBaGOz2TBmzBhs2LAhKjFeSJhEp3YzadIkvPXWW/j888/x9NNPY9OmTfj+979vfDATUcdQWlqK2tpaPP7445g4cSJWrVqFG2+8ETfddBPy8vKiHR4RnWevv/46XC4XbrrppmiHQkTnwXPPPYeLLroIXbp0gdVqxcSJE/HCCy9g1KhR0Q6NiNpY//79kZOTgwceeAAVFRUIBAJ4/PHHUVxcjKKiomiHR0TnQAiB2bNnY9SoURg0aBAAoLi4GACQkZER0TYjI8N4LpaZox0AxY5bbrnF+HnQoEEYPnw4cnJy8NFHH/FCm6gD0TQNAHDDDTdg1qxZAIBLLrkEGzZswD//+U+MGTMmmuER0Xm2cOFC/PznP+c9EIg6qOeeew4bN27E8uXLkZOTgzVr1uCuu+5CVlYWxo0bF+3wiKgNWSwWvPvuu7jjjjuQnJwMk8mEcePGYdKkSdEOjYjO0fTp07F9+/ZGZ5VIkhTxWAjRYFksYhKdoiYrKws5OTm8szdRB5Oamgqz2YyLLrooYvmAAQM47ZOog1u7di3y8/OxePHiaIdCROeB1+vFgw8+iKVLl+K6664DAFx88cXYunUrnnrqKSbRiTqgYcOGYevWraiqqkIgEEBaWhpGjBiB4cOHRzs0IjpLM2bMwPLly7FmzRp06dLFWJ6ZmQlAH5GelZVlLC8tLW0wOj0WsZwLRU15eTmOHj0a0TGJ6LvParXisssuQ35+fsTyffv2IScnJ0pREVF7ePXVVzFs2DAMGTIk2qEQ0XmgKAoURYEsR15GmkwmYyYaEXVMiYmJSEtLw/79+/HNN9/ghhtuiHZIRHSGhBCYPn063nvvPXz++efo0aNHxPM9evRAZmYmcnNzjWWBQAB5eXm48sor2zvcCw5HolObqa2txYEDB4zHBQUF2Lp1K5KTk5GcnIw5c+bg5ptvRlZWFg4fPowHH3wQqampuPHGG6MYNRGdjeb6e7du3XDvvffilltuwejRo3H11Vdj5cqV+OCDD7B69eroBU1EZ62lPg8A1dXVWLJkCZ5++ulohUlEbaCl/j5mzBjce++9cDgcyMnJQV5eHv79739jwYIFUYyaiM5WS31+yZIlSEtLQ7du3bBjxw7cfffdmDJlSsSNB4nou2HatGlYtGgRli1bBpfLZdQ5T0xMhMPhgCRJmDlzJubOnYs+ffqgT58+mDt3LpxOJ2699dYoR38BEERt5IsvvhAAGvy7/fbbhcfjERMmTBBpaWnCYrGIbt26idtvv10UFhZGO2wiOgvN9fewV199VfTu3VvY7XYxZMgQ8f7770cvYCI6J63p8y+99JJwOByisrIyeoES0Tlrqb8XFRWJqVOniuzsbGG320W/fv3E008/LTRNi27gRHRWWurzf/vb30SXLl2M6/iHHnpI+P3+6AZNRGelsb4OQLz22mtGG03TxJ///GeRmZkpbDabGD16tNixY0f0gr6ASEII0Q65eiIiIiIiIiIiIiKi7xzWRCciIiIiIiIiIiIiagKT6ERERERERERERERETWASnYiIiIiIiIiIiIioCUyiExERERERERERERE1gUl0IiIiIiIiIiIiIqImMIlORERERERERERERNQEJtGJiIiIiIiIiIiIiJrAJDoRERERERERERFRjJk3bx4uu+wyuFwupKenY8qUKcjPz49oI4TAnDlzkJ2dDYfDgbFjx2LXrl0RbV5++WWMHTsWCQkJkCQJlZWVDV6re/fukCQp4t/999/fbHyrV6+GJElISkqCz+eLeO7rr7821tMemEQnIiIiIiIiIiIiijF5eXmYNm0aNm7ciNzcXASDQUyYMAFut9toM3/+fCxYsADPP/88Nm3ahMzMTIwfPx41NTVGG4/Hg4kTJ+LBBx9s9vX+8pe/oKioyPj30EMPtSpOl8uFpUuXRixbuHAhunXrdgZb27hAINCqdkyiExEREREREREREcWYlStXYurUqRg4cCCGDBmC1157DYWFhdi8eTMAfRT6s88+iz/96U+46aabMGjQILz++uvweDxYtGiRsZ6ZM2fi/vvvxxVXXNHs67lcLmRmZhr/4uPjWxXn7bffjoULFxqPvV4v3n77bdx+++0R7crLy/Gzn/0MXbp0gdPpxODBg/Gf//wnos3YsWMxffp0zJ49G6mpqRg/fnyrYmASnYiIiIiIiIiIiCjGVVVVAQCSk5MBAAUFBSguLsaECROMNjabDWPGjMGGDRvOeP1PPPEEUlJScMkll+Cxxx5r9Sjw2267DWvXrkVhYSEA4N1330X37t0xdOjQiHY+nw/Dhg3Dhx9+iJ07d+K3v/0tbrvtNnz11VcR7V5//XWYzWasX78eL730UqtiMLeqFRERERERERERERF1SEIIzJ49G6NGjcKgQYMAAMXFxQCAjIyMiLYZGRk4cuTIGa3/7rvvxtChQ5GUlISvv/4aDzzwAAoKCvDKK6+0+Lvp6emYNGkS/vWvf+F///d/sXDhQvzqV79q0K5z58645557jMczZszAypUrsWTJEowYMcJY3rt3b8yfP/+M4mcSnYiIiIiIiIiIiCiGTZ8+Hdu3b8e6desaPFf/5p1CiDO+oeesWbOMny+++GIkJSXhRz/6kTE6feDAgUZi/qqrrsLHH38c8fu/+tWvcPfdd+MXv/gFvvzySyxZsgRr166NaKOqKh5//HEsXrwYx48fh9/vh9/vR1xcXES74cOHn1HsAJPoRERERERERERERDFrxowZWL58OdasWYMuXboYyzMzMwHoI9KzsrKM5aWlpQ1Gp5+pcP30AwcOICUlBStWrICiKAAAh8PRoP3kyZNx55134o477sAPf/hDpKSkNGjz9NNP45lnnsGzzz6LwYMHIy4uDjNnzmxQNqZ+Ur01WBOdiIiIiIiIiIiIKMYIITB9+nS89957+Pzzz9GjR4+I53v06IHMzEzk5uYaywKBAPLy8nDllVee02tv2bIFAIzkfE5ODnr37o3evXujc+fODdqbTCbcdtttWL16daOlXABg7dq1uOGGG/CLX/wCQ4YMQc+ePbF///5zijOMI9GJiIiIiIiIiIiIYsy0adOwaNEiLFu2DC6Xy6iBnpiYCIfDAUmSMHPmTMydOxd9+vRBnz59MHfuXDidTtx6663GeoqLi1FcXIwDBw4AAHbs2AGXy4Vu3bohOTkZX375JTZu3Iirr74aiYmJ2LRpE2bNmoXrr78e3bp1a3W8jz76KO69995GR6EDeq3zd999Fxs2bEBSUhIWLFiA4uJiDBgw4BzeJR2T6EREREREREREREQx5sUXXwQAjB07NmL5a6+9hqlTpwIA7rvvPni9Xtx1112oqKjAiBEjsGrVKrhcLqP9P//5TzzyyCPG49GjR0esx2azYfHixXjkkUfg9/uRk5OD3/zmN7jvvvvOKF6r1YrU1NQmn3/44YdRUFCAa6+9Fk6nE7/97W8xZcoUVFVVndHrNEYSQohzXgsRERERERERERERUQfEmuhERERERERERERERE1gEp2IiIiIiIiIiIiIqAlMohMRERERERERERERNYFJdCIiIiIiIiIiIiKiJjCJTkRERERERERERETUBCbRiYiIiIiIiIiIiIiawCQ6EREREREREREREVETmEQnIiIiIiIiIiIiImoCk+hERERERERERERERE1gEp2IiIiIiIiIiIiIqAlMohMRERERERERERERNYFJdCIiIiIiIiIiIiKiJvx/NxE67qiEYfQAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 1500x700 with 3 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def plot_groundobs_dbdt(ds_ground_obs):\n",
    "    ds_ground_obs = ds_ground_obs.assign(\n",
    "        dBdt=(ds_ground_obs[\"B_NEC\"].diff(\"Timestamp\")**2).sum(dim=\"NEC\").pipe(np.sqrt)\n",
    "    )\n",
    "    fig, axes = plt.subplots(nrows=3, figsize=(15, 7), sharey=True, sharex=True)\n",
    "    for i, obs in enumerate(ds_ground_obs[\"IAGA_code\"].values):\n",
    "        _ds = ds_ground_obs.sel(IAGA_code=obs)\n",
    "        lat = np.round(float(_ds[\"Latitude\"]), 1)\n",
    "        lon = np.round(float(_ds[\"Longitude\"]), 1)\n",
    "        label = f\"{obs} (Lat {lat}, Lon {lon})\"\n",
    "        ds_ground_obs[\"dBdt\"].sel(IAGA_code=obs).plot.line(x=\"Timestamp\", ax=axes[i], label=label)\n",
    "        axes[i].set_title(\"\")\n",
    "        axes[i].legend()\n",
    "        axes[i].set_xlabel(\"\")\n",
    "        axes[i].set_ylabel(\"dB/dt\\n[nT / min]\")\n",
    "        axes[i].grid()\n",
    "        fig.tight_layout()\n",
    "    return fig, axes\n",
    "    \n",
    "fig_grdbdt, axes_grdbdt = plot_groundobs_dbdt(ds_ground_obs)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}